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Random vectors
Now we want random X = (X1, X2, . . . , Xd) ∈ Rd.

If Xj ∼ Fj independent, then we’re back to the univariate case.

So the vector story is about inducing dependence.
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Dependence is hard
For d > 1

• the correct dependence is hard to specify theoretically

• sometimes it ‘emerges’ from problem data

• our named distributions cover fewer use cases

• there can be a curse of dimension, costs like O(ed×something)

Contrast

For d = 1 we could have almost any named distribution that our problem needed,

or maybe build our own sampler.

For d > 1 we more often force our problem into a list of distributions we can do.

Special cases and tricks are prominent

(Or use MCMC or SMC.)
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Sequential inversion
We want random X = (X1, X2, . . . , Xd)

Let U1, . . . , Ud
iid∼ U(0, 1).

Let F1 be the marginal distribution of X1.

X1 ∼ F−1
1 (U1)

For j = 2, . . . , d

Let Gj(·) = Fj(· | X1 = x1, . . . , Xj−1 = xj−1)

Xj = G−1
j (Uj)

Comments

1) Exact

2) Easy if you know how

3) Ordering of variables may affect efficiency

4) Can be super hard to get all those conditional distributions
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Acceptance-rejection
If (X, Y ) is uniformly distributed in

{(x, y) | 0 6 y 6 f(x), x ∈ Rd} ⊂ Rd+1

then X ∼ f . The geometry goes through, so the algorithm is:

1) Sample Y ∼ g on Rd

2) Accept iff fu(Y ) 6 cgu(Y )

Todo list

1) Be able to sample from g

2) Be able to compute fu/gu (possibly unnormalized)

3) Find c <∞ where you know fu 6 cgu
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Curse of dimension
Commonly c grows with d. It can grow exponentially. Consider

f =
d∏
j=1

fj(xj | xk, k < j)

g =
d∏
j=1

gj(xj | xk, k < j), fj(xj | · · · ) 6 cjgj(xj | · · · )

c =
d∏
j=1

cj

If every cj > c0 > 1, then c > cd0.

In a case like this we might use sequential Monte Carlo (SMC) (Chopin lectures)

If we must wait until Xd is available to accept or reject we probably face a large c.
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Example
We want X ∼ U(Bd), Bd = {z ∈ Rd | zTz 6 1} (unit ball).

Sample X ∼ U([−1, 1]d) keep X iff ‖X‖ 6 1.

Round peg, square hole

d Acceptance

2 π/4
.
= 0.785

5 0.164

10 0.00249

20 2.46× 10−8

50 1.54× 10−28

Generally

vol(Bd)
2d

=
πd/2

2dΓ(1 + d/2)
Recall: Γ(k) = (k − 1)!
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Mixtures
They still work.

You have to have mixing ingredients though.

So they turn Rd samplers into more Rd samplers.
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Copulas
Let X ∈ Rd have a continuous distribution with marginals Fj .

Then U = (F1(X1), . . . , Fd(Xd)) is a multivariate uniform random vector.

Also called a copula.

We can take Xj = F−1
j (Uj) componentwise

Sklar’s theorem

For any distribution on Rd there exists a copula distribution for U

with Xj
d
= F−1

j (Uj).

That doesn’t mean we can find it!

The marginals are the easy part. The copula is the hard part.
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Some we can do
• multivariate normal

• multivariate t

• multinomial (multivariate binomial)

• Dirichlet (multivariate beta)

• multivariate exponential

Puzzler

Can we just put “multivariate” in front of any distribution name?

Sort of: but it won’t be unique. There are > 12 bivariate Gammas (Kotz et al)

Also “multivariate f” might not preserve meaningful properties of f .
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Multivariate normal
X ∼ N (µ,Σ), µ ∈ Rd and Σ ∈ Rd×d positive semidefinite

E(X) = µ and Var(X) = Σ

Density

If Σ is invertible then

ϕ(x;µ,Σ) =
e−

1
2 (x−µ)TΣ−1(x−µ)

(2π)d/2|Σ|1/2

Singular distributions

Then rank(Σ) < d and X is confined to a low dimensional flat subset of Rd.
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N (µ,Σ)

Partition: X =

X1

X2

 ∼ N
µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22


Key properties

1) AX + b ∼ N (Aµ+ b, AΣAT)

2) X1 ∼ N (µ1,Σ11) and X2 ∼ N (µ2,Σ22)

3) X1 indep of X2 ⇐⇒ Σ12 = 0

4) If Σ22 invertible, then distn of X1 given X2 = x2 is

N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
Property 4 is our friend.
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BasicN (µ,Σ)
1) Start with Z ∼ N (0, Id) (easy)

2) Find any C ∈ Rd×d with CCT = Σ (below)

3) Deliver X = µ+ CZ

Two main choices

Cholesky: C lower triangular.

Best to check CCT = Σ. (In case you got an upper triangular C)

Spectral: For Σ = PΛPT use C = PΛ1/2PT

P orthogonal and Λ diagonal

Execise

Cholesky with Zj = Φ−1(Uj) is sequential inversion.
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Gaussian
Conditional sampling is powerful. Recall X1 |X2 = x2 is

N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
We can generate Gaussian components in any order we like.

Linear combinations

Let T = ΘX ∈ Rr for Θ ∈ Rr×d of rank r < d. ThenX

T

 =

 X

ΘX

 ∼ N
 µ

Θµ

 ,

 Σ ΣΘT

ΘΣ ΘΣΘT


If we’ve already got T = ΘX we can fill in the rest of X conditionally.

We can get T 1 = Θ1X then T 2 = Θ2X .

Cost is just algebra (and careful coding).
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For huge d
A technique from Doucet (2010)

Suppose we already chose T = t ∈ Rr where T = ΘX .

Now we want to fill in the rest of X

We can use:

1) X ∼ N (µ,Σ)

2) X ←X + ΣΘT(ΘΣΘT)−1(t−ΘX)

New algebra costs O(r3) not O(d3).

Still need a good Σ sampler.
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Multivariate t

X = µ+
Σ1/2Z√
W/ν

, W ∼ χ2
(ν)

Elliptically symmetric contours, much heavier tails thanN (µ,Σ).

This is also a mixture of Gaussians.

scale mixture

continuous distribution
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Multinomial data
Let J be a categorical variable:

P(J = j) = pj for j = 1, 2, . . . , d

The “one-hot encoding” of J = j is

Y =
(
0 0 · · · 0 1︸︷︷︸

pos. j

0 · · · 0
)
∈ {0, 1}d

Multinomial

X =

m∑
i=1

Yi independent categoricals Yi

We place m balls independently into d bins.

Bin j has probability pj .
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Multinomial ctd.
X = (X1, X2, . . . , Xd) ∼ Mult(m,p) where p = (p1, . . . , pd)

P(X = x) =
m!

x1!x2! · · ·xd!

d∏
j=1

p
xj

j xj > 0
∑
j

xj = m

From the definition

X ← (0, . . . , 0) // length d

for j = 1 to m do

J ∼ p // i.e., P(J = j) = pj

Xj ← Xj + 1

But this is slow for large m.

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 2 of 5 19

Conditionally
We can sample them one at a time in any order we like.

Each component is binomial. Given X1 = x1:

(X2, . . . , Xd) ∼ Mult
(
m− x1,

p2
1−p1 , . . . ,

pd
1−p1

)
For X ∼ Mult(m,p)

given m ∈ N0, d ∈ N and p = (p1, . . . , pd) ∈ ∆d−1

`← m, S ← 1

for j = 1 to d do

Xj ∼ Bin(`, pj/S)

`← `−Xj

S ← S − pj
deliver X
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Recursively
For any subset of bins: u ⊂ {1, 2, . . . , d}
Generate Xu ≡

∑
j∈uXj ∼ Bin(m,

∑
j∈u pj)

Now you have two multinomials,

one within set u and one within set uc

Fill in within set u

m← Xu and pj ← pj/
∑
k∈u pk

For set uc

m← m−Xu and pj ← pj/
∑
k∈uc pk
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Dirichlet
The unit simplex is

∆d−1 =
{

(x1, . . . , xd)
∣∣ xj > 0,

d∑
j=1

xj = 1
}

A random X ∈ ∆d−1 represents a random probability vector.

Useful in hierarchical models.

Density

D(α)−1
d∏
j=1

x
αj−1
j , x ∈ ∆d−1, D(α) =

∏d
j=1 Γ(αj)

Γ
(∑d

j=1 αj
)

Need αj > 0. If αj = 1 we get U(∆d−2).

First d− 1 components

D(α)−1
d−1∏
j=1

x
αj−1
j

(
1−

d−1∑
j=1

xj

)
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Samples
Large αj ‘attract’ points to their corner

More precisely: large αj ‘repel’ points from the far side
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Sampling
Using some probability inequalities:

1) Y ∼ Gam(αj)

2) Xj = Yj/
∑d
k=1 Yk

Marginally

This also shows that Xj ∼ Beta(αj ,
∑
k 6=j αk).
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Multivariate Poisson
Take Zj ∼ Poi(λj) for j = 1, . . . , r then

X1

X2

...

Xd

 =


1 0 1 · · · 0

0 1 0 · · · 1
...

...
...

. . .
...

0 1 1 · · · 1




Z1

Z2

...

Zr


I..e. X = AZ for A ∈ {0, 1}d×r

Each Xj Poisson and E(X) = Aλ

Interpretation

Event sources Z1, . . . , Zr .

Event outcomes X1, . . . , Xd.

Ajk = 1 ⇐⇒ source k affects outcome j.

Unfortunately: we cannot get negative dependence this way.
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Copula-marginal sampling
Let C be a copula. Sample U ∼ C then Xj = F−1

j (Uj)

Any copula we like with any margins we like.

Gaussian copula

For a correlation matrix R ∈ Rd×d

1) Y ∼ N (0, R)

2) U ← Φ(Y )

3) Xj ← F−1
j (Uj), j = 1, . . . , d

Also called Nataf transformation and NORTA (normal to anything).

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 2 of 5 26

Normal copula, Poisson margins
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(a) ρ = 0.7
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(b) ρ = −0.7

E(Xj) = 2 and points jittered
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Copula sampling
The Gaussian copula has some undesirable properties for insurance and finance.

A t(ν) copula is considered safer (McNeil et al., 2005)

Y ∼ t(0, R, ν), Uj = P(t(ν) 6 Yj) Xj = F−1
j (Uj)

Copula sampling is a hybrid with target qualitative behaviour

but aesthetically problematic for some.
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Geometry
Random points on

Sd−1 = {z ∈ Rd | zTz = 1}

The standard Gaussian is spherically symmetric

(2π)−d/2e−
1
2z

Tz

Easy way to sample

1) Z ∼ N (0, I)

2) X ← Z/‖X‖

There are alternatives for d = 3 in graphics.

For any spherically symmetric distribution

Get X ∼ U(Sd−1) and multiply by the desired radius.

Exercise: get X ∼ U{z ∈ Rd | ‖z‖ 6 1} (ball)

Box-Muller

Is this same trick in reverse to get Z ∼ N (0, I2).
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Examples

Next come some sketched examples.

Time does not permit full details.

If one looks interesting, you’ll have to follow up later.

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 2 of 5 30

Random permutations
Uniform over m! permutations of 1, . . . ,m

X ← (1, 2, . . . ,m− 1,m)

for j = m, . . . , 2 do

k ∼ U{1, . . . , j}
swap Xj and Xk

deliver X

Derangements

Exercise: Enforce Xi 6= i for all i = 1, . . . ,m
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For K-fold cross validation
Set up a vector with m = Kdn/Ke elements

v =
(
1:K, 1:K, 1:K, · · · , 1:K

)
Random permutation π(i)

Group labels Gi = vπ(i), i = 1, . . . , n

Fitting, tuning, validate

Fit over 50%

tune parameters over 30%

validate on 20%
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Linear permutations
To permute of m = 264 elements.

(Long story about min hashing)

Uniform permutation infeasible.

Suffices to permute 0, 1, . . . , p− 1 for prime p > m

Two algorithms

π(i) = U + imod p (digital shift)

π(i) = U + V × imod p (random linear)

For U ∼ U{0, 1, . . . , p− 1} and V ∼ U{1, . . . , p− 1}
NB: V 6= 0

These get 1 and 2 dimensional margins right (respectively).

Random linear requires p to be prime.

These are also used in randomized quasi-Monte Carlo
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Downsampling data
Given (xi, Yi) for i = 1, . . . , N

we want a simple random sample of n� N

First solution

Tag observation i with ui ∼ U(0, 1)

Keep those i with smallest n tags ui

Better solution

Work out the distribution of ‘next item’ sampled.

Reservoir sampling

We don’t have to know N before sampling begins.
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Poisson processes
Number of points in [t, t+ s) ∼ Poi(λ× s)
Non overlapping intervals are independent.

Ti − Ti−1 ∼ Exp(1)/λ

Non uniform rate λ(t)

Let Λ(t) =
∫ t

0
λ(s) ds. Then

Ti = Λ−1
(
Λ(Ti−1) + Ei

)
, Ei ∼ Exp(1)

just like inversion.

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 2 of 5 35

Random lines
Sample via polar coordinates.

Isotropic Non−isotropic

Poisson lines
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Gaussian processes
X(t) for t ∈ T . Maybe T = [0,∞) or T ⊂ Rd.

Mean µ(·) and covariance Σ(·, ·).

Finite dimensional distributions
X(t1)

X(t2)
...

X(tm)

 ∼ N



µ(t1)

µ(t2)
...

µ(tm)

 ,


Σ(t1, t1) Σ(t1, t2) · · · Σ(t1, tm)

Σ(t2, t1) Σ(t2, t2) · · · Σ(t2, tm)
...

...
. . .

...

Σ(tm, t1) Σ(tm, t2) · · · Σ(tm, tm)




Notes

We can generate in any order.

But algebra could be costly.

Easy for Brownian motion:

B(tj) = B(tj−1) +
√
tj − tj−1 ×N (0, 1)

Markov property fills in between
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Matern processes
Used as generative models for functions in physics / engineering.

Supports “Bayesian numerical analysis” on expensive codes.
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Matern Process Realizations
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Stochastic differential equations
Drift a(·, ·), diffusion b(·, ·)

dXt = a(Xt) dt+ b(Xt) dBt, Brownian motion Bt

Euler-Maruyama

At times tk = k ×∆, with Zk ∼ N (0, 1)

X̂(tk+1) = X̂(tk) + ak∆ + bk
√

∆Zk

ak = a(X̂(tk)), bk = b(X̂(tk))

Milstein

X̂(tk+1) = X̂(tk) + ak∆ + bk
√

∆Zk +
1

2
bkb
′
k(Z2

k − 1)∆k

b′k = b′(X̂(tk))

Milstein’s X̂(·) tracks X(·) better (strong sense).

Multilevel Monte Carlo is the best way to handle bias from ∆ > 0
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Dirichlet process
Xi ∼ H(·, θi) where θi ∈ Θ with θi ∼ F
For random F centered on G

(F (A1), · · · , F (Am)) ∼ Dir(αG(A1), . . . , αG(Am))

After some algebra:

the distribution of θn+1 given θ1, . . . , θn is a CRP
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Chinese restaurant process

Metaphor

People either start a new table

or join one with prob proportional to number seated there

Then θn+1 is either a previously seen θi, or a new draw from G

You get clustered θi allowing for hitherto unseen clusters
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Point processes
L: centers of insect cells Ripley (1977) R: pine trees Van Liesbout (2004)
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Finnish pines

Two Spatial Point Sets

We can mimick positive dependence via Pi ∼ Poi(Λ) for random Λ.

Negative dependence is harder.

We need MCMC lectures of Rosenthal, Roberts or SMC lectures of Chopin
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