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Monte Carlo: Importance

sampling

Art B. Owen

Stanford University

Adapted from “Monte Carlo theory, methods and examples”

http://statweb.stanford.edu/˜owen/mc/
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Importance sampling
Importance sampling is more complicated than other variance reduction methods.

Done well, it can turn a problem from intractable to easy.

It can also give infinite variance.

Sequential Monte Carlo

Importance sampling is a precursor.

See talks by N. Chopin

Outline

1) What IS is and why we need it

2) Self-normalized IS

3) Example

4) How to do it

5) Adaptive IS (briefly!)
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Spiky integrands
Sometimes all the action is in a subset A of tiny probability.

µ =
∫
f(x)p(x) dx ≈

∫
A
f(x)p(x) dx where P(X ∈ A) ≈ 0

How it arises

1) Rare events f(x) = 1{x ∈ A}, P(x ∈ A) = ε

2) Singular integrands, e.g., f(x) ∝ ‖x− x0‖−r , r < d = dim(x)

Examples

• Probability that an insurance company fails.

• Probability of electrical blackouts.

• Singular integrands in high energy physics.

• Graphics has both at once.

What to do

Get more samples xi ∈ A, the important region.

And then correct for that distortion.
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Rare events

µ =

∫
A

p(x) dx = ε� 1

µ̂ =
1

n

n∑
i=1

1{xi ∈ A}, xi
iid∼ p

E(µ̂) = ε and Var(µ̂) =
ε(1− ε)

n

Coefficient of variation

cv =

√
Var(µ̂)

µ
=

√
1− ε
nε
≈
√

1

nε

To get cv = 0.1 we need n ≈ 100/ε.

Then ε = 10−9 takes n ≈ 1011.
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Singularities
Sometimes not severe. For instance,∫

Rd
‖x− x0‖−rp(x) dx, r > 0

has finite variance if r < d/2 and p is bounded.

For fixed r the larger d gets, the less severe the singularity is.

The cv becomes manageable for large d/r.

Why?

It is a property of high dimensional geometry.
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Sample from q
Choose a density q with q(x) > 0 whenever f(x)p(x) 6= 0. Then use

µ̂q =
1

n

n∑
i=1

f(xi)p(xi)

q(xi)
, xi

iid∼ q.

Unbiased

Let Q = {x | q(x) > 0}. Then

E(µ̂q) =

∫
Q

f(x)
p(x)

q(x)
q(x) dx =

∫
Q

f(x)p(x) dx = µ

Safe harbour

We can pick q with q(x) > 0 whenever p(x) > 0.

That works for general f .

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 4 of 5 7

Choosing q

Var(µ̂q) =
σ2
q

n
, where

σ2
q =

∫ (fp
q
− µ

)2

q dx =

∫
(fp− µq)2

q
dx

From the numerator

We do well with q ≈ fp/µ. When f > 0, q = fp/µ is perfect,

but unattainable: f(xi)p(xi)/q(xi) = µ.

Generally q ∝ |f |p is optimal.

From the denominator

Watch out for q close to zero. E.g., avoid light tailed q.

Todo list for IS

1) sample x ∼ q

2) compute fp/q given x
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Beyond variance
Chatterjee & Diaconis (2015) show that we need

n ≈ exp(KL distance p, q)

for generic f .

They use Eq(|µ̂q − µ|) and Pq(|µ̂q − µ| > ε) instead of Varq(µ̂q).

95% confidence

Taking ε = .025 in their Theorem 1.2 shows that we succeed with

n > 6.55× 1012 × exp(KL).

Similarly, poor results are very likely for n much smaller than exp(KL).

The range for n is not precisely determined by these considerations (yet).
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The weight function
Recall that

σ2
q =

∫
(fp)2

q
dx− µ2

Let w(x) = p(x)/q(x).

That mean square can be written∫
(fp)2

q
dx = Eq(w(x)2f(x)2)

Bounded w(x) is very helpful.

Unbounded w can give σq =∞ even when σ <∞.

Helpful identity

Eq(w(x)2f(x)2) = Ep(w(x)f(x)2)
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Effective sample size
Unequal weighting raises variance.

Kong (1992), Evans and Swartz (1995)

For IID Yi with variance σ2 and fixed∗ wi > 0,

Var
(∑

i wiYi∑
i wi

)
=

∑
i w

2
i σ

2(∑
i wi
)2

Write this as
σ2

ne
where ne =

(
∑
i wi)

2∑
i w

2
i

If
∑

iwi > 0 then

1 6 ne 6 n

If
∑

iwi = 0 then

We don’t need a diagnostic to tell us we have a problem.

∗fixed?

Our Yi = f(xi) are actually linked to wi(xi).
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Simple examples
p = N (0, I) and q = N (θ, I)

w(x) = exp(−θTx + θTθ/w)

p = N (0, 1) given x > τ > 1 and q = τ + Exp(1)/τ .

w(x) = Exercise

Tail weight

p = N (any) and q = t(ν) =⇒ ok

p = t(ν) and q = N (any) =⇒ problematic.

Exercise:

p = N (µ, Id) and q = N (µ, σ2Id)
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Self-normalized I.S.
What if we cannot compute p/q? Suppose that

p(x) = pu(x)/cp and q(x) = qu(x)/cq

and we can compute pu and qu but not cp or cq . Then we use

µ̃q =
1

n

n∑
i=1

pu(xi)f(xi)

qu(xi)

/ 1

n

n∑
i=1

pu(xi)

qu(xi)

=
1

n

n∑
i=1

p(xi)f(xi)

q(xi)

/ 1

n

n∑
i=1

p(xi)

q(xi)
cancellation

→
∫
p(x)f(x) dx

/ ∫
p(x) dx law of large numbers

= µ

About that denominator

Now we need q(x) > 0 where p(x) > 0,

even if f(x) = 0.
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Variance of SNIS
It is a ratio estimator:

µ̃q =
1

n

n∑
i=1

pu(xi)f(xi)

qu(xi)

/ 1

n

n∑
i=1

pu(xi)

qu(xi)

After Taylor expansions

Var(µ̃q)
.
=

1

n
σ2
q,sn σ2

q,sn = Eq
(
w2(f − µ)2

)
w(x) =

p(x)

q(x)

versus σ2
q = Eq((fw − µ)2)

Caveat

Taylor expansion gives Var(approximate µ̃q)
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Optimal SNIS

q(x) ∝ p(x)|f(x)− µ| vs p|f | for ordinary IS Hesterberg (1988)

As a result

σ2
q,sn > Ep(|f(X)− µ|)2

For rare event A

Optimal SNIS has x ∈ A with probabilty 1/2. (Exercise)

Variance cannot approach zero like with IS.

SNIS can still beat sampling from p.

Strongest case for SNIS

It is a replacement for acceptance-rejection when

1) p is unnormalized

2) p/q unbounded
LMS Invited Lecture Series, CRISM Summer School 2018
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IS vs acceptance rejection
• Acceptance-rejection requires bounded w(x) = p(x)/q(x)

• We also have to know a bound.

• IS and SNIS require us to keep track of weights wi = w(xi)

Ok for one source of randomness; potentially awkward in a pipeline

• Plain IS requires normalized p/q

• Acceptance-rejection samples cost more (due to rejections)
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PERT example
A PERT problem from Chinneck. Time to write software.

j Task Predecessors Days to complete

1 Planning None 4

2 Database Design 1 4

3 Module Layout 1 2

4 Database Capture 2 5

5 Database Interface 2 2

6 Input Module 3 3

7 Output Module 3 2

8 GUI Structure 3 3

9 I/O Interface Implementation 5,6,7 2

10 Final Testing 4,8,9 2
LMS Invited Lecture Series, CRISM Summer School 2018
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Dependence

1

2

3

4

5

6

7

8

9 10

PERT graph (activities on nodes)

IS task

Replace all days by exponential random variables.

Find P(takes > 70 days). LMS Invited Lecture Series, CRISM Summer School 2018
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PERT details
If everything goes as planned it takes exactly 15 days. (seems optimistic)

Tj is time spent on task j.

Ej is completion time of task j.

Project completes at E10.

Exponential random times give E(E10)
.
= 18 with a long tail to the right.

What is P(E10 > 70)? Only happened 2 of 10,000 times.

Importance sampler

Change Tj ∼ Exp(1)× θj =⇒ Tj ∼ Exp(1)× λj , j = 1, . . . , 10.

µ̂ =
1

n

n∑
i=1

1{Ei,10 > 70}
10∏
j=1

exp(−Tij/θj)/θj
exp(−Tij/λj)/λj

Now choose λj > θj carefully.
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PERT example
Full details in online notes.

First: 70 is about 4 times E(E10). So lets try λ = 4θ. Use n = 10,000

Oops: we get ne
.
= 4.9. One observation had 43% of the weight!

Second: Try searching for κ where λ = κθ works well.

There really isn’t one.

Critical path

In a deterministic setting: a task is on the critical path if delaying it by ε delays the

total time by ε

Third: Just apply some κ to the 4 tasks (1,2,4,10) in the critical path.

κ = 4 works ok, so raise n to 200,000.
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PERT results
P(E10 > 70)

.
= 3.2× 10−5,

std. err.
.
= 3.6× 10−7,

ne
.
= 7470

IS reduced variance by about 1200

Lots of further tweaks possible (e.g., integrate out T10)

Couldn’t we just automate the process?

Not super rare

Maybe go for P(E10 > 365)!
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How to find q?

1) Pure inspiration

2) Exponential tilting

3) Hessians and Gaussians

4) Mixtures

Let’s skip over item 1.
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Changing a parameter
Nominal distribution p(x; θ0) θ0 ∈ Θ

Sampling distribution p(x; θ) θ ∈ Θ

Estimator

1

n

n∑
i=1

f(xi)
p(xi; θ0)

p(xi; θ)

The importance ratio often simplifies.

E.g., in exponential families.
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Exponential tilting
Many important distributions can be written

exp(η(θ)TT (x)−A(x)− C(θ)), θ ∈ Θ

and often

exp(θTx−A(x)− C(θ)), θ ∈ Θ

Nominal θ0 sample with θ

Estimator

µ̂θ = eC(θ)−C(θ0)︸ ︷︷ ︸
free of xi

× 1

n

n∑
i=1

f(xi) e
(θ0−θ)Txi︸ ︷︷ ︸

the tilt

Also called ‘exponential twisting’
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Examples
Family p(· ; θ) w(·) Θ

Normal N (θ,Σ) exp(xTΣ−1(θ0 − θ) + 1
2θ

TΣ−1θ − 1
2θ

T
0 Σ−1θ0) Rd

Poisson Poi(θ) exp(θ − θ0)(θ0/θ)
x (0,∞)

Binomial Bin(m, θ) (θ0/θ)
x((1− θ0)/(1− θ))m−x (0, 1)

Gamma Gam(θ) xθ0/θ Γ(θ)/Γ(θ0) (0,∞)

The normal family shown shares a non-singular Σ.

Exercise

Can we tilt when det(Σ) = 0?
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Hessian and Gaussian
Suppose that we find the mode x∗ of p(x) or better yet, of h(x) ≡ p(x)f(x).

Taylor approximation

log(h(x)) ≈ log(h(x∗))−
1

2
(x− x∗)

TH∗(x− x∗)

h(x) ≈ h(x∗) exp
(
−1

2
(x− x∗)

TH∗(x− x∗)
)
, suggests

q = N (x∗, H
−1
∗ ).

The Hessian of log(h) at x∗ is−H∗.
Requires positive definite H∗.

This is an IS version of the Laplace approximation.

For safety

Use a t distribution instead ofN .
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Mixtures
What if there are multiple modes?

https:

//en.wikipedia.org/wiki/Multimodal_distribution

When sampling the highest mode, we might miss some others.

A mixture of unimodal densities can capture all the modes (that we know of).
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Mixture distributions
Sample j randomly from 1, 2, . . . , J with probabilities α1, . . . , αJ .

Here αj > 0 and
∑J
j=1 αj = 1.

Given j take x ∼ qj .

For example

J∑
j=1

αj N (θj , σ
2Id)

With large J , we get kernel density approximations.

These can approximate generic densities.

The approximation gets more difficult with large dimension.

West (1993), Oh & Berger (1993)
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Mixtures continued
Multiple kinds of rare event

• J kinds of light path in graphics Veach, Guibas

• ∼ 5000 ways the electrical grid can fail O, Maximov, Chertkov (2017)

• J ways a financial portfolio can be hurt

• J failure modes for a bridge

One component can oversample each failure mechanism (that we know of).

Many integrands and/or many distributions

µj =

∫
fj(x)p(x) dx or µj =

∫
f(x)pj(x) dx, j = 1, . . . , J

Tune one component for each integrand of interest. Pool the values.
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IS with mixtures
qα(x) =

J∑
j=1

αjqj(x)

µ̂α =

n∑
i=1

f(xi)
p(xi)

qα(xi)
=

n∑
i=1

f(xi)p(xi)∑J
j=1 αjqj(xi)

. (∗∗)

(∗∗) Balance heuristic Veach & Guibas, also Horvitz-Thompson estimator.

Eric Veach got an Oscar for this!

Alternative

Suppose that xi came from component j(i). We could also use

1

n

n∑
i=1

f(xi)
p(xi)

qj(i)(xi)
.

Exercise: This alternative has higher variance. (Hint: 1/x is convex)

But you don’t have to compute every qj for every xi.
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Defensive mixtures
From Hesterberg (1995)

For our best guess q(·) take q1 ≡ p and let q2 = q. Now,

w(x) =
p(x)

qα(x)
=

1

α1 + α2 × q2(x)/p(x)
6

1

α1
, ∀x

Perhaps α1 = 1/10 or 1/2.

q does not need to be heavy tailed any more because qα is.

Variance bound

After some algebra,

Var(µ̂qα) 6
1

nα1

(
σ2
p + α2µ

2)

If however σ2
q was very small, defensive IS can lose out.

We don’t have a bound vs σ2
q .
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Control variates and mixture IS
For normalized qj(·) we know

∫
qj(x) dx = 1, j = 1, . . . , J

Eqα
( qj(x)

qα(x)

)
=

∫
qj(x) dx = 1

Unbiased estimate

µ̂α,β =
1

n

n∑
i=1

f(xi)p(xi)−
∑J
j=1 βjqj(xi)∑J

j=1 αjqj(xi)
+

J∑
j=1

βj

Additional control variates can be added too.

Via regression

Regress Yi = f(xi)p(xi)/qα(xi) on Zij = qj(xi)/qα(xi)− 1.

Get µ̂ = β̂0 (intercept) and se.

∑
j αjZij = 1 for all i, so drop one predictor.
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Mixture IS results
O & Zhou (2000)

Var(µ̂α,βopt) 6 min
16j6J

σ2
j

nαj

Properties

1) µ̂α,β is unbiased if qα > 0 whenever fp 6= 0

2) If any qj have σ2
qj = 0 we get Var(µ̂α,βopt) = 0

3) Even better to take exactly nαj observations from qj .

We could not expect better in general.

We might have σ2
j =∞ for all but one j.

The bound is σ2
j /(nαj) as if we had just used the good one.

(Without knowing which one it was. Indeed it might be a different one for each of

several different integrands.)
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Summary of mixtures
Using mixtures, we can

• bound the importance ratio

• place a distribution near each singularity

• place a distribution near each failure mode

• tune a distribution to each fj of interest

• tune a distribution to each pj of interest

• use control variates to be almost as good as the optimal component

The mixture components can be based on intuition, tilting, Hessians.
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Adaptive importance sampling
1) Data−→ new q

2) q −→ new data

• Active research area

• Survey of some highlights
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What-if simulations

Reweight data from p(x; θ0) to estimate

µ(θ) ≡
∫
f(x)p(x; θ) dx, θ 6= θ0.

Now estimate what the IS variance ‘would have been’ from p(·; θ).

Adaptation

θk ← θ with low estimated variance from θk−1 data.
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What-if simulations
Family p(x; θ), θ ∈ Θ

We want µ(θ) = E(f(x); θ) =
∫
f(x)p(x; θ) dx, θ ∈ Θ

Sample from θ0 and reweight for θ 6= θ0

µ̂(θ) =
1

n

n∑
i=1

f(xi)p(xi; θ)

p(xi; θ0)
, xi ∼ p(· ; θ0).

We can recycle our f(xi) values

Common heavy-tailed q

µ̂(θ) =
1

n

n∑
i=1

f(xi)p(xi; θ)

q(xi)
, xi ∼ q(· )

Paraphrase (from memory) of Tukey and Trotter (1956)

“Any sample can come from any distribution.”
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What-if continued
Estimate what the mean square would have been:

MSθ =

∫
(f(x)p(x))2

q(x; θ)
dx =

∫
(f(x)p(x))2

q(x; θ)q(x; θ0)
q(x; θ0) dx

M̂Sθ =
1

n

n∑
i=1

[f(xi)p(xi)]
2

q(xi; θ)q(xi; θ0)
, xi ∼ q(·; θ0)

Caution

Low ne for large ‖θ − θ0‖

E.g., p = N (θ0,Σ) and q = N (θ,Σ)

n∗e >
n

100
⇐⇒ (θ − θ0)TΣ−1(θ − θ0) 6 log(10)

.
= 2.30

O (2013), Chapter 9.14.
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K rounds
Estimates: µ̂k, k = 1, . . . ,K (unbiased)

K = 2 pilot and final

K = n continual adaptation

Best linear unbiased combination

K∑
k=1

µ̂k
Var(µ̂k)

/ K∑
k=1

1

Var(µ̂k)

It is not safe to replace Var(µ̂k) by V̂ar(µ̂k).

V̂ar(µ̂k) typically correlated with µ̂k.
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√
k weights

Use
K∑
k=1

√
kµ̂k

/ K∑
k=1

√
k. O & Zhou (1999)

Near optimal

If Var(µ̂k) ∝ k−r0 unknown 0 6 r0 6 1

Then sup
16K<∞

max
06r061

Var(using r1 = 1/2)

Var(using r0)
=

9

8
.
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AMIS
Adaptive Multiple Importance Sampling

Cornuet, Marin, Mira, Robert (2012)

1) Sample n1 observations using θ1

2) Estimate θ2 from data and sample more

3) Keep estimating new θk and sampling more

4) Combine rounds by multiple importance sampling methods

Notes

Observation weights from one round depend on data from future rounds.

This breaks the Martingale property, so it is hard to get unbiased estimates.

SNIS is used throughout because the motivation is from Bayesian problems

where p is usually not normalized.
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APIS
Martino, Elvira, Luengo, Corander (2015)

Adaptive Population Importance Sampler

For an unnormalized p(·).

Choose n normalized distributions qi(· ; θi, Ci), mean θi, covariance Ci.

Sample xi ∼ qi
Get SNIS weights wi ∝ p(xi)/

∑
i′ qi′(xi; θi′ , Ci′).

Every m’th iteration, update the means θi but not the covariances Ci,

using previous m− 1 iterations’ data

Avoids “particle collapse”.

Empirical assessment.
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Cross-entropy
One of the most popular methods.

Rubinstein (1997), Rubinstein & Kroese (2004)

µ =
∫
f(x)p(x) dx for f > 0 and µ > 0.

We use q(· ; θ) = qθ for θ ∈ Θ. Exponential family

There is an optimal q ∝ fp but it is not usually in our family.

Variance based update

θ(k+1) = arg min
θ∈Θ

1

nk

nk∑
i=1

(f(xi)p(xi))
2

qθ(xi)
, xi = x

(k)
i ∼ qθ(k)

The optimization may be too hard. Switch to a Kullback-Leibler distance

Update reduces to moment matching.

Skipping a ton of notation!
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Cross-entropy
A common estimand is

µ = P(g(x) > τ) for large τ , so

f(x) = 1{g(x) > τ}

In the moment update:

θ ← a weighted average of f(xi)

If τ > maxi g(xi)

Oops: θ ← 0/0

Ingenious fix

They reduce τ to a high quantile of g(xi) and go again.
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Cross-ent examples

−6 −4 −2 0 2 4 6

−
5

0
5

Gaussian, Pr(min(x)>6)

−6 −4 −2 0 2 4 6

−
5

0
5

Gaussian, Pr(max(x)>6)

x ∼ N (θ, I2) θ = (0, 0)T.

Start with θ1 = θ = (0, 0)T.

Take K = 10 steps with n = 1000 each.
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Cross-ent examples

−6 −4 −2 0 2 4 6

−
5

0
5

Gaussian, Pr(min(x)>6)

●

●

●

●

●●●●●●●

−6 −4 −2 0 2 4 6

−
5

0
5

Gaussian, Pr(max(x)>6)

●

●

●
●

●

●●●●●●

θ1 = (0, 0)T.

For min(x), θk heads Northeast, and is ok.

For max(x), θk heads North (or East) and underestimates µ by about 1/2.
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More adaptive methods
There are enormously many of them. Still an active area.

Additional refs in online notes.

Also in slides for Los Alamos 2017 Winter School http://statweb.

stanford.edu/˜owen/pubtalks/AdaptiveISweb.pdf

More ideas

• Asymptotically exact IS in particle transport

Booth (1985), Kollman (1993), Kong, Ambros, Spanier (2009)

• Nonparametric AIS and recursive partitioning

Lepage (1978), Friedman & Wright (1979) Press & Farrar (1990)

• Stochastic convex programming

Ryu & Boyd (2015)

Apologies to many left off the list.
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