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Markov chain Monte Carlo

Art B. Owen

Stanford University

Adapted from “Monte Carlo theory, methods and examples”

http://statweb.stanford.edu/˜owen/mc/
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Outline
1) You can’t always sample what you want

2) Sometimes a Markov chain does what you need

3) Review of Markov chains

4) Detailed balance, Metropolis-Hastings and Gibbs

5) Statistical analysis

6) Survey of: ABC, Hamiltonian, Variational

This sets the stage for Jeffrey Rosenthal’s MCMC talks.

And one of Gareth Roberts

LMS Invited Lecture Series, CRISM Summer School 2018
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Apologies
We are skipping:

10s of authors

100s of ideas

1000s of references

Or maybe it’s 1000s of ideas and 100s of references

Texts with more info

Gilks, Richardson, Spiegelhalter (1995), Liu (2001), Casella & Robert (2004)

BDA by Gelman, et al., and the Handbook of MCMC

Going deeper

Papers of

Roberts & Rosenthal

Diaconis, Wong, Meng, Doucet, Geyer, Andrieu · · ·
too many to name.

Also, I just ask James Johndrow LMS Invited Lecture Series, CRISM Summer School 2018
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Hard shell model
Place N circles in a square.

Uniform conditionally on no overlap.
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Hard to sample that IID.

Generally negative dependence is hard.
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Bayes
Parameter θ ∈ Θ with prior π(θ). Data y ∼ p(y | θ)

Posterior

π(θ | y) =
π(θ)p(y | θ)∫
π(θ)p(y | θ) dθ

We want facts about θ | y.

We could get those facts by sampling θ ∼ π(θ | y).

(If we could sample.) Also π is usually unnormalized.

LMS Invited Lecture Series, CRISM Summer School 2018
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Astronomy example
Ruth Angus at Bayes Comp 2018

π(θ | y) ∝ π(θ)× p(y | θ)

y is data on stars and exoplanets.

p(y | θ) includes:

• propeties about their telescopes

• how many sunspots the stars have

• how fast they spin

• how that speed relates to age of stars

• angles that stars’ axes make to us

θ is about whether stars gain or lose exoplanets over time.

π(θ | y) is not a named distribution. Not in Devroye (1986).

LMS Invited Lecture Series, CRISM Summer School 2018
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What we will do
First we change θ to x. [Revert back later]

We want to sample x ∼ π (which has everything we know).

We now want
∫
f(x)π(x) dx for various choices of f .

Then we will

• Devise a Markov chain xi with stationary distribution π

• and sample x1,x2, . . . ,xn from P

• and use µ̂ = 1
n

∑n
i=1 f(xi).

What could go wrong?

LMS Invited Lecture Series, CRISM Summer School 2018
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Markov chains
Refresher. See Norris (1998) or Levin, Peres, Wilmer (2009)

P(Xi ∈ A | X0 = x0, . . . , Xi−1 = xi−1) = P(Xi ∈ A | Xi−1 = xi−1)

We will work mostly with Xi ∈ Ω = {ω1, ω2, . . . , ωM}.
[Think discrete; act continuous.]

Homogeneous chain

P(Xi+1 = y | Xi = x) = P(X1 = y | X0 = x) ≡ P(x→ y)

Distribution of this chain is now determined by

P(x→ y), and

p0(x) = P(X0 = x)

LMS Invited Lecture Series, CRISM Summer School 2018
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Where does this chain go?

p1(ωk) ≡ P(Xi = ωk) =
M∑
j=1

p0(ωj)P (ωj → ωk), i.e.,

p1 = p0P

pn = p0P
n

Note

pi = (P(Xi = ω1), . . . ,P(Xi = ωM )) ∈ R1×M

a row vector.

p0P
nf is E(f(xn)), for f : Ω→ R

LMS Invited Lecture Series, CRISM Summer School 2018
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A random walk
Follow a uniform random link, but linger with p = 1/2 at Longeuil.

(Van Houtte Coffee, 4.7 stars)

Snowdon

Lionel−Groulx

Jean−Talon

Berri−UQAM
Longueuil U. de S.

A portion of the Montréal métro

LMS Invited Lecture Series, CRISM Summer School 2018
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Transition matrix



JT S LG B L

Jean-Talon 0 1/2 0 1/2 0

Snowdon 1/2 0 1/2 0 0

Lionel-Groulx 0 1/3 0 2/3 0

Berri-UQAM 1/4 0 1/2 0 1/4

Longueuil 0 0 0 1/2 1/2



For example

P
(

Lionel-Groulx→ Berri-UQAM
)

=
2

3

LMS Invited Lecture Series, CRISM Summer School 2018
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After 100 steps

P 100 .
=



JT S LG B L

JT 0.1546 0.1530 0.2319 0.3063 0.1541

S 0.1530 0.1547 0.2296 0.3091 0.1536

LG 0.1546 0.1530 0.2319 0.3064 0.1541

B 0.1532 0.1546 0.2298 0.3089 0.1536

L 0.1541 0.1536 0.2311 0.3073 0.1539


No matter where you start p100(Berri)

.
= 0.31.

Same for p200, p300 et cetera.

These are almost IID from the stationary distribution.

NB

We will not throw out 99% of the data!

LMS Invited Lecture Series, CRISM Summer School 2018
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Stationary distribution
π = πP so πT = PTπT

πT is an eigenvector of PT with eigenvalue 1

Perron-Frobenius does it.

Avoid bad chains

P1 =


1/2 1/2 0 0

1/2 1/2 0 0

0 0 1/2 1/2

0 0 1/2 1/2

 and P2 =


0 0 1/2 1/2

0 0 1/2 1/2

1/2 1/2 0 0

1/2 1/2 0 0

 .

These both have U{1, 2, 3, 4} as stationary distributions.

P1 is separable, has multiple stationary distributions, and will get stuck.

P2 alternates so distribution of Xn does not converge to π.

That is less serious.

LMS Invited Lecture Series, CRISM Summer School 2018
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Law of large numbers
Let Xi be a time-homogenous Markov chain on a finite set Ω

with transition matrix P and stationary distribution π.

If P is irreducible, then

Pω0

(
lim
n→∞

1

n

n∑
i=1

f(Xi) =
∑
ω∈Ω

π(ω)f(ω)

)
= 1

Levin, Peres, Wilmer (2009)

But it could be slow

P =

1− ε ε

ε 1− ε


If ε� 1/n then the LLN isn’t helping.

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 5 of 5 15

What we will do
Given π we will find a transition matrix P with πP = π

Then sample x1, x2, . . . , xn via P .

Here is what could go wrong

1) It might take a long time before pn ≈ π (Slow convergence.)

2) The xn might get stuck for a long time (Slow mixing)

What helps

For any π there are lots of P to try!

Maybe one will work.

LMS Invited Lecture Series, CRISM Summer School 2018
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Detailed balance
Stationarity balances flow into y with flow out of y∑

x∈Ω

π(x)P (x→ y) = π(y) =
∑
x∈Ω

π(y)P (y → x)

Detailed balance is stronger. Flow x→ y = flow y → x

π(x)P (x→ y) = π(y)P (y → x) ∀x, y ∈ Ω

I.e., detailed balance =⇒ balance.

LMS Invited Lecture Series, CRISM Summer School 2018
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Reversibility
Suppose that X0 ∼ π. Then (exercise)

P(x1 → x2 → · · · → xn) = P(xn → xn−1 → · · · → x1)

Notes

• The running chain looks the same forwards or backwards

• Some physical laws/models obey detailed balance

• We needed X0 ∼ π for this

LMS Invited Lecture Series, CRISM Summer School 2018
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Reversibility uses
• P has only real eigenvalues

• Simpler CLT under reversibility Kipnis & Varadhan (1986)

• For uniform walk on graph π(v) ∝ degree(v)

LMS Invited Lecture Series, CRISM Summer School 2018
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Metropolis-Hastings
We are going to build a transition matrix P with detailed balance for π.

Propose xi → yi+1. Accepting means xi+1 = yi+1.

Rejecting means xi+1 = xi. (Stay put.)

Propose and accept

Q(x→ y) = P(propose y | at x)

A(x→ y) = P(accept y | it was proposed from x)

For x 6= y

P (x→ y) = Q(x→ y)×A(x→ y)

Detailed balance

π(x)P (x→ y) = π(y)P (y → x)

π(x)Q(x→ y)A(x→ y) = π(y)Q(y → x)A(y → x)

LMS Invited Lecture Series, CRISM Summer School 2018
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Solve the D.B. equation
π(x)Q(x→ y)A(x→ y) = π(y)Q(y → x)A(y → x)

We can assume π(x) > 0 or else the chain would not be there.

So don’t start with π(x0) = 0 !

We can assume Q(x→ y) > 0 or we would not have proposed it.

Therefore

A(x→ y) =
π(y)

π(x)

Q(y → x)

Q(x→ y)
A(y → x)

Scale

If A(x→ y) works so does 1
2A(x→ y).

We would prefer 2A(x→ y).

But we need A(x→ y) 6 1.

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 5 of 5 21

Metropolis-Hastings
Maximize probabilities A(x→ y) and A(y → x) subject to

A(x→ y) =
π(y)

π(x)

Q(y → x)

Q(x→ y)
A(y → x)

Result

A(x→ y) = min
(π(y)

π(x)

Q(y → x)

Q(x→ y)
, 1
)

Mnemonics

π(y)

π(x)
=⇒ Moving up hill is good

Q(y → x)

Q(x→ y)
=⇒ But getting stuck there is bad

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 5 of 5 22

Unnormalized π
Let π(x) = πu(x)/Z for unknown Z .

π(y)

π(x)

Q(y → x)

Q(x→ y)
=
πu(y)/Z

πu(x)/Z

Q(y → x)

Q(x→ y)
=
πu(y)

πu(x)

Q(y → x)

Q(x→ y)

So we can use πu instead of π.

Metropolis

Original algorithm Metropolis et al. (1953) had Q(x→ y) = Q(y → x)

A(x→ y) = min
(π(y)

π(x)
, 1
)

For hard disk: propose to move one disk.

Accept it unless there is overlap.

Hastings (1970) generalized it.

LMS Invited Lecture Series, CRISM Summer School 2018
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Peskun’s theorem
Let P and P̃ be irreducible M ×M transition matrices, that both satisfy detailed

balance for the same stationary distribution π. Suppose that

P̃ (x→ y) 6 P (x→ y) holds for all x 6= y. For i > 1, let Xi be sampled

from the transition matrix P starting at x0. Similarly, for i > 1, let X̃i be sampled

from the transition matrix P̃ starting at x̃0. Then

lim
n→∞

nVar
( 1

n

n∑
i=1

f(Xi)
)
6 lim
n→∞

nVar
( 1

n

n∑
i=1

f(X̃i)
)
.

Peskun (1973)

Upshot

So Hastings was right to maximize A(x→ y).

When we want detailed balance, be creative about Q(x→ y), but

use Metropolis-Hastings for A(x→ y).

LMS Invited Lecture Series, CRISM Summer School 2018
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Estimating µ
The law of large numbers supports:

µ̂ =
1

n

n∑
i=1

f(xi)

If xi+1 = xi because yi was rejected be sure to count it again.

Metropolis et al. warn repeatedly about this.

Counting the new points only will not sample π.

Burn-in≡ warmup

µ̂ =
1

n− b

n∑
i=b+1

f(xi)

Skip a few observations. Maybe they’re not so close to π.

Should we? Yes and no.

LMS Invited Lecture Series, CRISM Summer School 2018
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About burn-in
Charlie Geyer Andrew Gelman

Won’t throw out any data. ← In this book.→ Likes to use b = n/2.

Geyer image from www.stat.umn.edu

Book image from bookspics.com

Gelman image from rationallyspeakingpodcast.org

LMS Invited Lecture Series, CRISM Summer School 2018
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Variance
Assume xi

�∼ π (e.g., burn-in) then for Yi = f(xi) ∈ R

Var(µ̂) =
1

n2

n∑
i=1

n∑
j=1

Cov(Yi, Yj)

=
σ2

n2

n∑
i=1

n∑
j=1

ρ|i−j|

.
=
σ2

n

(
1 + 2

∞∑
k=1

ρk

)
assuming that |ρk| decrease. Typically they do, like O(ρk) for some ρ < 1.

Variance estimation

Can be done by fussy time series analysis.

Or ‘batching’ Geyer (1992), Fishman

Treat B batch averages of n/B obs as independent.

LMS Invited Lecture Series, CRISM Summer School 2018
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Thinning
Just use every k’th observation, k > 1.

µ̂k =
1

n/k

n/k∑
i=1

f(xk×i)

• Points are usually less dependent than before

• Yet more variance: limn→∞Var(µ̂k)/Var(µ̂1) > 1

• It does save storage.

Efficiency

If it costs 1 unit to advance xi → xi+1 and θ > 0 units to get f(xi)

Let R =
∑∞
`=1 ρ` and Rk =

∑∞
`=1 ρk` and R−k = R−Rk.

Thinning pays when
R−k
k − 1

>
1

θ + 1

(
Rk +

1

2

)
LMS Invited Lecture Series, CRISM Summer School 2018
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Random walk Metropolis
E.g., yi+1 = xi +N (0, σ2I)

Or yi+1 = xi + U[−∆,∆]d

A(x→ y) = min

(
π(y)

π(x)
, 1

)

How large a step?

Tiny step =⇒ large π(yi+1)/π(xi) =⇒ high acceptance

Large step =⇒ small π(yi+1)/π(xi) =⇒ low acceptance

We might have wanted high acceptance and large moves.

But there’s a tradeoff.

LMS Invited Lecture Series, CRISM Summer School 2018
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0.234
Default advice:

try step sizes until about 23.4% of proposals are accepted. (Wide range ok)

Why?

Gelman, Roberts, Gilks (1996)

Consider exploring a high dimensional unimodal density,

such as π = N (0, Id) with y ∼ N (x, σ2
dId),

or π = N (µ,Σ) with y ∼ N (x, σ2
dΣ).

They find the asymptotically optimal σd is 2.38/
√
d.

It is hard to scale the problem to make Σ = I . Easy to monitor acceptance rate.

However the optimal σd yields 23.4% acceptance as d→∞
And close to that for d > 5.

Multimodal problems

Requires larger steps and lower acceptance.
LMS Invited Lecture Series, CRISM Summer School 2018
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About that rate
If σd = 2.34/

√
d then to cross the support of π takes L = O(

√
d) steps.

The chain is about as likely to go forward as backward.

A random walk on L steps takes O(L2) time for a round trip.

1 2 3 · · · L

© ←→ © ←→ © ←→ · · · ←→ ©

So it takes about O(L2) = O(d) steps to go across support of π.

Efficiency

It is about
0.331

d
times as efficient as plain Monte Carlo sampling.

Which we would do if we could.

LMS Invited Lecture Series, CRISM Summer School 2018
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Improvements on RWM
For π

.
= N (µ,Σ) use sample xi to estimate Σ.

Then proposals are yi+1 ∼ N (xi, λΣ̂). (tune λ too)

Haario, Saksman & Tamminen (2001)

See also Roberts & Rosenthal (2009), Andrieu & Atchadé (2006)

Momentum

It is kind of a pity to endure that random walk behavior.

Hamiltonian MCMC builds in some momentum.

Surveys by Neal (2011), Betancourt (2017)

New Bouncy Particles and Zig-Zag Bierkens, Fernhead, Roberts++

Hamiltonian MCMC is the basis of the Stan probabilistic programming language.

Carpenter, Gelman, Hoffman, Daniel, Goodrich, Betancourt, Brubaker, Guo, Li,

Riddel (2017)

Stan makes it easy to implement MCMC for Bayes

LMS Invited Lecture Series, CRISM Summer School 2018
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The Gibbs sampler
For x = (x1, x2, . . . , xd)

maybe we can sample one xj at a time, with the others fixed

“the full conditional of xj given xk for k 6= j” i.e., xj given x¬j

Random scan Gibbs

for i = 1 to n do

j ∼ U{1, . . . , d}
z ∼ πj|¬j(· | xi−1,¬j)

xi ← xi−1

xij ← z

Deterministic scan

j cycles through 1, . . . , d (repeatedly)

j = 1 + (i− 1) mod d

Comparison is subtle

Roberts & Rosenthal (2016) ‘surprises’ paper. LMS Invited Lecture Series, CRISM Summer School 2018
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One step of Gibbs
Is a Metropolis-Hastings that always accepts.

Proposal Q just changes component xj to z

π(y)

π(x)
× Q(y → x)

Q(x→ y)
=

π(x¬j)π(z | x¬j)
π(x¬j)π(xj | x¬j)

× π(xj | x¬j)
π(z | x¬j)

= 1

Grouping

If possible sample xj in groups.

Metropolis within Gibbs

Use for ‘unnamed’ xj | x¬j
Used on the original Metropolis et al. paper

LMS Invited Lecture Series, CRISM Summer School 2018
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Reducible Gibbs

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

●●●●

●●●●
●● ●●

●●●●

●●●●

●● ●●

●●●●
●● ●●

●●●●

●●●●

●● ●●

●●●●

●●●●

●● ●●

●● ●●

●● ●●

●●●●

●●●●

●●●●

●● ●●●●●●

●● ●●

●● ●●

●●●●

●● ●●

●●●●

●●●●

●●●●

●● ●●

●●●●

●●●●

●●●●

●● ●●

●● ●●

●●●●

●● ●●

●●●●

●● ●●

●● ●●

●●●●

●●●●

●● ●●

●●●●

●●●●

●● ●●

●●●●

●● ●●

●●●●

●●●●●● ●●

●

• Uniform in two circles

• Update horizontal then vertical etc.

• We get stuck on Earth

• Never sample the Moon
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Gibbs for Bayes
Hierarchical model, mixture of binomials

P(X = x) =
J∑
j=1

ηj

(
m

x

)
pxj (1− pj)m−x, ηj > 0,

∑
j

ηj = 1

π(η) ∝
J∏
j=1

η
αj−1
j , (Dirichlet)

pj
iid∼ U(0, 1),

(
Beta(1, 1)

)
Likelihood

L =
n∏
i=1

[(
mi

xi

) J∑
j=1

ηjp
xi
j (1− pj)mi−xi

]
Posterior

π(η,p) ∝
J∏
j=1

η
αj−1
j ×

n∏
i=1

[(
mi

xi

) J∑
j=1

ηjp
xi
j (1− pj)mi−xi

]
LMS Invited Lecture Series, CRISM Summer School 2018
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Add (lots of) latent variables
We introduce Zij =

1 obs i from group j

0 else

Now we want “
∫
π(η,p,Z) dZ” where

π(η,p,Z) ∝
J∏
j=1

η
αj−1
j ×

n∏
i=1

(
mi

xi

) J∏
j=1

[
ηjp

xi
j (1− pj)mi−xi

]Zij

If we freeze Z and p

π(η | Z,p) ∝
J∏
j=1

η
αj−1
j ×

n∏
i=1

J∏
j=1

η
Zij

j =
J∏
j=1

η
Z•j+αj−1
j (Dirichlet)

The other full conditionals are also named distributions:

Z has independent multinomials

p has independent beta

We update Z ∈ {0, 1}n×J , p ∈ (0, 1)J and η ∈ ∆J−1 in turn.
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Survey
There’s (way) more to MCMC than we can do in one hour.

Here are some sketches of interesting ideas.

You may have to make guesses, or read up later.

Think of it as vocabulary.
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Ising model
Image x ∈ {−1, 1}R×C with π(x) = exp(−H(x)/T ) temperature T > 0

H(x) = −
∑
j∼k

xjxk

T = 8.0 T = 2.269 T = 2.0

Ising model

Used in physics (eg magnetism). Besag introduced it to image processing.
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Ising model
There are very clever ways to sample the Ising model.

Or we can just flip bits conditionally on their 4 neighbours.

Let’s trace mean spin 1
RC

∑R
i=1

∑C
j=1 xij

We see it makes a smallish number of round trips.
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Autocorrelations
ρ̂k =

1

n

n−k∑
i=1

(Yi − µ̂)(Yi+k − µ̂)
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Did the chain mix well?
We can use the ACF or a trace.

Also: independent chains and Gelman, Rubin F statistic.

One way diagnostics

Bad ACF =⇒ No

Good ACF =⇒ Maybe

Bad trace =⇒ No

Good trace =⇒ Maybe

Bad F =⇒ No

Good F =⇒ Maybe

We could have missed a chunk of space.

Recent promising work by Gorham & Mackey using Stein discrepancy can

provide a “Yes” (but it’s expensive).
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Hamiltonian Monte Carlo
(In one slide!) Surveys by Neal (2011), Betancourt (2017)

Whatever π(θ | y) is we can write it as exp(−H(θ)).

Introduce momentum φ

e.g. π(θ | y)× π(φ) ∝ e−H(θ)− 1
2φ

Tφ ≡ e−H(θ,φ)

In continuous time

∂θ

∂t
=

∂

∂φ
H(θ, φ)

∂φ

∂t
= − ∂

∂θ
H(θ, φ)

Then comes clever sampling within and between trajectories.

Hamiltonian MCMC is the basis of the Stan probabilistic programming language.

Named for Stanislaw Ulam

It automates MCMC for Bayes, especially hierarchical models.
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Variational Bayes
Survey by Blei, Kucukelbir, McAuliffe (2017)

Sometimes we cannot even do MCMC on our posterior distribution.

VB approximates π(x) often using π(x) ≈
∏
j gj(xj) Independent!

Hopefully it gets something right when xj are dependent

Aimed at enormous problems.

VB underlies the Edward probabilistic programming language.

Named for George Edward P. Box
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Approx. Bayesian computation

π(θ | x) ∝ π(θ)× p(x | θ)

Sometimes we cannot compute the likelihood p(x | θ).

E.g., θ describes how a colony of bacteria evolves over time, and

x is how it looks right now

A taste of ABC

Loop over i

Sample θi ∼ π(θ).

Sample xi | θi
Keep θi ⇐⇒ ‖xi − x‖ 6 ε

Use the retained θi

Many variants. Now a whole handbook.

Also ask Christian Robert
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Tempering
Replace π(x) by π(x)1/T for “temperature” T > 1

Large T =⇒ more uniform =⇒ better mixing.

Several tactics to connect hot fast mixing chains to target cold ones.

Parallel tempering keeps a vector of x’s for temps

1 < T2 < T3 < · · · < TK

and uses clever swapping. Geyer (1991), Marinari and Parisi (1992)

Batching
Work on subsamples of IID data.

E.g., Li and Wong
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