A framework for the direct evaluation of large deviations in non-Markovian processes

Massimo Cavallaro^{1,2} & Rosemary J. Harris²

School of Life Sciences, University of Warwick, Coventry, UK, ² School of Mathematical Sciences, Queen Mary University of London, London, UK

Introduction

- In non-equilibrium physics we target trajectories in space-time rather than static configurations.
- The details of the time evolution take on a major role and temporal correlations can have dramatic effects on fluctuations of time-extensive observables, such as the current J [1].
- Numerical tools to explore systematically large deviations in non-Markovian processes are needed.
- ► We extend the "cloning" procedure of Ref. [2] to such processes.

Themodynamics of trajectories

► Trajectory:

$$w(t) := (t_0, x_0, t_1, x_1, t_2, x_2 \dots t_n, x_n, t).$$

Probability density:

$$\varrho[w(t)] = \phi_{X_n}[t - t_n|w(t_n)]\psi_{X_n,X_{n-1}}[t_n - t_{n-1}|w(t_{n-1})]...$$
$$\times \psi_{X_1,X_0}[t_1 - t_0|w(t_0)]P_{X_0}(t_0).$$

"Canonical" partition function:

$$Z(s,t) = \int e^{-sJ[w(t)]} \varrho[w(t)] dw(t).$$

Large deviation principle:

$$\mathsf{Prob}\{J/t=j\} \asymp \mathsf{e}^{-t\hat{e}(j)}.$$

Dynamical free energy:

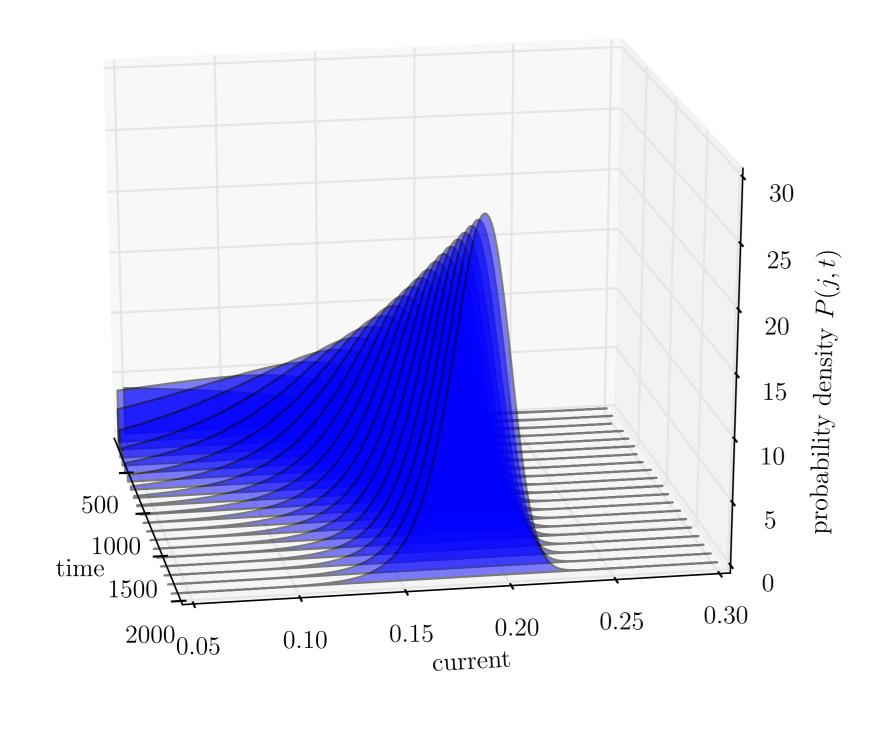
$$e(s) = -\lim_{t\to\infty} \frac{1}{t} \ln Z(s,t).$$

► Rate function (Gärtner-Ellis theorem):

$$\hat{e}(j) = \sup_{s} \{ e(s) - sj \}.$$

Cloning approach

- ▶ We wish to find Z(s, t).
- Problem: exponentially fast loss of information on rare trajectories (see figure).
- Solution: cloning/pruning of relevant trajectories [2, 3].



► In non-Markovian processes:

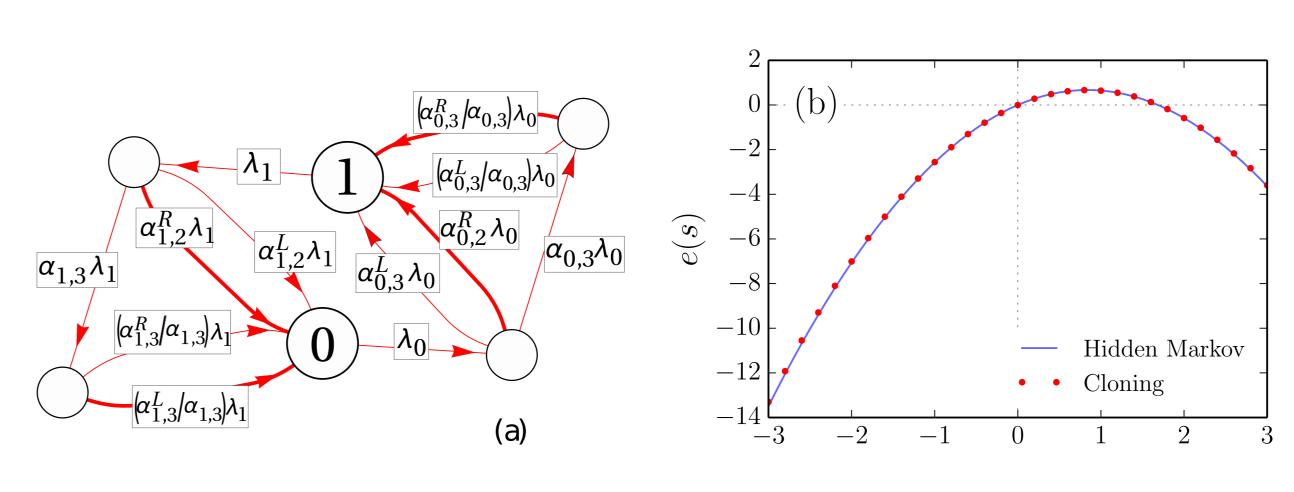
$$e^{-sJ[w(t)]}\varrho[w(t)] = \phi_{X_n}[t - t_n|w(t_n)]e^{-s\theta_{X_n,X_{n-1}}}p_{X_n,X_{n-1}}[t_n - t_{n-1}|w(t_{n-1})]\psi_{X_{n-1}}[t_n - t_{n-1}|w(t_{n-1})]\dots \times e^{-s\theta_{X_1,X_0}}p_{X_1,X_0}[t_1 - t_0|w(t_0)]P_{X_0}[t_1 - t_0|w(t_0)]P_{X_0}(t_0).$$

Algorithm

- . Set up an ensemble of N clones and initialise each with a given time t_0 , a random configuration x_0 , and a counter n=0. Set a variable C to zero. For each clone, draw a time t of the next jump from the density $\psi_{x_0}[t-t_0|w(t_0)]$, and then choose the clone with the smallest value of t.
- 2. For the chosen clone, update n to n+1, and x_{n-1} to x_n according to the probability mass $p_{X_{n},X_{n-1}}[t-t_{n-1}|w(t_{n-1})]$.
- 3. Generate a new waiting time τ for the updated clone according to $\psi_{X_{n-1}}[\tau|w(t_{n-1})]$ and increment t to $t + \tau$.
- 4. Cloning step. Compute $y = |e^{-s\theta_{x_n,x_{n-1}}} + u|$, where u is drawn from a uniform distribution in [0, 1).
- 4.1 If y = 0, prune the current clone. Then replace it with another one, uniformly chosen among the remaining N-1.
- 4.2 If y > 0, produce y copies of the current clones. Then, prune a number y of elements, uniformly chosen among the existing N + y.
- 5. Increment C to $C + \ln[(N + e^{-s\theta_{x_n,x_{n-1}}} 1)/N]$. Choose the clone with the smallest t, and repeat from 2) until the chosen t reaches the desired simulation time T. Z(s,t) is finally recovered as -C/T for large T.

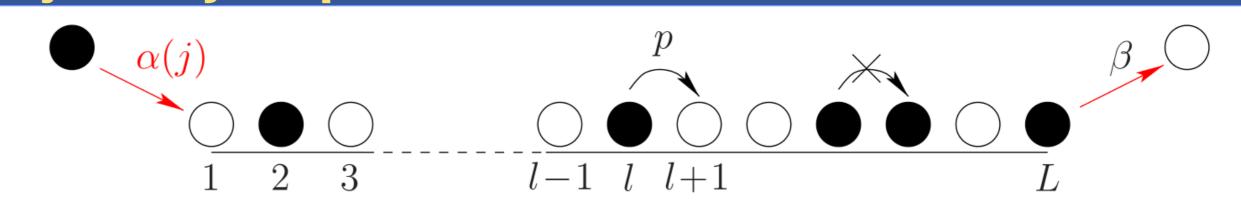
Example: two-state toy model

- ► The system can be in either state 0 or 1. Transitions triggered by two mechanisms with Gamma distributed inter-event times [4].
- After each transition, memory is reset (semi-Markov process).

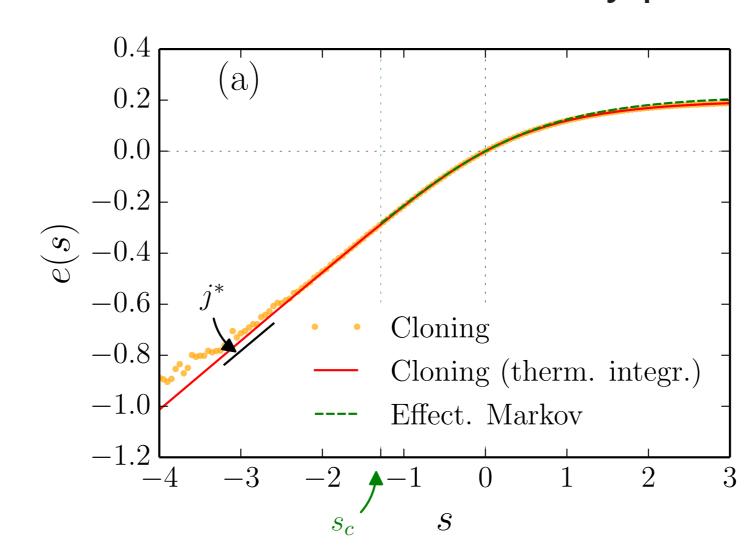


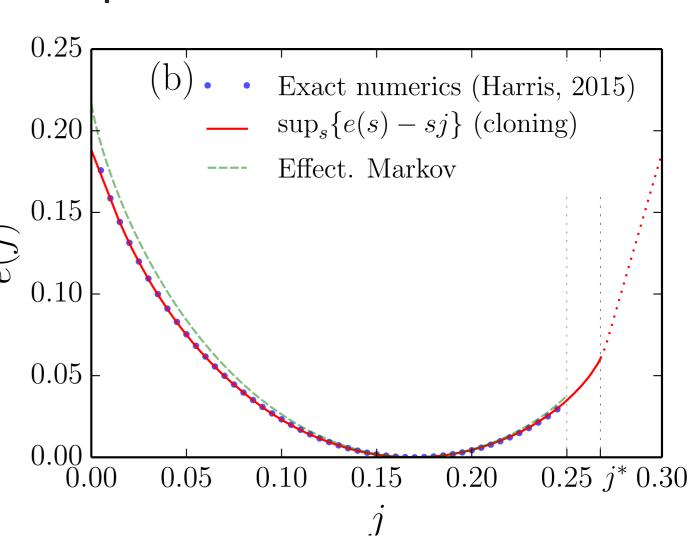
- (a) Formulation in terms of Markov process with hidden variables serves as test.
- (b) Excellent agreement between the cloning procedure and the exact numerics.

Example: trajectory-dependent TASEP



- ► Totally Asymmetric Simple Exclusion Process with open boundaries.
- A mechanism injects particles with time-dependent rate $\alpha[i(t)]$.
- Numerical results for the low density phase with positive feedback.





- (a) Threshold value j^* detected. Dynamical transition to a "maximal-current" phase [4].
- (b) Cloning results in excellent agreement with temporal additivity principle [5].

Discussion

- "Cloning" is a continuous-time sequential Monte Carlo method [6] to explore large-deviation events.
- ► It can be applied consistently to both Markovian and non-Markovian dynamics.
- Its efficacy has been extensively tested on models whose large deviations can be obtained by other means.
- Further details in Ref. [4].
- Applications to teletraffic engineering in Ref. [7].

References

- [1] M. Cavallaro, R. J. Mondragón, and R. J. Harris. *Phys. Rev. E* **92**, 022137 (2015).
- [2] C. Giardinà, J. Kurchan, and L. Peliti. *Phys. Rev. Lett.* **96**, 120603 (2006).
- [3] P. Grassberger. *Phys. Rev. E* **56**, 3682 (1997).
- [4] M. Cavallaro and R. J. Harris. J. Phys. A: Math. Theor. 49, 47LT02 (2016).
- [5] R. J. Harris. *J. Stat. Mech.* P07021 (2015).
- [6] P. Fearnhead et al., Continuous-time importance sampling: Monte Carlo methods which avoid time-discretisation error, arXiv:1712.06201 (2017).
- [7] M. Cavallaro and R. J. Harris. Effective bandwidth of non-Markovian traffic, (2018).