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Introduction
I In non-equilibrium physics we target trajectories in

space-time rather than static configurations.

IThe details of the time evolution take on a major role and
temporal correlations can have dramatic effects on
fluctuations of time-extensive observables, such as the
current J [1].

INumerical tools to explore systematically large
deviations in non-Markovian processes are needed.

IWe extend the “cloning” procedure of Ref. [2] to such
processes.

Themodynamics of trajectories
ITrajectory:

w(t) := (t0, x0, t1, x1, t2, x2 . . . tn, xn, t).
IProbability density:

%[w(t)] = φxn[t − tn|w(tn)]ψxn,xn−1[tn − tn−1|w(tn−1)] . . .

× ψx1,x0[t1 − t0|w(t0)]Px0(t0).
I “Canonical” partition function:

Z (s, t) =
∫

e−sJ[w(t)]%[w(t)]dw(t).

ILarge deviation principle:
Prob{J/t = j} � e−t ê(j).

IDynamical free energy:

e(s) = − lim
t→∞

1
t

ln Z (s, t).

IRate function (Gärtner-Ellis theorem):
ê(j) = sup

s
{e(s)− sj}.

Cloning approach
IWe wish to find Z (s, t).
IProblem: exponentially fast loss of information on rare

trajectories (see figure).
ISolution: cloning/pruning of relevant trajectories [2, 3].
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I In non-Markovian processes:
e−sJ[w(t)]%[w(t)] = φxn[t − tn|w(tn)]e−sθxn,xn−1pxn,xn−1[tn −
tn−1|w(tn−1)]ψxn−1[tn − tn−1|w(tn−1)] . . .× e−sθx1,x0px1,x0[t1 −
t0|w(t0)]ψx0[t1 − t0|w(t0)]Px0(t0).

Algorithm
1. Set up an ensemble of N clones and initialise each with a given time t0, a random

configuration x0, and a counter n = 0. Set a variable C to zero. For each clone,
draw a time t of the next jump from the density ψx0[t − t0|w(t0)], and then choose
the clone with the smallest value of t .

2. For the chosen clone, update n to n + 1, and xn−1 to xn according to the
probability mass pxn,xn−1[t − tn−1|w(tn−1)].

3. Generate a new waiting time τ for the updated clone according to ψxn−1[τ |w(tn−1)]
and increment t to t + τ .

4. Cloning step. Compute y = be−sθxn,xn−1 + uc, where u is drawn from a uniform
distribution in [0,1).

4.1 If y = 0, prune the current clone. Then replace it with another one, uniformly
chosen among the remaining N − 1.

4.2 If y > 0, produce y copies of the current clones. Then, prune a number y of
elements, uniformly chosen among the existing N + y .

5. Increment C to C + ln[(N + e−sθxn,xn−1 − 1)/N]. Choose the clone with the smallest
t , and repeat from 2) until the chosen t reaches the desired simulation time T .

Z (s, t) is finally recovered as −C/T for large T .

Example: two-state toy model
IThe system can be in either state 0 or 1. Transitions triggered by two mechanisms

with Gamma distributed inter-event times [4].
IAfter each transition, memory is reset (semi-Markov process).
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Hidden Markov
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(a) Formulation in terms of Markov process with hidden variables serves as test.
(b) Excellent agreement between the cloning procedure and the exact numerics.

Example: trajectory-dependent TASEP

ITotally Asymmetric Simple Exclusion Process with open boundaries.
IA mechanism injects particles with time-dependent rate α[j(t)].
INumerical results for the low density phase with positive feedback.
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Exact numerics (Harris, 2015)
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(a) Threshold value j∗ detected. Dynamical transition to a “maximal-current” phase [4].

(b) Cloning results in excellent agreement with temporal additivity principle [5].

Discussion
I “Cloning” is a continuous-time sequential Monte Carlo method [6]

to explore large-deviation events.

I It can be applied consistently to both Markovian and
non-Markovian dynamics.

I Its efficacy has been extensively tested on models whose large
deviations can be obtained by other means.

IFurther details in Ref. [4].

IApplications to teletraffic engineering in Ref. [7].
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