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MOTIVATION: LIKELIHOODS WITH AN UNKNOWN ANCESTRAL TREE

Given a set of aligned sequences, e.g.

Sequence1: ... T ... G ... A ... A ..
Sequence?2: ... T ... G ... A ... G .. 5
Sequence3: ... A ... A ... T .. A.. represented as 3)(@)
Sequence 4. ... A ... A...T ... A .. o
Sequence5: ... A ... A... A... A.. 2)
the probability of having evolved from some initial sequence (here

LALUALLUALC AL L) may be expressed:

= ermstories() P(z)

which in turn may be expressed by conditioning on the most recent event:

P(45) = gt (87) + st (68°).

If we apply this conditioning-trick recursively, computing P () reduces to

computing a weighted sum over all paths from “12345” to * X > In the ancestral
graph below:
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e number of nodes = number of distinct terms in P-recursion,
e number of paths “12345 — ... — i&”" = number of execution paths when
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Improved importance sampling of phylogenies
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evaluating P () via tail-recursion (without memoization/tabling).
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IMPORTANCE SAMPLING OF ANCESTRAL PATHS

We can approximate probabilities of aligned sequences—e.g. P ( )—by
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sampling ancestral histories X,..., Xy ~ Q < P and relying on the following

approximation:

P (#) =

x P(X) 1 o P(X
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eg. P ) T2 (Q(Path 1) " Q(Path 2)>

For this approach to work effectively, Q should satisfy:

1. Q must approximate P well on the space of histories;
2. sampling X; ~ Q should be fast;
3. computing Q(X;) should be fast.

SEQUENTIAL SAMPLING SCHEMES

Existing proposal distributions are all sequential: they construct paths step-by
step from the bottom up. They differ by how the next step in a path is sampled.

a %{x/' |

b/ (a+b)
* b =Py2-x)

50% 5  50%

% %{E&l@s

= P(yl - Xx) ;

1
2

Stephens and Donnelly (S&D Griffiths and Taveré (G&T)

45 paths 26 paths 45 paths

26 paths

5
3 4

45/(;;+&‘ @é 1?4\5 1;?;\ §A &1?4\5

, 7 26/(45 +26) 4o a5a 4+ 26b) . 7726b / (45a + 26b)
~63% ~37% 7y
12 a=Pyl->x)'? b=Py2-x)

simple combinatorial sampling G&T + combinatorial correction

CHALLENGE: A GROWING GRAPH OF ANCESTRAL STATES PATH DENSITY BIAS AND PATH COUNTING

As the number of sequences n and segregating sites s increases, it quickly
becomes computationally intractable to recursively compute exact likelinoods.

Rank (n + s) vs. #paths

colour = max degree (blue=low, red=high)

Rank (n+s) vs. #past states
colour = max degree (blue=low, red=high)
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We need methods which do not pre-suppose the ancestral graph, since it is
a priori unknown and generating it is as hard as computing likelihoods.

Any step-by-step scheme which does k |
not penalize choices which “lead to h e \j\‘ . Path ‘ivseégg‘)t
fewer c_hoices down the Iine”3 will bg bi- | \:“i khfdba — 1/2
assed in favour of low-density regions r g khidea  1/4
of path-space, e.g. | \ U e 1/8
d e khgeca 1/24
¢ \ ¢ kigeca 1/24
b C kjgeca 1/24
\ /
a

To correct for path density bias, we must be able to count ancestral histories
effectively (i.e. without generating the ancestral graph), which we do as follows:

. . im1 ki) =2
T) = 3 scaesh{Ti [ € SHAUT |1 ) (== ) 7 7)
(Zz’ES kZ) —1
whereby we here encode rooted unordered trees as nested systems of sets,
e.g.

— {{{17 {2}}}7 {37 4}7 5}'




