MCMC for multimodal Multicore adaptive distributions

Emilia Pompe¹, joint work with Chris Holmes¹ and Krzysztof Łatuszyński²

²University of Warwick, Department of Statistics ¹University of Oxford, Department of Statistics

Description of the algorithm

1. Let π be the target distribution on $\mathcal{X} = \mathbb{R}^d$ and let $\mathcal{I} = \{\mu_1, \dots, \mu_N\}$ be the set of its modes. We define a new target distribution $\tilde{\pi}$ on the **augmented state space** $\mathcal{X} \times \mathcal{I}$

$$\tilde{\pi}(x,i) := \pi(x) \frac{w_i Q_i(\mu_i, \Sigma_i)(x)}{\sum_{j \in \mathcal{I}} w_j Q_j(\mu_j, \Sigma_j)(x)},$$

- where w_j are weights and $Q_j(\mu_j, \Sigma_j)$ is an elliptical distribution centred at μ_j with the covariance matrix Σ_i , e.g. Q_i is the multivariate normal or multivariate t. π is the marginal **distribution of** $\tilde{\pi}$ with respect to its \mathcal{X} -coordinate.
- 2. An optimisation algorithm running in the background finds the locations of the modes μ_1, \ldots, μ_N and passes them to the main MCMC sampler.
- 3. The algorithm learns its parameters as it runs: it updates the weights w_i and the matrices Σ_j so that the mixture $\sum_{j\in\mathcal{I}} w_j Q_j(\mu_j, \Sigma_j)(x)$ provides a good estimate of $\pi(x)$.
- 4. The algorithm explores the state space $\mathcal{X} \times \mathcal{I}$ via **local moves**, preserving the mode, and **jumps** to a region associated with a different mode.
- -local moves are steps of the Metropolis algorithm targeting $\tilde{\pi}$; -jumps to mode k are steps of the Metropolis-Hastings algorithm targeting $\tilde{\pi}$, with independent proposals from a symmetric distribution centred at μ_k .

What properties would an ideal MCMC algorithm for multimodal distributions have?

Making use of multicore implementation. ✓

- 1. The main MCMC sampler is supported by an optimisation algorithm running on multiple cores from different starting points, which enables efficient exploration of the state space.
- 2. After a new mode has been identified, a standard Adaptive MCMC procedure is started from the mode. The samples collected this way give us an initial estimate of the covariance matrix for this mode.

Provable ergodicity under mild regularity conditions.

- The target distribution keeps being modified as the algorithm runs, so what would ergodicity mean? We consider ergodicity on sets $B \times \mathcal{I}$ for $B \subseteq \mathcal{X}$.
- The algorithm falls into the category of Auxiliary Variable Adaptive MCMC algorithms, for which analogous ergodic results to those of [Roberts and Rosenthal, 2007] can be proved.

Theorem 1. Assume that the mode finding algorithm stops adding new modes at a finite time with probability one. Then under

- -standard curvature conditions for π and proposal distributions for local moves (see: [Jarner and Hansen, 2000]),
- appropriate **tail conditions** for Q_i and proposal distributions for jumps,
- the multicore adaptive MCMC algorithm for multimodal distributions is ergodic.

Learning the local covariance structure around each mode on the fly. \checkmark

- The covariance matrices for each mode are estimated based on samples obtained around this mode so far. This allows the use of optimal proposal distributions for local moves.
- The auxiliary variable *i* indicates which element of the mixture the sample was drawn from. This enables the estimation of the local covariance structure, for each mode separately.
- The moves between modes take place via jumps, but it is **unlikely to escape** to another mode using only local steps. Suppose in a local move around mode i a point y, belonging to region associated with mode k, is proposed:

The ratio $\frac{Q_i(\mu_i, \Sigma_i)(y)}{Q_i(\mu_i, \Sigma_i)(x)}$ is typically tiny, so the probability of accepting such a move is very small.

Good mixing in practice on challenging examples. $\checkmark/$

We consider a modified version of the example used in [Woodard et al., 2009].

target distribution =
$$0.5N\left(-\mathbf{1}, \sigma_1^2 I_d\right) + 0.5N\left(\mathbf{1}, \sigma_2^2 I_d\right)$$
,

where $\mathbf{1} = (1, \dots, 1)$ and $\sigma_1 \neq \sigma_2$. In this case d = 100, $\sigma_1^2 = 1$ and $\sigma_2^2 = 2$.

Our algorithm (MultiMCMC) outperformed Parallel Tempering (PT) on this example.

Based on 10^5 iterations, with a 30% burn-in period. For the PT, 10 temperatures were used, with the average acceptance rate of the swaps between temperatures equal to 0.34.

However, main bottleneck: mode finding in high dimensions.

sum of coordinates

References

[Jarner and Hansen, 2000] Jarner, S. and Hansen, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Processes and Their Applications, 85(2):341–361. [Roberts and Rosenthal, 2007] Roberts, G. and Rosenthal, J. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. Journal of Applied Probability, 44(2):458. [Woodard et al., 2009] Woodard, D., Schmidler, S., Huber, M., et al. (2009). Sufficient conditions for torpid mixing of parallel and simulated tempering. *Electronic Journal of Probability*, 14:780–804.

Samples for

estimating: