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Description of the algorithm

1. Let π be the target distribution on X = Rd and let I = {µ1, . . . , µN} be the set of its modes.
We define a new target distribution π̃ on the augmented state space X × I

π̃(x, i) := π(x) wiQi(µi,Σi)(x)∑
j∈I wjQj(µj,Σj)(x)

,

where wj are weights and Qj(µj,Σj) is an elliptical distribution centred at µj with the covariance
matrix Σj, e.g. Qi is the multivariate normal or multivariate t. π is the marginal
distribution of π̃ with respect to its X -coordinate.

2. An optimisation algorithm running in the background finds the locations of the modes
µ1, . . . , µN and passes them to the main MCMC sampler.

3. The algorithm learns its parameters as it runs: it updates the weights wj and the matrices
Σj so that the mixture

∑
j∈I wjQj(µj,Σj)(x) provides a good estimate of π(x).

4. The algorithm explores the state space
X × I via local moves, preserving
the mode, and jumps to a region asso-
ciated with a different mode.
- local moves are steps of the
Metropolis algorithm targeting π̃;

- jumps to mode k are steps of the
Metropolis-Hastings algorithm target-
ing π̃, with independent proposals
from a symmetric distribution centred
at µk.
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What properties would an ideal MCMC algorithm for multimodal distributions have?
Making use of multicore implementation. 3

1. The main MCMC sampler is supported
by an optimisation algorithm run-
ning on multiple cores from differ-
ent starting points, which enables effi-
cient exploration of the state space.

2. After a new mode has been identified, a
standard Adaptive MCMC proce-
dure is started from the mode. The
samples collected this way give us an
initial estimate of the covariance
matrix for this mode.

Provable ergodicity under mild regularity conditions. 3

• The target distribution keeps being modified as the algorithm runs, so what would ergodicity mean?
We consider ergodicity on sets B × I for B ⊆ X .
• The algorithm falls into the category of Auxiliary Variable Adaptive MCMC algorithms,
for which analogous ergodic results to those of [Roberts and Rosenthal, 2007] can be proved.

Theorem 1. Assume that the mode finding algorithm stops adding new modes at a finite time
with probability one. Then under
- standard curvature conditions for π and proposal distributions for local moves (see:
[Jarner and Hansen, 2000]),

- appropriate tail conditions for Qi and proposal distributions for jumps,
themulticore adaptive MCMC algorithm for multimodal distributions is ergodic.

Learning the local covariance structure around each mode
on the fly. 3

• The covariance matrices for each mode
are estimated based on samples obtained
around this mode so far. This al-
lows the use of optimal proposal
distributions for local moves.
• The auxiliary variable i indicates
which element of the mixture the sample
was drawn from. This enables the esti-
mation of the local covariance structure,
for each mode separately.
• The moves between modes take place via
jumps, but it is unlikely to escape
to another mode using only local
steps. Suppose in a local move around
mode i a point y, belonging to region
associated with mode k, is proposed:

acceptance probability = min
[

1, π̃(y, i)
π̃(x, i)

]
= min

[
1, π(y)Qi(µi,Σi)(y)
π(x)Qi(µi,Σi)(x)

∑
j∈I wjQj(µj,Σj)(x)∑
j∈I wjQj(µj,Σj)(y)

]
.

The ratio Qi(µi,Σi)(y)
Qi(µi,Σi)(x) is typically tiny, so the probability of accepting such a move is very small.

Good mixing in practice on challenging examples. 3/ 7

We consider a modified version of the example used in [Woodard et al., 2009].

target distribution = 0.5N
(
−1, σ2

1Id
)

+ 0.5N
(

1, σ2
2Id
)
,

where 1 = (1, . . . , 1)︸ ︷︷ ︸
d

and σ1 6= σ2. In this case d = 100, σ2
1 = 1 and σ2

2 = 2.

Our algorithm (MultiMCMC)
outperformed Parallel Temper-
ing (PT) on this example.

Based on 105 iterations, with a
30% burn-in period. For the PT,
10 temperatures were used, with
the average acceptance rate of the
swaps between temperatures equal
to 0.34.

However, main bottleneck: mode finding in high dimensions.
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