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Factor Graphs

•Factor graphs[2] are a class of probabilistic model
which represent probabilities as products of local
interaction terms, called factors

P({xi}i∈V ) ∝
∏
a∈F

Ψa(x∂a) (1)

=
∏
a∈F

exp(−Ua(x∂a)) (2)

•Useful for high-dimensional models with simple
(low-dimensional/sparse) interactions

•The graph consists of variable nodes, which
represent the variables of the model, and factor
nodes, which represent the factors in the product
expansion (1).

•We connect the variable node i to the factor
node a if Ψa depends on xi.

•Examples
• Bayesian Linear Regression

P(β|D) ∝ exp
(
−1

2
τ‖β‖2

2

)
·
∏
i

exp
(
−(yi − 〈xi, β〉)2

2σ2

)
(3)
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• Hidden Markov Model

P(X0:T , Y1:T ) ∝ π(X0)
T∏
t=1
q(Xt−1 → Xt)

T∏
t=1
r(Xt→ Yt)

(4)
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• Bayesian Matrix Factorisation

P(L1:M , R1:N |X1:M,1:N) ∝
M∏
i=1
π(Li) ·

N∏
j=1

π(Rj) (5)

·
∏
i,j

exp
(
−(Xi,j − 〈Li, Rj〉)2

2σ2

)
(6)
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•Computation on factor graphs should operate
locally, propagate information globally.

•Gibbs sampling fails at the latter goal.

Geometric MCMC

•For high-dimensional targets, using the geometry
of the measure to inform proposals is critical.

• Hamiltonian Monte Carlo (HMC) augments our
position with a ‘momentum’ p ∼ N (0,M), and
then navigating the extended target

π(x, p) ∝ exp (−H(x, p)) (7)
H(x, p) = U(x) + K(p) (8)

K(p) = 1
2
pTM−1p (9)

with Hamiltonian dynamics

ẋ = ∂H
∂p

= M−1p (10)

ṗ = −∂H
∂x

= −∇U(x) (11)
• Widely-applicable, mixes well, uses gradient evaluations
• Can be hard to choose effective M

• Riemannian Manifold HMC (RMHMC) allows
the distribution of p to depend on x as

p ∼ N (0,M(x)), (12)
leading to a non-separable Hamiltonian
H(x, p) = U(x) + K(p|x) (13)

K(p|x) = 1
2
pTM(x)−1p + 1

2
log detM(x). (14)

• Makes intimate use of geometry
• Good at navigating complicated target measures.
• Computationally expensive:

• Requires matrix operations to sample from N (0,M(x))
• Requires implicit integrator: need fixed-point iterations to

construct reversible symplectic integrator.

Figure 1: Comparing the paths of RWMH, HMC, RMHMC on
a highly-curved target measure (figure from [1]).

Scalability

•Generally, methods which make heavier use of
geometry have faster mixing, but incur greater
computational cost.

• Locality allows for high-dimensional models to be
treated in a modular way.

•Can we design a method which is local,
geometric, and tractable?

Semi-Separable HMC

• Introduced in [3] for hierarchical models.
•Simplifies RMHMC by assuming

•M(x) is block-diagonal with blocks Mi, and
• pi is conditionally independent of xi

• Equivalently: Mi does not depend on xi

• Instead of full-system RMHMC updates, do
1 Resample the momenta for all variables.
2 For each index i, fix {xj, pj}j 6=i, and solve HD with
respect to (xi, pi) only.
Hi = Ui(xi) + Ki(pi) (15)
Ui = U(x) +

∑
j 6=i

(
1
2

log detMj + 1
2
pTjM

−1
j pj

)
(16)

Ki = 1
2
pTi M

−1
i pi (17)

3 Repeat step 2 L times (reversibly).
4 Use the output as a Metropolis-Hastings proposal.

•Subsystems can be integrated efficiently.
•Better mixing due to ‘auxiliary potentials’

Ai = 1
2
pTi M(x\i)−1pTi , (18)

allow for ‘energy exchange’ between variables.

Factor Graph HMC

•Goal: extend SSHMC to factor graphs
•Design systems which make use of locality.
•We split the momentum pi into terms
corresponding to the factor nodes adjacent to i

pi 7→ {pi,a}a∈∂i (19)
pi,a ∼ N (0,Mi,a) (20)

•Stipulate that the mass matrix Mi,a depend only
on the variable nodes adjacent to a, except i:

Mi,a = Mi,a(x∂a\i). (21)
• Our Hamiltonian is
H(x,p) =

∑
a∈F

Ua(x∂a) +
∑

(i,a)∈E
Ki,a(pi,a|x∂a\i)

(22)

Ki,a = 1
2
pTi,aM

−1
i,a pi,a + 1

2
log detMi,a (23)

•We thus have a setup which respects locality, and
where subsystems are tractable.

• Can define Mi,a ‘canonically’ as
Mi,a(x∂a\i) = E

[
∇2
xi
Ua(xi|x∂a\i))

]
(24)

where
xi ∼ exp(−Ua(xi|x∂a\i)) (25)

•Motivated by analogy with FIM (as in [1])
• · · · comes with some caveats.

Implementation

•Writing pi = {pi,a}a∈∂i, the component of the
Hamiltonian which depends on (xi,pi) is

Hi(xi,pi) =
∑
a∈∂i

Ua(x∂a) +
∑

j∈∂a\i
Kj,a(pj,a|x∂a\j)


(26)

•This is preserved by the Hamiltonian-like
message-passing dynamics

ẋi =
∑
a∈∂i

∂Ki,a

∂pi,a
(27)

ṗi,a = −∂Ua
∂xi
−

∑
j∈∂a\i

∂Kj,a

∂xi
a ∈ ∂i (28)
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•Retains many good features of HD
•Links to belief propagation.
• Geometric, tractable, local!

Future Work

•More extensive experimental testing
•Establish geometric ergodicity
•Does this dominate RMHMC-within-Gibbs?
•Extension to dense factor graphs (c.f. AMP).
•Stochastic gradient/‘Big Data’ versions?
• Impact of graph topology, update schedule.
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