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The Bayesian Adaptive Independence Sampler (BAIS) [5] is a population MCMC algorithm consisting of N independence samplers run in parallel, all with a common proposal density. The
proposal is a multivariate normal distribution N (u, ) that adapts at each iteration to progressively improve sampler performance. Adaptation is achieved by drawing parameters p and X
from a posterior distribution p(u, ¥|x1, ..., zy) using a Bayesian model applied to the current N independence samples (z1,...,xy). The distribution to be sampled is thus a product of
p(p, 2|21, ..., xy) and N independent replications of the target f(x). Hence, the adaptation can be continued indefinitely.

Independence samplers work best when the proposal approximates the target distribution. Consequently, BAIS is not an eflicient sampling strategy for multimodal distributions that are
poorly approximated by a multivariate normal. Here we generalise BAIS to allow the proposal to be a finite mixture of &K multivariate normal distributions. This is done by augmenting
each independence sampler with a latent variable, a strategy we call Bayesian Adaptive Independence Sampling with Latent variables (BAIS+L).

In this work we describe the significant practical and computational problems that arise in implementing BAIS+L, and discuss exact and approximate strategies for solving these problems.

An Approximate Sampler Comparing Approaches

The Bayesian Adaptive Independence Sampler with La- A~ population of samples, generated with a Scatter plots of the mean convergence time (top-left) and the
tent variables (BAIS+L), outlined in Algorithm 1 up- Metropolis-Hastings |6, 3] sampler that updates each mean ratio of the effective number of samples to the total
dates K means p; and covariances matrices Y follow- element of the population using a transition kernel, number of samples (top-right) of a 5D quartic function [4, 7]
ing |2, pp. 86-87]. As in [2] yy is the prior mean, v, with parameters dependent only on the remaining on x € [—1.28,1.28)°,

and g, are the prior degrees of freedom and prior scale elements and a standard Metropolis-Hastings accep- 5

on the distribution of each X, respectively, and kg is tance ratio, will have the desired target as its station- fz,...,x5}) = Z(wj?l +n), n~U0,1),

the prior number of observations of the scale of each >y ary distribution [1]. d=1
with K = 6, suggest that BAIS+L produces faster conver-

gence and mixing than BAMIS but that this improvement
diminishes with V.

An exact acceptance ratio « for this approach involves
an intractable quantity. Therefore, BAIS+L uses an
approximate ratio, which leads to the stationary distri-

An Exact Sampler
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The difference between BAISHL and BAMIS estimates of

the first four central moments in each dimension (X, middle-
left) decreased with N, especially for large K. This sug-
cests that the stationary distributions of the two samplers
approach each other as IV increases.

The bottom two contour plots show kernel density esti-
mates of Shekel’s foxholes |4, 7] without the top-right hole

on x € [—65.536,65.536]° (true contour, middle-right).
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where I(a) = 1 if a = k and 0 otherwise.
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