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Motivation: why quasistationary Monte Carlo?

Performing Bayesian inference in a ‘Big Data’ setting is a challenging problem. A modern researcher may have a posterior distribution of the form π(x) ∝
∏N

i=0 fi(x) with N
incredibly large: in such a setting merely evaluating the posterior density is an inhibitive O(N) calculation. The recent Scalable Langevin Exact (ScaLE) Algorithm [2] proposes a
new paradigm for Big-Data Bayesian inference: by constructing a killed diffusion with the appropriate quasistationary distribution and utilising subsampling techniques, this novel
algorithm attains an O(1) runtime in the size of the data and retains exactness of the target distribution. In this poster we give theoretical results underpinning quasistationary
Monte Carlo methods and describe an alternative stochastic approximation method, known as Regenerating ScaLE (ReScaLE).

Introduction: what is quasistationary Monte Carlo?

Consider the diffusion defined through the stochastic differential equation (SDE)

dXt = ∇A(Xt)dt + dWt, X0 = x0 ∈ Rd (1)

where W is a standard d-dimensional Brownian motion, A : Rd→ R is some smooth function.

Imagine an ant on a volcanic island, evolving as a diffusion (Xt), say a Brownian motion, which is
incinerated at τ∂ := the moment it touches lava, Figure 1a. Given it has survived for a long time, where
is it likely to be? That is, what can we say about P(XT ∈ · |τ∂ > T ), for large T?

(a) Brownian motion with boundary killing. (b) Brownian motion killed at rate κ(x) = 10‖x‖2.

Figure 1: Examples of killed diffusions, conditioned to survive until T = 1.

Let’s fix a killing rate κ : Rd→ [0,∞), and now the ant spontaneously combusts at

τ∂ := inf

{
t ≥ 0 :

∫ t

0
κ(Xs) ds > ξ

}
, ξ ∼ Exp(1) is independent.

See Figure 1b. Again, let’s consider

P(XT ∈ A |τ∂ > T ) as T →∞ (2)

for an arbitrary measurable set A ⊂ Rd. Does this converge to µ(A) for some distribution µ? If
so µ is referred to as the quasilimiting distribution, and it is also quasistationary, in the sense that
Pµ(XT ∈ A |τ∂ > T ) = µ(A), for all T ≥ 0, measurable A ⊂ Rd.

Question: given a more general diffusion X and a target density π on Rd, can we choose κ such that π
is the quasistationary distribution? And if so, how fast is this convergence?

Convergence to Quasistationarity

Assumptions: Suppose we are interested in killing the diffusion X defined by the SDE (1). We make
standard technical assumptions so the SDE (1) has a unique non-explosive weak solution. We assume
that the target density π : Rd → [0,∞) is a positive, smooth, integrable function on Rd. Assume that κ̃
is bounded below, and that a compatibility integral condition holds:

κ̃(x) :=
1

2

(
∆π

π
− 2∇A · ∇π

π
− 2∆A

)
(x), x ∈ Rd,

∫
Rd

π2(x)

exp(2A(x))
dx <∞.

Then set κ := κ̃ + K, constant K chosen so that κ(x) ≥ 0 for all x ∈ Rd.

Theorem [3]. Under the above assumptions we have:

1.X killed at rate κ has quasilimiting distribution π.

2. The conditioned laws (2) converge to quasistationarity π at the same rate (in L2) at which the
Langevin diffusion targeting π2/ exp(2A) converges to stationarity.

Simulation via Stochastic Approximation

Suppose X has quasilimiting distribution π. How might we try to draw from π? Rejection sampling.
ScaLE: continuous-time sequential Monte Carlo [2]. Regenerating ScaLE (ReScaLE): stochastic ap-
proximation, c.f. [1] for compact state space, discrete-time case. See Figure 2.

Figure 2: A trajectory of ReScaLE until T = 2.5.

Initialise X0 ∼ µ0 and fix r > 0. Our diffusion X is killed at rate t 7→ κ(Xt). At each death event Tn,
the process is instantaneously reborn according to XTn ∼ µTn independently, where

µt =
rµ0 +

∫ t
0 δXs− ds

r + t
, for each t ≥ 0.

Conjecture: µTn → π (weakly) almost surely under fairly general settings. We have established this in
the restricted case of compact state space with bounded killing. We follow the approach of [1].

Make a time-change: h(t) = exp(t)− r, ζt := µh(t). Then it turns out that ζt satisfies a (weak) ODE:

ζ̇t =
(
− ζt + Π(ζt)

)
+
(
δXh(t)− − Π(ζt)

)
.

[That is, for any continuous, bounded test function f , t 7→ ζt(f ) satisfies the appropriate ODE on R.]
Here Π(µ) denotes the invariant distribution of the fixed rebirth process Xµ with rebirth distribution
µ: that is, the diffusion killed at rate t 7→ κ(X

µ
t ) and instantaneously reborn according to µ.

We argue that the second bracket is “small”, and analyse the resulting deterministic ODE.

Proposition. We can define a continuous flow R+×P(Rd)→ P (Rd), (t, µ) 7→ Φt(µ) such that t 7→ Φt(µ)
solves the weak, measure-valued ODE ν̇t = −νt + Π(νt), ν0 = µ. Furthermore we have that Φt(µ) → π
as t→∞ for any compactly support µ.

We say that t 7→ ζt is an asymptotic pseudo-trajectory for Φ if (ζt) is tight and for all T > 0,

lim
t→∞

sup
s∈[0,T ]

d(ζt+s,Φs(ζt)) = 0.

[d is a metric metrising weak convergence of probability measures.]
This holds if (ζt) is tight and the signed measures εt(s) :=

∫ t+s
t (δX(h(u)−)−Π(ζu)) du satisfies for each

continuous bounded f and T > 0,

lim
t→∞

sup
s∈[0,T ]

|εt(s)f | = 0.

Establishing tightness involves showing
∫ t

0 κ(Xs) ds = O(t) almost surely; have urn-like dynamics.
Controlling εt(s) involves showing that

∫ t
0 Eκ(Xs) ds = O(t). Can utilise renewal-like structure.
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