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Introduction
• We build upon the delayed-acceptance scheme (DA-MCMC) [1] and develop an
accelerated delayed-acceptance scheme (ADA-MCMC) [3].

• As a case study we introduce a novel double-well potential SDE for modelling of protein
folding data (reaction coordinate path).

Conclusions
• Our ADA-MCMC algorithm is particularly useful in settings where it is a computationally
demanding task to evaluate or approximate the likelihood.

• The acceleration obtained via ADA-MCMC is problem dependent. Higher accelerations
are obtained for computationally challenging problems.

• We obtain a 2-6 folds reduction in number of evaluations of the expensive likelihood
compared to DA-MCMC for our challenging case study.

• Inference results with the ADA-MCMC algorithm and standard MCMC algorithms are
similar.

• ADA-MCMC can be adapted to target a generic distribution p(x) outside the Bayesian
framework.

Delayed-acceptance MCMC
• DA-MCMC (due to [1]) is a known strategy to deal with expensive likelihood functions that
utilizes a computationally cheap surrogate model L̃(θ) of the likelihood L(θ).

Pseudo-code
1. Generate L̃(θ⋆) and L̃(θr−1) from some fast to simulate surrogate model.
2. First stage:

α1 = min
(
1,

L̃(θ⋆)g(θr−1 | θ⋆)π(θ⋆)
L̃(θr−1)g(θ⋆ | θr−1)π(θr−1)

)
.

Reject θ⋆ with probability 1− α1, otherwise go to second stage.
3. Second stage:

α2 = min(1, L(θ
⋆)L̃(θr−1)

L(θr−1)L̃(θ⋆)
).

Accept θ⋆ with probability α2. Update chain.

Accelerated delayed-acceptance MCMC
• The DA-MCMC algorithm is governed by the four values: L(θ⋆), L(θr−1), L̃(θ⋆), and
L̃(θr−1), which can be arranged in for cases:

1) L̃(θ⋆) > L̃(θr−1) and L(θ⋆) > L(θr−1),
2) L̃(θ⋆) < L̃(θr−1) and L(θ⋆) < L(θr−1),
3) L̃(θ⋆) > L̃(θr−1) and L(θ⋆) < L(θr−1),
4) L̃(θ⋆) < L̃(θr−1) and L(θ⋆) > L(θr−1).

• Assume we are in case 1: we can then split the acceptance region (see Figure 1):

Figure 1: Acceptance regions for case 1.

• In case 1 we have a possibility for fast acceptance (early-accept) using the cheap
surrogate only.

• Similar analyses can be done for the other three cases.
• But how to know which case of the four to assume for a new proposal θ⋆? We introduce
the selection models s1,3(·) and s2,4(·), that are used to select a case for a new proposal.

Pseudo-code
1. Generate L̃(θ⋆) and L̃(θr−1) from some fast to simulate surrogate model.
2. First stage:

α1 = min
(
1,

L̃(θ⋆)g(θr−1 | θ⋆)π(θ⋆)
L̃(θr−1)g(θ⋆ | θr−1)π(θr−1)

)
.

Reject θ⋆ with probability 1− α1, otherwise go to second stage.
3. Second stage:
3.1. If L̃(θ⋆) > L̃(θr−1):

i. Select case 1 or 3 according to the model s1,3(θ⋆).
ii. Run the accelerated delayed-acceptance scheme for the selected case.

3.2. Else:
i. Select case 2 or 4 according to the model s2,4(θ⋆).
ii. Run the accelerated delayed-acceptance scheme for the selected case.

Comparing DA-MCMC and ADA-MCMC
• DA-MCMC targets the exact posterior, while ADA-MCMC targets an approximate
posterior distribution. The approximation in ADA-MCMC is introduced by the probabilistic
error of selecting a case for a new proposal, and by sometimes accepting proposals only
based on the surrogate model.

• Unlike DA-MCMC, in ADA-MCMC we can sometimes skip completely the evaluation of
the expensive L(θ), even at the second stage.

This poster was created using the LaTeX Portrait Poster Template

Case study: modeling of protein folding data
• We are interested in developing a statistical model for protein folding data (reaction
coordinate path, sample size n = 2.5× 104, see Figure 2).
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(b) Marginal distribution of the data..

Figure 2: Protein folding data.

• The novel double-well potential stochastic differential equation (DWP-SDE) model in (1)
is a model with additive red noise where the stationary distribution is modeled with the
potential function V in (2).


Zt = Xt + Yt.

dXt = −∇V (Xt) dt + σ dWX
t .

dYt = −κYt dt +
√

κγ2 dWY
t .

(1)

V (x, c, d, A, g, p1, p2) =
1

2

∣∣∣1
2
|x− c|p1 − d + gx

∣∣∣p2 + 1

2
Ax2. (2)

• The likelihood function is intractable for our DWP-SDE model and therefore we used
pseudo-marginal MCMC algorithms to estimate the parameters of the model.

• In this case study we employ as Gaussian process (GP) based surrogate model, similar to
the GP model used in [2].

Inference results
• The marginal posteriors in Figure 3 show that we obtain similar inference results when we
compare ADA-GP-MCMC to standard algorithms (Markov chain within Metropolis
(MCWM), and DA-GP-MCMC).

• The speed-up analyses in Figure 4 (where we run ADA-GP-MCMC and DA-GP-MCMC
100 times to evaluate the performance of the algorithms) show that we indeed obtain an
acceleration for ADA-GP-MCMC, and that we obtain a reduction in the number of particle
filter evaluations in the second stage compared to DA-GP-MCMC.
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Figure 3: Marginal posteriors. MCWM (blue solid line), DA-GP-MCMC (red solid line), and ADA-GP-MCMC
(red dashed line). Priors are denoted with green lines.
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(a) Histogram of run-times (secounds.).
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(b) Number of particle filter evaluations in second stage.

Figure 4: Speed up analysis of 100 repetitions. DA-GP-MCMC in blue, ADA-GP-MCMC in orange.
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