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AbstractFor Bayesian analyses of so-called big data models, the divide-and-conquer MCMC approachsplits the whole data set into smaller batches, runs MCMC algorithm over each batch to produceparameter samples, and combines these towards producing an approximation of the posteriordistribution. In this spirit, we introduce random forests into this method and use each subpos-terior or partial posterior as a proposal distribution to implement importance sampling. Unlikethe existing divide-and-conquer MCMC solutions, our method is based on scaled subposteri-ors, whose scale factor is not necessarily restricted to 1 or to the number of batches. Throughseveral experiments, we show that our methods performs satisfactorily aginst the existing so-lutions in low-dimensional setting, for both Gaussian and severely non-Gaussian cases, andunder model misspecification.

Problem
Denote by � = {�1� �2� · · · � �N} the whole set of observations, where �� ∼ �θ(·) i.i.d. andθ ∈ Θ ⊂ R�. Let π0(θ) denote the prior distribution on Θ. In Bayesian analysis, the target ofinterest is the posterior distribution:

π(θ|�) ∝ γ(θ) = π0(θ) N�
�=1 �(��|θ)

As a standard approach to sample from π(θ|�), MCMC algorithms with Metropolis-Hastingsstep require at each iteration to sweep over the whole data set. When the size of the data set,N , is too large, evaluating the acceptance ratio
1 ∧ γ(θ∗)�(θ|θ∗)γ(θ)�(θ∗|θ)is too costly an operation and rules out the applicability of MCMC algorithms in some Bayesianinferences.

Methodology
Splitting the data set � into subsets �1� · · · � �K , each with the same size � = NK . For eachsubset �� , � = 1� · · · � K , we define the associated λ�-subposterior as

πλ�� (θ|�� ) = (γ� (θ|�� ))λ�Z��λ� � γ� (θ|�� ) = π0(θ) 1K �
�∈��

�(�|θ)�
where Z��λ� is the normalizing constant of (γ� (θ|�� ))λ� .
Firstly, we run some MCMC algorithms onπλ�� (θ|�� ) to obtain MCMC samples {θ�1 � θ�2 � · · · � θ�T }.In the Metropolis–Hastings acceptance ratio, we therefore evaluate log γ� (θ|�� ) for eachproposal. As a byproduct, we thus obtain evaluations of log γ� (θ|�� ) at some parameter values{��1 � ��1 � · · · � ��T�}, which are the quantities proposed by the MCMC algorithms.
Secondly, calling in a random forests on the learning set����1 � log γ� (��1 |�� )�� ���2 � log γ� (��2 |�� )�� · · · � ���T� � log γ� (��T� |�� )��
provides an estimator, �� , of the value of the unnormalised partial log-likelihoods, log{γ� (θ|�� )}.These estimators �� , � = 1� · · · � K , provide an approximation of π(θ|�) by

� (θ) = exp
⎧⎨⎩ K�

�=1 �� (θ)
⎫⎬⎭

up to a multiple constant.
Thirdly, for the �-th MCMC sample set, weighting each sample θ�� with weight ��� ,

��� ∝ exp
⎧⎨⎩ K�

�=1 �� (θ�� ) − λ� log γ� (θ�� |�� )
⎫⎬⎭ � � = 1� · · · � T �

by importance sampling, provides �-th approximation of the posterior
π̂� = T�

�=1 ��� δθ��
Finally, averaging these K discrete measures,

π̃ = 1K K�
�=1 π̂�

gives an approximation of the posterior distribution.

Computation complexity
The computing budget of our approach is made of three components• At the divide-and-conquer stage, the computating cost is �(T�N/K ) on each subsampleand we generate a total of T samples points, where T may differ from T� according to thetechniques of burn-in and thinning of MCMC.• At the regression training stage, the cost of each random forest is �(T� log T� ).• At the combination stage, the cost of importance sampling is �(KT log T� ) for weighting allsamples over all subposteriors.

A Bimodal Posterior
X� ∼ 12� (θ1� 2) + 12� (θ1 + θ2� 2)� � = 1� · · · � N� (θ01� θ02) = (0� 1)
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Fig. 1: Comparison of the contours of the true posterior (red), RF-IS (blue), consensus Monte Carlo (orange),KDE (violet) and Weierstrass sampler (cyan). (left) K = 20� N = 200, (right) K = 50� N = 10000.

A Moon-shaped Posterior
X� ∼ � (�θ1 + �θ2� 2)� θ1 ≥ 0� θ2 ≥ 0�(θ01� θ02) = (14� 14)
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Fig. 2: Comparison of the contours of the true posterior (red), RF-IS (blue), consensus Monte Carlo (orange),KDE (violet) and Weierstrass sampler (cyan). (left) K = 10� N = 1000, (right) K = 20� N = 1000.

A Misspecification Example
X ∼ � (µ� σ2)� θ = (µ� σ2)Dataset1: X ∼ � (0� 1); Dataset2: X ∼ �� (0� 1)
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Fig. 3: Comparison of the contours of the true posterior (red), RF-IS (blue), consensus Monte Carlo (orange), KDE(violet) and Weierstrass sampler (cyan) with comfiguration K = 10� N = 10000. (left) Normal (right) log-Normal

Time Comparisons
Model RF-IS CMC Nonpara WeierstrassBimodal Posterior 1 0.94 8.11 0.97Moon-shaped Posterior 1 0.96 6.93 0.93Normal 1 0.92 2.33 0.93Log-Normal 1 0.90 15.19 0.98

Conclusion
1. Advantages:(a) The scale factor is not necessarily restricted to be 1 or K .(b) Random Forest is easy to implement, has a strong learning ability of non-linear relationsand is robust.(c) The prediction abilities of random forests are scalable, that is, given a training set of sizeT , the cost of predicting the output of a new input is of order O(log(T )).2. Limitations:(a) The curse of dimensionality.(b) The selection of scale factor.


