Parallelizing MCMC via Random Forest
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Abstract
| For Bayesian analyses of so-called big data models, the divide-and-conquer MCMC approach
| splits the whole data set into smaller batches, runs MCMC algorithm over each batch to produce
| parameter samples, and combines these towards producing an approximation of the posterior |
| distribution. In this spirit, we introduce random forests into this method and use each subpos- |
| terior or partial posterior as a proposal distribution to implement importance sampling. Unlike ‘
the existing divide-and-conquer MCMC solutions, our method is based on scaled subposteri- |
ors, whose scale factor is not necessarily restricted to 1 or to the number of batches. Through |
several experiments, we show that our methods performs satisfactorily aginst the existing so- |

lutions in low-dimensional setting, for both Gaussian and severely non-Gaussian cases, and |
under model misspecification.

| Problem }

“‘ Denote by X = {xq,x2, -, xn} the whole set of observations, where x; ~ pg(-) tid. and
0 € © c RY. Let mp(6) denote the prior distribution on ©. In Bayesian analysis, the target of
interest is the posterior distribution:

N
‘ 7(6]X) o< ¥(6) = 70(6) [ ] p(xil6) \
| i=1 \

As a standard approach to sample from 7(0|X), MCMC algorithms with Metropolis-Hastings ‘

| step require at each iteration to sweep over the whole data set. When the size of the data set, |
| N, is too large, evaluating the acceptance ratio |

\ Y1€a(6]6)
| v()q(°[6)

| is too costly an operation and rules out the applicability of MCMC algorithms in some Bayesian
inferences. J

| Methodology

‘ Splitting the data set X into subsets Xy, - -, Xk, each with the same size m = % For each |

\‘ subset Xy, k =1,---, K, we define the associated Ag-subposterior as |

| A (vilBl™ . \
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| where Z ), is the normalizing constant of (yk(Q\Xk))/\*.

L Firstly, we run some MCMC algorithms onﬁﬁk(9|é\ﬁ<) to obtain MCMC samples {Qf, 95, e 8‘}}. |
| In the Metropolis—Hastings acceptance ratio, we therefore evaluate logy(6|X)) for each |
| proposal. As a byproduct, we thus obtain evaluations of log yx(6| X)) at some parameter values ‘
| {lf?k, 191/(, s ,L?-’}k}, which are the quantities proposed by the MCMC algorithms. \

Secondly, calling in a random forests on the learning set |
, { (ot 00 wecotiza). o5 ogneohian ). ok tog wiok x0) | ;

provides an estimator, fi, of the value of the unnormalised partial log-likelihoods, log{y (6] Xk)}-
These estimators fi, k =1,---, K, provide an approximation of 7(0|X) by

| K
i f(O)=exp{ > fi(6) ‘
| k=1

“ up to a multiple constant. |

Thirdly, for the k-th MCMC sample set, weighting each sample Qf with weight wf,
K

wiocexpd Y f(0F) — A log vi(BF|Xi) |t =1,
| k=1 |

=

by importance sampling, provides k-th approximation of the posterior |

T |
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| Computation complexity \

|
‘ The computing budget of our approach is made of three components
\‘ e At the divide-and-conquer stage, the computating cost is O(TxN/K) on each subsample
| and we generate a total of T samples points, where T may differ from T} according to the
techniques of burn-in and thinning of MCMC. |

o At the regression training stage, the cost of each random forest is O(T log T).
o At the combination stage, the cost of importance sampling is O(K T log Ty) for weighting all |

samples over all subposteriors.
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[ A Bimodal Posterior
| |
! ‘

Xp ~ %N(Qq,z) +%N(61 +62,2),n=1,---,N, (69,69 = (0,1)
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| Fig. 1: Comparison of the contours of the true posterior (red), RF-IS (blue), consensus Monte Carlo (orange), |
( KDE (violet) and Weierstrass sampler (cyan). (left) K = 20, N = 200, (right) K =50, N = 10000.

| A Moon-shaped Posterior \

11
| Xn ~ N (/81 +/62,2), 01 20,6, 2 0.6, 69) = (7, )
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Fig. 2: Comparison of the contours of the true posterior (red), RF-IS (blue), consensus Monte Carlo (orange),
KDE (violet) and Weierstrass sampler (cyan). (left) K =10, N = 1000, (right) K = 20, N = 1000.

| : .
| A Misspecification Example \

\ X ~ N(p, %),0 = (y, %)
| Dataset1: X ~ N(0,1); Dataset2: X ~ LN(0,1) |
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‘ Fig. 3: Comparison of the contours of the true posterior (red), RF-IS (blue), consensus Monte Carlo (orange), KDE |
| (violet) and Weierstrass sampler (cyan) with comfiguration K = 10, N = 10000. (left) Normal (right) log-Normal

| Model RF-IS CMC Nonpara Weierstrass

| |

| Bimodal Posterior 1 094 811 0.97 |

) Moon-shaped Posterior 1 096 693 0.93 |
Normal 1 092 233 0.93 |

| Log-Normal 1 090 15.19 0.98 ‘

| Conclusion |
| 1.Advantages: ‘

| (b) Random Forest is easy to implement, has a strong learning ability of non-linear relations

| (a) The scale factor is not necessarily restricted to be 1 or K. ‘
| and is robust.

J
‘ (c) The prediction abilities of random forests are scalable, that is, given a training set of size |
| T, the cost of predicting the output of a new input is of order O(log(T)). |

2. Limitations:
‘ (a) The curse of dimensionality. ‘
(b) The selection of scale factor.



