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(Brief) Background / Context / Motivation

Often have complicated, high-dimensional density functions
7 : X — [0,00), for some X C R? with d large.

(e.g. Bayesian posterior distribution)

Want to compute probabilities like:

M(A) = /Aw(x)dx,

and/or expected values of functionals like:

E.(h) = /X h(x) 7(x) dx .

Or, if 7 is unnormalised:

E.(h) = /X h(x) 7(x) dx / /X 7(x) dx.

Calculus? Numerical integration?

Impossible, if 7 is something like . ..
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Typical 7: Variance Components Model

State space X = (0,00)? x RK*! so d = K + 3, with
7T(V, W,,LL,91,...,9K)
C e—bl/V V—al—le—bz/W W—32—1
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where a; and b; are fixed constants (prior), and {Yj;} are the data.

In the application: K =19, so d = 22.
Integrate? Well, no problems mathematically, but . ..

High-dimensional! Complicated! How to compute?

Try Monte Carlo!
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Monte Carlo, Monaco

(4/54)



Nice Place for a Conference!

(5/54)

Estimation from sampling: Monte Carlo

Suppose we can sample from 7, i.e. generate on a computer
X1, Xo,..., Xy ~m (i.id.)

(i.e., P(Xi € A) = [ m(x) dx for each i, and independent).
A

Then can estimate by e.g.
1M
E.(h) ~ v .E_l h(X;) .

As M — oo, the estimate converges to E(h) (by the Law of Large
Numbers), which good error bounds / confidence intervals (by the
Central Limit Theorem).

Good. But how to sample from 7?

Often infeasible! (e.g. above example!)

Instead ...
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Markov Chain Monte Carlo (MCMC)

Given a complicated, high-dimensional target distribution 7 (-):

Find an ergodic Markov chain (random process) Xp, X1, Xo, . ..
which is easy to run on a computer, and which converges in
distribution to m as n — oo.

Then for “large enough” B, L(Xg) ~ 7, so Xg, Xg41, ... are
approximate samples from 7, and e.g.

Extremely popular: Bayesian inference, computer science,
statistical genetics, statistical physics, finance, insurance, ...

But how to create such a Markov chain?
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Random-Walk Metropolis Algorithm (1953)

This algorithm defines the chain Xg, X1, X5, ... as follows.

Given X,_1:
e Propose a new state Y, ~ Q(Xp—_1,-), e.g. Yo ~ N(Xp_1, Xp).

e Let @ = min {1, ;(T)((Yi)l)} (Assuming @ is symmetric.)

e With probability «, accept the proposal (set X, = Y},).
e Else, with prob. 1 — «, reject the proposal (set X, = X,_1).
Try it:  [APPLET] Converges to !

Why? « is chosen just right so this Markov chain is reversible with
respect to 7, i.e. w(dx) P(x, dy) = w(dy) P(y, dx). Hence, 7 is a
stationary distribution. Also, chain will be aperiodic and (usually)
irreducible. So, by general Markov chain theory, it converges to 7
in total variation distance: lim,_ sup4 |P(X, € A) — w(A)| = 0.

More complicated example?
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Example: Particle Systems

Suppose have n independent particles, each uniform on a region.
What is, say, the average “diameter” (maximal distance)?
Sample and see! [pointproc.java]  Works! Monte Carlo!
Now suppose instead that the particles are not independent, but

rather interact with each other, with the configuration probability
proportional to e, where H is an energy function, e.g.

H = j{:/W(Xh)q)—-(anG)\*-253 :

i<j i<j ‘(Xia)/i) — (deﬁ)’ i

A large: particles like to be close together.
B large: particles like to be far apart.
C large: particles like to be towards the left.

Can't directly sample, but can use Metropolis! [pointproc.javal
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Okay, but Where's the Math?

MCMC's greatest successes have been in ... applications!

e Medical Statistics / Statistical Genetics / Bayesian Inference /
Chemical Physics / Computer Science / Mathematical Finance

So, what is MCMC mathematical theory good for?

e Informs and justifies the basic algorithms.
(** Above Introduction)

e Quantifies how well the algorithms work.
(** Quantitative Bounds)

e Suggests new modifications of the algorithms.

e Determines which algorithm choices are best.
(** Optimal Scaling)

Investigates high-dimensional behaviour. (** Complexity)
Develops new MCMC directions. (** Adaptive MCMC)
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First Topic: Quantitative Convergence Bounds

MCMC works eventually, i.e. £L(X,) = 7. Good!

But what about quantitative bounds, i.e. a specific number n,
such that, say, |P(X,, € A) —7(A)| < 0.01 V A?

(Not just “as n — o0".)

One method: coupling. (Many other methods: spectral, ...)

Consider two copies of the chain, {X,} and {X]}.
Assume that X) ~ 7 (so X}, ~ 7 Vn).

If we can “make” the two copies become equal for n > T, while
respecting their marginal update probabilities, then X,, ~ 7 too.

Specifically, the coupling inequality says:
IP(X, € A) —7(A)| = |P(X,€ A —-P(X €A)| < P(T >n).

But how to apply this to a complicated MCMC algorithm?
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Quantitative Bounds: Minorisation

Suppose there is € > 0, and a probability measure v, such that
P(x,y) > ev(y) for all x,y € X

This “minorisation condition” gives an e-sized “overlap” between
the transition distributions P(x,-) and P(x’,-).

That means at each iteration, we can make the two copies become
equal with probability at least e. Hence, P(T > n) < (1 —¢)".

Therefore, |[P(X, € A) —7(A)| < (1 —¢€)", VA
e.g. [APPLET], with that 7, and v = 3: find that P(x,y) > € v(y)
for all x,y, where ¢ = 0.2, and v(3) = v(4) = 1/2.

e So |P"(x,A) —7(A) <(1—¢€)"=(1-0.2)"=(0.8)".

e Hence, |P"(x,A) — 7(A)| < 0.01 whenever n > 21.

e So n, = 21. “The chain converges in 21 iterations.” Good!

But what about a harder example??
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Example: Baseball Data Model

Hierarchical model for baseball hitting percentages (J. Liu):
observed hitting percentages satisfy Y; ~ N(6;,c) for 1 </ < K,
where 601,...,0, ~ N(u, V), c is a given constant, with
V,u,01,...,0k to be estimated. Priors: p ~ flat, V ~ IG(a, b).

Diagram:
v
R TN
91 ‘9K Q;NN(,LL,V)
+ +
Yl YK Y,'NN(@,‘,C)

For our data, K = 18, so dimension = 20.

High dimensional! How to estimate?
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Baseball Data Model (cont’d)

MCMC solution: Run a Gibbs sampler for 7.
Markov chain is X = (V) (0 69 ()} updated by:

K—-1 1 _ —(n—
(n) K-1 1 (n-1) _ g(n=1)y2 .
V lG(a+ > ,b+2§(e, 0 )),

(n)
(n An-1) V _
14 N (9 e ,

4 y pw(Me + Y; v v(nc
j c+ V@t v

) (1<i<K);

where 8" = =3 05").

Recall that K = 18, so dimension = 20.

Complicated! How to analyze convergence?
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Example: Baseball Data Model (cont’d)

Here we can find a minorisation P(x,y) > ev(y), but only when
x € C for a subset C C X. (“small set”)

But also find a “drift condition” E[f(X1) | Xo = x] < Af(x) + A,
for some A < 1 and A < oo, where f(x) = Zlel(O; —Y)?; this
“forces” returns to C x C.

Can compute (R., Stat & Comput. 1996):

e a drift condition towards C = { >",(6; — Y)? < 1}, with
A = 0.000289 and A = 0.161;

e a minorisation with € = 0.0656, at least for x €¢ C C X.
Then can use coupling to prove (R., JASA 1995) that

IP(X, € A) —7(A)] < (0.967)" + (1.17)(0.935)", neN,
so e.g. [P(X, € A) —7w(A)| < 0.01 if n > 140.

e So n, = 140. “The chain converges in 140 iterations.” Good!

Realistic bounds for complicated statistical models!
(See also Jones & Hobert, Stat Sci 2001, .. .) (15/54)

Does it Matter? Case Study: Independence Sampler

Consider Metropolis-Hastings where 7(x) = e™*, and proposals are

chosen i.i.d. ~ Exp(k) with density ke=%, for some k > 0.
e k=1 (i.i.d. sampling)

20000

15000

10000
1

lteration Number

5000

T
0 2 4 6 8
X

E(X) = 1; estimate = 1.001. Excellent!  Other k7 (16/54)



Independence Sampler (cont’d)

e k=0.01

20000
1

15000

Iteration Number
10000
1

5000

E(X) = 1; estimate = 0.993. Quite good.
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Independence Sampler (cont’d)

10000 15000 20000
1 1

Iteration Number

5000

E(X) = 1; estimate = 0.687. Terrible: way too smalll

What happened? Maybe we just got unlucky? Try again!
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e Another try with kK = 5:

10000 15000 20000
1 |

lteration Number

5000

E(X) =1, estimate = 1.696. Terrible: way too big!

So, not just bad luck: kK =5 is really bad.  But why??
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Independence Sampler: Theory

Why is k = 0.01 pretty good, and kK = 5 so terrible?

Well, if k < 1, then Vx, g(x) = ke > ke™ = kn(x). Then
fat), _ o wly)/aly)
a0 = " /a0

m(y)/aly),
W) = k(m(y)/a(y)).

Then P(x,y) > q(y) a(x,y) > km(y). Minorisation with ¢ = k!
So, |P"(x,A) — w(A)| < (1 — k)"
e k= 1: yes, € = 1; converges immediately (of course). n, = 1.

o k=0.01: yes, ¢ = 0.01; and (1 — 0.01)*° < 0.01, so
n, = 459; “chain converges within 459 iterations”. (Pretty good.)

a(x,y) = min(1,

> min(1,

e k =5: no such e. Not geometrically ergodic. In fact, we can
prove (Roberts and R., MCAP, 2011) that with k =5, have
4,000,000 < n, < 14,000,000, i.e. takes millions of iterations! (20/54)




Main Topic: How to Optimise MCMC Choices?

In theory, MCMC works with essentially any update rules, as long
as they leave 7 stationary.

e Any symmetric proposal distribution Q. (Choices!)

e Non-symmetric proposals, with a suitably modified acceptance
probability. (“Metropolis-Hastings”) (e.g. Independent, Langevin)

e Update one coordinate at a time. (“Componentwise”)

e Update from full conditional distributions. (“Gibbs Sampler")

But what choice works best? e.g. What v in [APPLET]?

e If v too small (say, v = 1), then usually accept, but move very
slowly. (Bad.)

e If v too large (say, v = 50), then usually 7(Y,+1) =0, i.e.
hardly ever accept. (Bad.)

e Best v is between the two extremes, i.e. acceptance rate
should be far from 0 and far from 1. (“Goldilocks Principle”)
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Example: Metropolis for N(0,1)

Target 7 = N(0,1). Proposal Q(x,-) = N(x, ).
How to choose o7 Big? Small? What acceptance rate (A.R.)?

= = = L—— = e
- - 3F 8 — = | =
oc=0.17 o =257 o = 2.387
too small! too big! just right!
A.R. = 0.962 A.R. = 0.052 A.R. = 0.441

The Goldilocks Principle in action!

What about higher-dimensional examples? If d increases, then o
should: decrease. But how quickly? On what scale? Theory?
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