
Computational Complexity of Metropolis

• Combining this complexity result with the Metropolis weak
convergence results immediately shows that:

– The speeded-up processes Ud
t converge to ⇡ in O(1) time.

• But Ud
t equals the original Metropolis algorithm’s first

coordinate process X d
n,1, sped up by a factor of d .

• Hence, the original Metropolis algorithm’s first coordinate
process X d

n,1 must converge to ⇡ in O(d) time.

• Hence, the Metropolis algorithm converges (coordinatewise at
least) in time O(d). Right?

• One technicality: we need weak convergence from any starting
point X0, not from stationarity X0 ⇠ ⇡ . . . but that also holds if
the powers of the target density f in the moment assumptions are
increased slightly (from 8 and 4, to 12 and 6). Phew!

• Also, still requires unrealistic conditions on ⇡ . . . but we’re
working on that. Then have: convergence in O(d) iterations!
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How to Use the Optimality Information?

Recall: We have guidance about optimising MCMC in terms of
acceptance rate, target covariance matrix ⌃t , etc.

In particular:

1. Want acceptance rate around 0.234.

2. Optimal Gaussian RWM proposal is N
⇣
x , (2.38)2 d�1⌃t

⌘
,

where ⌃t is the covariance matrix of the target ⇡.

Great, except . . . we don’t know what proposal will lead to a
desired acceptance rate. And, we don’t know how to compute ⌃t .

So, what to do?

Trial and error? (di�cult, especially in high dimension)

Or . . . let the computer decide, on the fly!
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Adaptive MCMC

Suppose we have a family {P�}�2Y of possible Markov chains,
each with stationary distribution ⇡.

Let the computer choose among them!

At iteration n, use Markov chain P�n , where �n 2 Y chosen
according to some adaptive rules (depending on chain’s history,
etc.). [APPLET]

Can this help us to find better Markov chains? (Yes!)

On the other hand, the Markov property, stationarity, etc. are all
destroyed by using an adaptive scheme.

Is the resulting algorithm still ergodic? (Sometimes!)

We begin with some simulation examples . . .
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Example: High-Dimensional Adaptive Metropolis

Dim d = 100, with target ⇡ having target covariance ⌃t .
Here ⌃t is 100⇥ 100 (i.e., 5,050 distinct entries).

Here optimal Gaussian RWM proposal is N
⇣
x , (2.38)2 d�1⌃t

⌘
.

But usually ⌃t unknown. Instead use empirical estimate, ⌃n,
based on the observations so far (X1,X2, . . . ,Xn). Then let

Qn(x , ·) = (1��)N
⇣
x , (2.38)2 d�1⌃n

⌘
+ � N

⇣
x , (0.1)2 d�1 Id

⌘
,

where e.g. � = 0.05.

(Slight variant of the algorithm of Haario et al., Bernoulli 2001.)

Let’s try it . . .
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High-Dimensional Adaptive Metropolis (cont’d)

Plot of first coord. Takes about 300,000 iterations, then “finds”
good proposal covariance and starts mixing well.
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High-Dimensional Adaptive Metropolis (cont’d)

Plot of sub-optimality factor bn ⌘ d
⇣Pd

i=1 �
�2
in / (

Pd
i=1 �

�1
in )2

⌘
,

where {�in} eigenvals of ⌃1/2
n ⌃�1/2. Starts large, converges to 1.
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Even Higher-Dimensional Adaptative Metropolis

In dimension 200, takes about 2,000,000 iterations, then finds
good proposal covariance and starts mixing well.
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Another Example: Componentwise Adaptive Metropolis

Propose new value yi ⇠ N(xi , e2 lsi ) for the i th coordinate, leaving
the other coordinates fixed; then repeat for di↵erent i .

Choice of scaling factor lsi?? (i.e., “log(�i )”)

Recall: optimal one-dim acceptance rate is ⇡ 0.44. So:

Start with lsi ⌘ 0 (say).

Adapt each lsi , in batches, to seek 0.44 acceptance rate:

After the j th batch of 100 (say) iterations, decrease each lsi by 1/j
if the acceptance rate of the i th coordinate proposals is < 0.44,
otherwise increase it by 1/j .

Let’s try it . . .
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Adaptive Componentwise Metropolis (cont’d)

Test on Variance Components Model, with K = 500 (dim=503),
Ji chosen with 5  Ji  500, and simulated data {Yij}.

Adaption quickly finds “good” values for the lsi values. (43/54)

Great . . . but is it Ergodic?

Adaptive MCMC seems to work well in practice.

But will it be ergodic, i.e. converge to ⇡?

Ordinary MCMC algorithms, i.e. with fixed choice of �, are
automatically ergodic by standard Markov chain theory (since
they’re irreducible and aperiodic and leave ⇡ stationary).

But adaptive algorithms are more subtle, since the Markov property
and stationarity are destroyed by the adaptive scheme. [APPLET]

WANT: Simple conditions guaranteeing kL(Xn)� ⇡k ! 0,
where kL(Xn)� ⇡k ⌘ sup

A✓X
|P(Xn 2 A)� ⇡(A)|.

(Alternative: Just do “finite adaptation” and diagnose when to
stop, e.g. Yang & R., Comp. Stat. 2017; R package “atmcmc”.)
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One Simple Convergence Theorem

THEOREM [Roberts and R., J.A.P. 2007]: An adaptive scheme
using {P�}�2Y will converge, i.e. limn!1 kL(Xn)� ⇡k = 0, if:

(a) [Diminishing Adaptation] Adapt less and less as the algorithm
proceeds. Formally, supx2X kP�n+1(x , ·)� P�n(x , ·)k ! 0 in prob.

[Can always be made to hold, since adaption is user controlled.]

(b) [Containment] Times to stationary from Xn, if fix � = �n,
remain bounded in probability as n ! 1. [Technical condition, to
avoid “escape to infinity”. Holds if e.g. X and Y finite, or
compact, or sub-exponential tails, or . . . (Bai, Roberts, and R.,
Adv. Appl. Stat. 2011). And always seems to hold in practice.]

(Also guarantees WLLN for bounded functionals. Various other
results about LLN / CLT under stronger assumptions.)

Other results by: Haario, Saksman, Tamminen, Vihola; Andrieu,
Moulines, Robert, Fort, Atchadé; Kohn, Giordani, Nott; . . .
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Outline of Proof (one page only!)

Define a second chain {X 0
n}, which begins like {Xn}, but which

stops adapting after time N. (“coupling”)

Containment says that the (ordinary MCMC) convergence times
are bounded, so that for large enough M, we “probably” have
L(X 0

N+M) ⇡ ⇡(·), i.e. P(X 0
N+M 2 A) ⇡ ⇡(A) for all A and N.

And, Diminishing Adaptation says that we adapt less and less, so
that for large enough N (depending on M),

(XN ,XN+1, . . . ,XN+M) ⇡ (X 0
N ,X

0
N+1, . . . ,X

0
N+M) .

Combining these, for large enough N and M, we “probably” have

L(XN+M) ⇡ L(X 0
N+M) ⇡ ⇡(·) , Q.E.D.
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Implications of Theorem

Adaptive Metropolis algorithm:

• Empirical estimates satisfy Diminishing Adaptation.

• And, Containment easily guaranteed if we assume ⇡ has
bounded support (Haario et al., 2001), or sub-exponential tails
(Bai, Roberts, and R., 2011).

• COR: Adaptive Metropolis is ergodic under these conditions.

Adaptive Componentwise Metropolis:

• Satisfies Diminishing Adaption, since adjustments ±1/j ! 0.

• Satisfies Containment under boundedness or tail conditions.

• COR: Ad. Comp. Metr. also ergodic under these conditions.

So, previous adaptive algorithms work (at least asymptotically).

Similar convergence results for: regional adaptation (Craiu, R.,
C. Yang, JASA 2009), and adaptive multiple-try Metropolis
(J. Yang, Levi, Craiu, R., under revision). Good!
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Choosing Which Coordinates to Update When

S. Richardson (statistical geneticist): Successfully ran adaptive
Componentwise Metropolis algorithm on genetic data with
thousands of coordinates. Good!

But many of the coordinates are binary, and usually do not change.

She asked: Do we need to visit every coordinate equally often, or
can we gradually “learn” which ones usually don’t change and
downweight them? Good question – how to proceed?

Suppose at each iteration n, we choose to update coordinate i
with probability ↵n,i , and then we update the random-scan
coordinate weights {↵n,i} on the fly.

What conditions ensure ergodicity?

Seemed hard! Then we found a claim [J. Mult. Anal. 97 (2006),
p. 2075]: Su�ces that limn!1 ↵n,i = ↵⇤

i , where the Gibbs sampler
with fixed weights {↵⇤

i } is ergodic.

Really?? No, counter-example! (K. Latuszyński)
(48/54)



Ergodicity with Adaptive Coordinate Weights

So, we had to be smarter than that!

We proved (Latuszynski, Roberts, and R., Ann. Appl. Prob. 2013)
that adaptively weighted samplers are ergodic if either:

(i) some choice of weights {↵⇤
i } make it uniformly ergodic, or

(ii) there is simultaneous inward drift for all the kernels P� , i.e.
there is V : X ! [1,1) with

lim sup
|x |!1

sup
�2Y

(P�V )(x)

V (x)
< 1 .

Then, by being careful about continuity, boundedness, etc., can
guarantee ergodicity in many cases, including for high-dimensional
genetics data (Richardson, Bottolo, R., Valencia 2010). Good!
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What about that “Containment” Condition?

Recall: adaptive MCMC is ergodic if it satisfied Diminishing
Adaptation (easy: user-controlled) and Containment (technical).

Is Containment just an annoying artifact of the proof? No!

THEOREM (Latuszynski and R., J.A.P. 2014): If an adaptive
algorithm does not satisfy Containment, then it is “infinitely
ine�cient”: that is, for all ✏ > 0,

lim
L!1

lim sup
n!1

P(M✏(Xn, �n) > L) > 0 ,

where M✏(x , �) = inf{n � 1 : kPn
� (x , ·)� ⇡(·)k < ✏} is the time to

converge to within ✏ of stationarity. Bad!

Conclusion: Yay Containment!?!

But how to verify it??
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A Method For Verifying Containment

(Craiu, Gray, Latuszynski, Madras, Roberts, and R., A.A.P. 2015)

• We first proved general theorems about stability of
“adversarial” Markov chains under various conditions.

• Suppose a random process {Xn} on X satisfies:

) We always have dist(Xn+1,Xn)  D, for some fixed (large)
constant D < 1.

) Outside of some fixed (large) bounded subset K ✓ X , {Xn}
follows a fixed ergodic Markov transition kernel P .

(But within K , an adversary can make it do anything . . . )

) There is a fixed probability measure µ⇤ on X with
P(x , dz)  M µ⇤(dz), and Pn0(x , dz) � ✏µ⇤(dz), for x 2 K2D \ K .

THEOREM: Then {Xn} is tight, i.e. the sequence {dist(Xn, 0)}1n=0
remains bounded in probability as n ! 1.
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Verifying Containment (cont’d)

• We then applied this to adaptive MCMC, to get a list of
directly-verifiable conditions which guarantee Containment:

) Never move more than some (big) distance D.

) Outside (big) rectangle K , use fixed kernel (no adapting).

) The transition or proposal kernels have continuous densities
wrt Lebesgue measure. (or piecewise continuous: Yang & R. 2015)

) The fixed kernel is bounded, above and below (on compact
regions, for jumps  �), by constants times Lebesgue measure.
(Easily verified under continuity assumptions.)

• Can directly verify these conditions in practice.

• So, this can be easily used by applied MCMC users.

• “Adaptive MCMC for everyone!”

See also the nice recent “AIR MCMC” approach of Chimisov,
Latuszynski, and Roberts, arXiv 2018. (52/54)



Summary

• MCMC is extremely popular for estimating expectations.

• Basic Markov chain theory establishes convergence.

• Quantitative convergence bounds can sometimes be obtained
using coupling with minorisation (and drift) conditions.

• Rescaled MCMC sometimes converges to di↵usion limits.

• MCMC can be optimised by maximising the speed.

• Metropolis (with special forms of ⇡) has an explicit
maximisation, corresponding to AR = 0.234.

• Best proposal covariance is proportional to the target ⇡.

• Weak convergence implies computation complexity is O(d).

• Working on extending the di↵usion limits to more general
target distributions.

• But how to use the optimality information?
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Summary (cont’d)

• Adaptive MCMC tries to “learn” how to sample better. Good.

• Works well in examples like Adaptive Metropolis (200⇥ 200
covariance) and Componentwise Metropolis (503 dimensions).

• But must be done carefully, or it will destroy stationarity. Bad.

• To converge to ⇡, su�ces to have stationarity of each P� , plus
(a) Diminishing Adaptation (important), and (b) Containment
(technical condition, usually satisfied, necessary). Good.

• This can demonstrate convergence for adaptive Metropolis,
coordinatewise adaptation, adaptive coordinate weights, etc.

• New “adversarial” conditions more easily verify Containment.

• Hopefully can use adaption on many other examples – try it!

All my papers, applets, software: probability.ca/je↵
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