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Introduction

Sequential Monte Carlo (SMC): a class of numerical schemes for
non-linear filtering with a wide range of applications [Del04].

(Xt,Yt)t≥1: a Markov chain in which Yt is a noisy observation of Xt.

Xt|Xt−1 has transition density p(x′|x) and Yt|Xt has density g(y|x).

Interested in functionals of the smoothing density of X1:T|X0,Y1:T:

P(x1, . . . , xT) ∝
T∏

t=1

p(xt|xt−1)g(yt|xt).

Particle filter with system size N ∈ N and proposal density q(x′|x):

1 Set x(i)0 ← x0 and wi ← 1/N for i ∈ {1, . . . ,N}.

2 For each t ∈ {1, . . .T}:

1 Sample a(i)t ∼ Categorical(w1, . . . ,wN) for i ∈ {1, . . . ,N}.

2 Sample x(i)t ∼ q(·|x(a
(i)
t )

t−1 ) for i ∈ {1, . . . ,N}.

3 Set w̃i ← p(x(i)t |x
(a(i)

t )
t−1 )g(yt|x(i)t )/q(x(i)t |x

(a(i)
t )

t−1 ) for i ∈ {1, . . . ,N}.

4 Set wi ← w̃i/
∑N

j=1 w̃j for i ∈ {1, . . . ,N}.

A P-functional f (x1, . . . , xT) can be approximated as

EP[f (X1, . . . ,XT)] ≈
N∑

i=1

wif (x(a
. .
.(i)

2 )
1 , . . . , x(a

(i)
T )

T−1 , x
(i)
T ). (1)

Path storage and degeneracy

A naive implementation requires O(N × T) storage.

But common ancestry induced by resampling (step 2.1 in the
algorithm) means that many of these states are not evaluated in (1).

Hence the storage cost can be reduced.

Common ancestry also means that times t� T will be estimated
using fewer than N realisations, increasing variance.

Increased variance due to loss of paths is known as path
degeneracy [LC95].

This work identifies the asymptotic distribution of genealogical
trees and hence provides the first tool for quantifying path
degeneracy before running the algorithm.

The limit is most conveniently expressed in terms of the
n-coalescent [Kin82].

The n-coalescent and the genealogical process

n-coalescent: a continuous-time process initialised from
{{1}, . . . , {n}} in which each pair of blocks merges at rate 1.

It terminates once one block remains, resulting in a random tree.

A realisation is depicted in Figure 1.
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Figure 1: A realisation of the 5-coalescent.

The same encoding defines a genealogical process (G(n,N)
t )t≥T of

n ≤ N particles sampled uniformly from a particle filter.

The initial state is {{1}, . . . , {n}}.

Indices i and j belong to the same block in G(n,N)
t if particles i and j

have a common ancestor t generations ago.

Assumptions and the time scale

ν
(i)
t : random number of offspring of particle i at time t.

Assumption 1: Conditional on (ν
(1)
t , . . . , ν

(N)
t ), all valid

assignments of offspring to parents are equally likely.

Assumption 2: The densities p(x′|x), q(x′|x), and g(y|x) are
bounded from above and away from 0.

Numerical experiments suggest that neither is necessary.

Assumption 1⇒ the marginal probability of two blocks merging in
one generation at time t is

cN(t) :=
1

N(N − 1)

N∑
i=1

E[ν
(i)
t (ν

(i)
t − 1)].

The generalised inverse defines a time change

τN(t) := max

{
s ≥ 0 :

s∑
r=1

cN(r) ≥ t

}
,

which is the correct rescaling for a non-trivial limiting genealogy.

The convergence theorem

Suppose Assumptions 1 and 2 hold, and that multinomial
resampling is done at every time step.

Then (G(n,N)
τN(t)

)t≥0 converges to a Markov process (G(n)
t )t≥0 as

N →∞ when n is fixed.

(G(n)
t )t≥0 admits only binary mergers.

The rate at which blocks merge is bounded between two constants

0 <
C∗
C
≤ 1 ≤ C

C∗
<∞.

C∗ and C are determined by cumbersome bounds on joint moments
of family sizes which hold under Assumption 2.

If the vector of family sizes

(ν
(1)
t , . . . , ν

(N)
t )

is exchangeable at each time, then (G(n)
t )t≥0 is an n-coalescent with

variable merger rate between C∗/C and C/C∗.

Consequences of the convergence theorem

T(n)
N : number of generations separating n leaves of the genealogical

tree from their most recent common ancestor.

Under Assumptions 1 and 2, the following bounds hold for any
sufficiently large N:

E

[
T(n)

N

N

]
≤ 2C

C2
∗

(
1− 1

n

)
,

E

[
T(n)

N

N

]
≥ 2C∗

C2

(
1− 1

n

)
+ O(N−1),

Var

(
T(n)

N

N

)
≤
(

4π2

3
− 12 + O(n−1)

)(
C
C2
∗

)2

,

Var

(
T(n)

N

N

)
≥
(

4π2

3
− 12 + O(n−1)

)(
C∗
C2

)2

+ O(N−1).

[JMR15] showed that E[T(N)
N ] = O(N log N), also under

Assumption 2.

Our result provides an O(N) lower bound, showing their bound is
tight up to a log N factor.

L(n)
N : total branch length of the tree connecting n leaves to their

most recent common ancestor.

Under Assumptions 1 and 2, the following bounds hold for any
sufficiently large N:

E

[
L(n)

N

N

]
≤ 2C

C2
∗

(log n + γEM + O(n−1)),

E

[
L(n)

N

N

]
≥ 2C∗

C2 (log n + γEM + O(n−1)) + O(N−1),

Var

(
L(n)

N

N

)
≤
(

2π2

3
+ O(n−1)

)(
C
C2
∗

)2

,

Var

(
L(n)

N

N

)
≥
(

2π2

3
+ O(n−1)

)(
C∗
C2

)2

+ O(N−1),

where γEM ≈ 0.577 is the Euler-Mascheroni constant.

All of these follow from elementary calculations for the
n-coalescent on e.g. page 76 of [Wak09].

In addition to contributing to SMC, this also extends the domain of
attraction of the n-coalescent.

Previous work has focused on neutral systems [Möh98], where
family sizes do not depend on particle locations.

Our theorem identifies the n-coalescent as the genealogical process
of selective particle systems as well.

Simulation study: set up

We conducted a simulation study to verify these bounds for finite
N.

The model was the discretised Ornstein-Uhlenbeck process

Xt+1 = (1−∆)Xt +
√

∆ξt,

X0 ∼ N(0, 1),

Yt|Xt ∼ N(Xt, σ
2),

where ξt ∼ N(0, 1) is white noise, and with ∆ = σ = 0.1 as well as
a time horizon T = 40 960.

We ran 1 000 realisations of a boostrap particle filter with
q(x′|x) = p(x′|x) and stored the tree heights.

Figures 2 and 3 show the corresponding estimates of the mean and
variance of T(n)

N .

Assumption 2 fails for this experiment.

Assumption 1 also fails for the three resampling schemes other
than multinomial (see [DCM05] for details of these schemes).

Simulation study: results
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Figure 2: Averaged tree heights from 1 000 realisations for fixed N as a function of n on
the left, and vice versa on the right.
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Figure 3: Variance of tree heights from 1 000 realisations for fixed N as a function of n on
the left, and vice versa on the right.

Conclusions

We have related genealogical trees of sequential Monte Carlo
algorithms to the tractable n-coalescent.

This enables a priori estimation of functionals of the tree.

It also extends the domain of attraction of the n-coalescent.

Simulation studies confirm that asymptotic results accurately
describe algorithms with finite N.

The strong assumptions do not appear to be necessary in practice.

Our method only works when n� N, but the result seems to hold
even when n ≈ N.
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