Improved Importance Sampling of Phylogenies

Mathias C. Cronjäger

Department of Statistics University of Oxford

Presented at the LMS invited lecture series / CRISM summer school 2018 on computational statistics, University of Warwick, July 10th 2018

Outline

- 1. Our motivating problem
- 2. Importance sampling
 - a. sequential proposal distributions
 - i. existing proposals
- 3. Path density bias
 - a. de-biasing by counting paths

Setup

<u>The data:</u>

Single Nucleotide Polymorphisms (SNPs) in *n* aligned genetic sequences sampled in the present.

<u>The model:</u>

Individuals are leaves on an an unobserved random tree with the most recent common ancestor at the root (a coalescent). New segregating sites occur along branches at rate θ .

The challenge:

Computing likelihoods does not scale as *n* increases (there are too many possible trees to consider)

Importance sampling of ancestral histories

Ideally, the proposal distribution **Q**, should

- 1. Approximate the target distribution **P** well
- 2. Sampling $X \sim Q$ should be fast
- 3. Computing weights $f_0(X)$ should be fast

Conditions 2 & 3 allow us to pick large *N* (number of particles).

Condition 1 gives us better convergence in *N*.

<u>For this problem</u>: Known (feasible) proposals are **sequential**. Sampling from *Q* is done by constructing paths step-by-step, **from the bottom up**.

Existing proposals (a single step)

Sequential proposals and path density bias

Consider for example \mathbf{Q}_{SD} which samples ancestral histories as follows:

- 1. Start with state x_0 = Observed data
- 2. Given a partial path $p = [x_0, ..., x_i]$, pick a state x_{i+1} uniformly at random from the predecessors of x_i , and update the partial path to $p' = [x_0, ..., x_i, x_{i+1}]$
- 3. Terminate when hitting a state with no ancestors.

Major Issue: Oversampling of paths containing nodes of low in-degree.

Combinatorial importance sampling

Likelihoods (toy example 1: 4 seq, 2 sites)

Likelihoods (toy example 2: 5 seq; 4 sites)

9

Thank you. Any Questions?

Collaborators (and supervisors)

Jotun Hein (Oxford, Statistics)

Paul Jenkins (Warwick, Statistics & CS)

Code: https://github.com/Cronjaeger/combIS

Get in touch:

Email: <u>cronjager@stats.ox.ac.uk</u> Twitter: @mcCronjaeger