Optimal scaling for conditional
sequential Monte Carlo methods
in high dimensions

Axel Finke  Alexandre H. Thiery

Department of Statistics and Applied Probability
National University of Singapore

10th July 2018



Problem formulation



Motivation: High-dimensional state-space model

X1
e [D-dimensional latent states: X, = :
e " observations: Yi,..., Y. Xip
Y Y,
Xi o X1 Xy Xtt1

e want to approximate 7 p(X1.7) = p(X1.7|y1.T),

e needs MCMC updates on (7" x D)-dimensional space.
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Background: CSMC algorithms (D fixed)
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— resampling (‘selection’) according to importance weights.
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CSMC algorithm: Selecting new reference path
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CSMC algorithm: Selecting new reference path
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e induces 7 p-invariant Markov kernel P%YD(XLT,dXLT),
e Problem: x;.; coalescing with x;.7
— controlling the ‘acceptance rates’ requires N = O(T)
(Andrieu et al., 2018; Koskela et al., 2018)
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CSMC algorithm: Backward-sampling extension

Space (D-dimensional)
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e forms new lineage;
e no longer need to grow N with 7" (Lee et al., 2018)
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Breakdown of CSMC as D — oo



CSMC in high dimensions (D — o0)

Space (D-dimensional)
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e all acceptance rates go to 0

e even with backward sampling.
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Numerical illustration (state-space model)
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Novel ‘random-walk” CSMC algorithm



Simple case: T'=N =1

CSMC reduces to Independent Metropolis—Hastings,

Problem: ‘global’ proposals are difficult to design;
— acceptance rate is typically O(e™P).

Remedy: suitably scaled ‘local’ proposals

— e.g. random walk with variance 02/D,
— stabilises acceptance rate as D — oo.

‘No free lunch’: need O(D) iterations
— non-trivial (diffusion) limit (Roberts et al., 1997).
Extension to N > 1 proposals in Bédard et al. (2012).
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Random-walk CSMC algorithm (D — o0)

Space (D-dimensional)

1 2 3 4 T
Time
e (marginal) proposal : Normal(x;, 0?/D)%®?,

e acceptance rates converge to non-trivial limits
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Numerical illustration (state-space model), c
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Numerical illustration (state-space model), ctd
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