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In the last few years there is a tendency to use non-reversible
Markov Processes to simulate from the invariant distribution.

A new class of processes used is Piecewise Deterministic Markov
Processes.

They follow deterministic dynamics for some random period of
time. Then they switch to different dynamics.

They are possible to simulate, since we only need to simulate these
random times.
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The Zig-Zag process in R

In 1-dimension, the process moves with constant speed +1 to the
right and then changes to the left etc.

The state space is R× {−1,+1}

The rardomness if formulated in terms of a Poisson Process which
is charecterized by a function λ(x , θ).

If we start from (0,+1), continue in this direction until time T1.
T1 is the first event of a Poisson Process with intensity
{λ(t,+1), t ≥ 0}.

If we change at T1 continue towards the left and change again at
time T1 + T2 where T2 is the first point of a Poisson Process with
intensity {λ(T1 − t), τ ≥ 0}
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Figure: Normal Distribution
Picture by J. Bierkens
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Figure: Cauchy Distribution
Picture by J. Bierkens



Invariant Measure

All randomness is hidden in λ.

Proposition

If π(dx , dθ) = 1
Z exp{−U(x)}(dx , dθ)

then the Zig-Zag process with rates

λ(x , θ) = (θU ′(x))+ + γ(x) , γ ≥ 0

has π as unique invariant measure.



Theorem (Bierkens-Roberts-Zitt (2017))
Consider (Xt ,Θt) in Rd . If U ∈ C3, there exist c > d , c ′ with
U(x) ≥ clog(1 + |x |)− c ′ and U has a non-degenerate local
minimum, then

lim
t→∞

sup
A
||Px ,θ[(Xt ,Θ) ∈ A]− π(A)||TV = 0.

This implies that for all f ∈ L1(π),

1
T

∫ T

0
f (Xt)dt → Eπ[f (X )] as T →∞ a.s.
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Central Limit Theorem

Theorem (Bierkens-Roberts-Zitt (2017))
Under some heavier conditions on the growth of U and assuming
that it has lighter tails, we also have a CLT for the Zig-Zag

1√
n

∫ n

0
f (Xs ,Θs)− π(f )ds → N (0, σ2

f )

in distribution as n→∞, for some 0 ≤ σf <∞.



My research

Why restrict to {−1,+1}d velocities?

Allow {−θm, ...,−θ1, θ1, .., θm}d .

Need more Poisson Processes, for any pair of possible speeds θi , θj
need a function λ(x , θi , θj).

More freedom to choose the algorithm. However seems to be
heavier computationally.

When we only allow jumps to "neighbouring" speeds, the
Ergodicity Theorem seems to hold, using basically the same
arguments.


