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Introduction to Quasistationarity: Ants

Let X = (Xt) be an ant undergoing a diffusion on Rd . Introduce killing
rate

κ : Rd → [0,∞).

At rate κ(Xt) the ant is killed ; call this time τ∂ .

We will consider Px(Xt ∈ · |τ∂ > t) for large t.

If these converge to π as t →∞, π is an example of a quasistationary
distribution.
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Example

Take X to be a standard Brownian motion on R2, κ(y) = ‖y‖2.

What can be said about P(Xt ∈ · |τ∂ > t) for large t?
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Quasistationary Monte Carlo

Quasistationary Monte Carlo methods aim to sample from a target
distribution π, where π is a quasistationary distribution.

The quasistationary framework enables the principled use of subsampling
techniques to give exact Bayesian inference with a sub-linear cost in the
number of observations1.

1Pollock, M., Fearnhead, P., Johansen, A. M., Roberts, G. O. (2016). The Scalable
Langevin Exact Algorithm: Bayesian Inference for Big Data. arXiv Preprint: arXiv
1609.03436.
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Foundational Results

dXt = ∇A(Xt) dt + dWt , X0 = x ∈ Rd .

Theorem (Convergence to Quasistationarity)

Under certain assumptions, the diffusion X killed at rate κ has
quasilimiting distribution π. That is, for each measurable E ⊂ Rd we have
as t →∞,

Px(Xt ∈ E |τ∂ > t)→ π(E ).

Theorem (Rates of convergence)

Additionally, X converges to quasistationarity π at the same rate as the
Langevin diffusion targeting π2/2A converges to stationarity.
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Simulating from QSDs

Suppose we have a killed diffusion X with quasilimiting distribution π. So
P(Xt ∈ · |τ∂ > t)→ π. How might we simulate try to simulate π?

1 Rejection sampling. Infeasible.

2 Continuous-time sequential Monte Carlo. Feasible but involved.

3 ReScaLE: a stochastic approximation approach.
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An Example ReScaLE Trajectory
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Convergence Result

Does this algorithm converge to the quasistationary distribution π?

Theorem (Convergence in compact setting)

When the state space is compact, we have that (after time-changing) (µt)
is an asymptotic pseudo-trajectory for a deterministic semiflow Φ almost
surely.

It follows that µt converges to π almost surely.

Conjecture (General setting)

We should have that the Proposition holds much more generally:
non-compact state space, unbounded killing rate.

Andi Wang (Oxford) Quasistationary MC 11 July 2018 8 / 10



Convergence Result

Does this algorithm converge to the quasistationary distribution π?

Theorem (Convergence in compact setting)

When the state space is compact, we have that (after time-changing) (µt)
is an asymptotic pseudo-trajectory for a deterministic semiflow Φ almost
surely.

It follows that µt converges to π almost surely.

Conjecture (General setting)

We should have that the Proposition holds much more generally:
non-compact state space, unbounded killing rate.

Andi Wang (Oxford) Quasistationary MC 11 July 2018 8 / 10



Convergence Result

Does this algorithm converge to the quasistationary distribution π?

Theorem (Convergence in compact setting)

When the state space is compact, we have that (after time-changing) (µt)
is an asymptotic pseudo-trajectory for a deterministic semiflow Φ almost
surely.

It follows that µt converges to π almost surely.

Conjecture (General setting)

We should have that the Proposition holds much more generally:
non-compact state space, unbounded killing rate.

Andi Wang (Oxford) Quasistationary MC 11 July 2018 8 / 10



Logistic regression example (courtesy of D. Kumar)

Figure: Logistic regression example.

Andi Wang (Oxford) Quasistationary MC 11 July 2018 9 / 10



Thanks for listening!

If you are interested to learn more, come see my poster!

Wang, A.Q., Kolb, M., Roberts, G.O. and Steinsaltz, D. (2017)
Theoretical Properties of Quasistationary Monte Carlo Methods. arXiv
1707.08036. In revision, Annals of Applied Probability.

Wang, A.Q., Roberts, G.O. and Steinsaltz, D. Stochastic
Approximation of Quasistationary Distributions of Killed Diffusions on
Compact Spaces. In preparation.
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