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Chinese Restaurant Process

P(new table) o « P(join table) o # sitting there
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This is the probability of {{1,2,4,6},{3},{5,7}}
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Chinese Restaurant Process

P(new table) o « P(join table) o # sitting there
P a 1 « 2 « 3 1
o l4+a 24+a 34+a 44+a 5+a 6+a

This is the probability of {{1,2,4,6},{3},{5,7}}

CRP = A NICE WAY TO SAMPLE PARTITIONS

tukasz Rajkowski Analysis of MAP in the DPMM model



Gaussian Dirichet Process Mixture Model

10~ x5 %7

10- x2 x3
x6

15- 3, x4

1.0 05 0o 05
X

unknown number of clusters in R?
data spread 'normally’ within each cluster
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Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

J ~ CRP(«a),

J = {{17 2a47 6}7 {3}7 {577}}
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Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

J ~ CRP(a),,
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Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)
J ~ CRP(a),
iid .
0= (0))seg 1T ~ N(i, T)
;= 09)es| 7,0 % N(0,%) for JeJ

J = {{17 2,4, 6}’ {3}7 {577}}
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Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)

J ~ CRP(a),,
0= (6))ser| T § N (i, T)

x;=(x)jes| T, 0 ~ N(,,X) for Je T

F—=1-24613-+5+ The 'true’ partition is not known

10~ x5 %7

-10- x2
x6

15- 5, x4

x3
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Gaussian Dirichet Process Mixture Model

This may be modelled as follows (blue=hyperparameters)
J ~ CRP(«a),

0=(0)ses| T = N, T)
x5 =(x)jes| T, 0 X N(0,%) for JeJ

The ’'true’ partition is not known

104 x5X7

Task:
Estimate  the
> distribution of
J provided
R 3 observation x
15- =, x4

10 05 0o 05
X

tukasz Rajkowski Analysis of MAP in the DPMM model 3/ 10



The Maximal A Posteriori Partition

@ The Bayesian approach is to compute the posterior J | x

tukasz Rajkowski Analysis of MAP in the DPMM model



The Maximal A Posteriori Partition

@ The Bayesian approach is to compute the posterior J | x

e Easy to compute unnormalised probability Qx(J)

tukasz Rajkowski Analysis of MAP in the DPMM model



The Maximal A Posteriori Partition

@ The Bayesian approach is to compute the posterior J | x

e Easy to compute unnormalised probability Qx(J)

The Maximal A Posteriori (MAP) is the partition defined by

Jmap(x) = argmax ;P(J | x) = argmax ; Qx(J)
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How well it performs?

@ assume that the data comes from an iid sample from given
distribution P on R, X1,..., X, % P. How would my Bayesian

machinery behave as n grows infinitely?
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How well it performs?

@ assume that the data comes from an iid sample from given
distribution P on R, X1,..., X, % P. How would my Bayesian
machinery behave as n grows infinitely?

o Jeffrey Miller and Matthew Harrison. " Inconsistency of Pitman-Yor
process mixtures for the number of components.” JMLR (2014).
Corollary: In a very general family of conjugate models with CRP as a
prior on partitions then if P is a mixture of t distributions from the
model, then

limsupP(T, = t|Xw.n) <1,

n—oo

so the posterior is not consistent for the number of clusters.
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How well it performs?

@ assume that the data comes from an iid sample from given
distribution P on R, X1,..., X, % P. How would my Bayesian
machinery behave as n grows infinitely?

o Jeffrey Miller and Matthew Harrison. " Inconsistency of Pitman-Yor
process mixtures for the number of components.” JMLR (2014).
Corollary: In a very general family of conjugate models with CRP as a
prior on partitions then if P is a mixture of t distributions from the
model, then

limsupP(T, = t|Xw.n) <1,

n—oo
so the posterior is not consistent for the number of clusters.

@ Goal: Perform similar analysis for the MAP in Gaussian model.
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Main results
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Main results

Result 1 (convexity)

jMAp(x) is a convex partition with respect to x.
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Main results

Result 1 (convexity)

jMAp(x) is a convex partition with respect to x.
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Main results

Result 1 (convexity)

jMAp(x) is a convex partition with respect to x.

Infinite sequence of observations, the MAP on prefixes (a movie).
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Main results

Result 1 (convexity)

jMAp(x) is a convex partition with respect to x.

Infinite sequence of observations, the MAP on prefixes (a movie).

n =500
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Main results

Result 1 (convexity)

jMAp(x) is a convex partition with respect to x.

Infinite sequence of observations, the MAP on prefixes (a movie).

Question:
Can we control
the  (relative)
size of the
smallest  clus-
ter?

n = 1000
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Main results

Result 1 (convexity)

jMAp(x) is a convex partition with respect to x.

Infinite sequence of observations, the MAP on prefixes (a movie).

Question:

Can we control
the  (relative)
size of the
smallest  clus-
ter?

Partly. ..

n = 1000
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Main results

Result 1 (convexity)

jMAp(x) is a convex partition with respect to x.

Infinite sequence of observations, the MAP on prefixes (a movie).
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Main results

Result 1 (convexity)

jMAp(x) is a convex partition with respect to x.

Result 2 (size of clusters)

If sup, 37, [[xa]|? < 0o then for every r > 0

IinnlLrlfmin{|J|: Je jMAP(X]_;n),Elje_jHXjH <r}/n:=+v>0.
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Main results

Result 1 (convexity)

jMAp(x) is a convex partition with respect to x.

Result 2 (size of clusters)

If sup, 37, [[xa]|? < 0o then for every r > 0

IinnlLrlfmin{|J|: Je jMAP(X]_;n),Elje_jHXjH <r}/n:=+v>0.

Result 3 (behaviour in the limit)

If X1, X5,...~ P then jMAP(X]_;n) 'concentrates’ around 'partitions’ of RY that
maximise some given functional A (P bounded and continous).
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Induced partitions

Let X1, Xy, ... % P (e.g. a mixture of three gaussians).
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Induced partitions

Let X1, Xy, ... % P (e.g. a mixture of three gaussians).

A is a fixed partition of RY;
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Induced partitions

Let X1, Xa,. .. dp (e.g. a mixture of three gaussians).

A is a fixed partition of RY;  JA = {{i<n: Xie A}: Ac A}

05~ x5
x7

0.0~

054 x3

x2
6

1.0 -0.5 0.0 05

= {11.{2, 7} {3,4,6}, {5}}

you may compute QXU(j7 )
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Induced partitions

Let X1, Xa,. .. dp (e.g. a mixture of three gaussians).

A'is a fixed partition of RY;  JA ={{i<n: X; € A}: Ac A}.

05- =
0.0~

05 -

Jitooo = {{-- -+ {-- }{ $A B0

QXI 110000 (jIOOOO) ~177
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Induced partitions

Let X1, Xa,. .. dp (e.g. a mixture of three gaussians).

A is a fixed partition of RY;  JA = {{i<n: Xie A}: Ac A}

Proposition

7 Qxy, (T = gexp{A(A)}, where

ZPA) IE (72X | Q)| + S_ P(A)In P(A)
AeA AcA
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@ nice interpretation of A (variance of CEV vs entropy)

@ for P bounded you can do something similar for the MAP and hence
prove Result 3

tukasz Rajkowski Analysis of MAP in the DPMM model 7 /10



Induced partitions

Let X1, Xa,. .. dp (e.g. a mixture of three gaussians).

A is a fixed partition of RY;  JA = {{i<n: Xie A}: Ac A}

Proposition

7 Qxy, (T = gexp{A(A)}, where

ZPA) IE (72X | Q)| + S_ P(A)In P(A)
AeA AcA

@ nice interpretation of A (variance of CEV vs entropy)
@ for P bounded you can do something similar for the MAP and hence
prove Result 3

@ depends only on within-group covariance ¥? — ‘inconsistency’!
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lllustration of the last point
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Interested in details?

o Analysis of the maximal posterior partition in the Dirichlet Process
Gaussian Mixture Model available on arXiv.org and accepted to
Bayesian Analysis

o Poster:

tukasz Rajkowski Analysis of MAP in the DPMM model



Thank you for your attention
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