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Is statistics too difficult?

Cambridge 1963: First course on statistics given by John
Kingman based on notes by Dennis Lindley.

LSE 1966-1967: Courses by David Brillinger, Jim Durbin and
Alan Stuart.

D. W. Miiller Heidelberg (Kiefer-Miiller process)

Frank Hampel | ], title as above.



Two phases of analysis

Phase 1: EDA:;

scatter plots, g-g-plots, residual analysis, ...
provides possible models for formal treatment in Phase 2

Phase 2: formal statistical inference:
nypothesis testing, confidence intervals, prior distributions,
hosterior distributions, ...




Two phases of analysis

The two phases are often treated separately.

It is possible to write books on Phase 1 without reference to
Phase 2 | ].

It is possible to write books on Phase 2 without reference to
Phase 1 | ].



Two phases of analysis

In going from Phase 1 to Phase 2 there is a break in the
modus operandi.

Phase 1: probing, experimental, provisional.

Phase 2: Behaving as if true.



Truth In statistics

Phase 2: Parametric family

P@:{PQZHE@}

Frequentist:
There exists a true 6 € O.
Optimal estimators, or at least asymptotically optimal,

maximum likelihood
An a-confidence region for 6 is a region which, in the long
run, contains the true parameter value with a relative

frequency «a.



Truth In statistics

Bayesian:
The Bayesian paradigm is completely wedded to truth.

There exists a true 6 € O.

Two different parameter values 0y, 63 with Py, # P,,, cannot
both be true.

A Dutch book argument now leads to the additivity of a
Bayesian prior, the requirement of coherence



An example: copper data

27 measurements of amount of copper (milligrammes per
litre) in a sample of drinking water.

cu=(2.16 2.21 2.15 2.05 2.06 2.04 1.90 2.03 2.06
2.02 206 192 208 205 1.88 199 2.01 1.86
1.70 1.88 1.99 193 220 2.02 192 213 2.13)




An example: copper data

Outliers? Hampel 5.2mad criterion:
max |cu — median(cu)|/mad(cu) = 3.3 < 5.2

Three models: (i) the Gaussian (red), (ii) the Laplace (blue),
(iii) the comb (green)

g-q-plots




An example: copper data

Distribution functions:

End of phase 1.



An example: copper data

Phase 2

For each location-scale model F'((- — u)/o) behave as if were
true.

Estimate the parameters 1 and o as efficiently as possible.

Maximum likelihood (at least asymptotically efficient).

Copper data
Model  Kuiper, p-value log—lik. 95%—conf. int. length
Normal 0.204, 0.441 20.31 11.970, 2.062] 0.092
Laplace  0.200, 0.304 20.09 11.989,2.071]  0.082
Comb 0.248, 0.321 31.37  [2.0248,2.0256] 0.0008




An example: copper data

Bayesian: comb model

Prior for 1 uniform over [1.7835, 2.24832], for o independent
of p and uniform over [0.042747,0.315859|.

Posterior for 11 is essentially concentrated on the interval
2.02122,2.02922] agreeing more or less with the
0.95-confidence interval for p.



An example: copper data

18 data sets in | ]

Normal Comb
Data  p-Kuiper  log-lik  p-Kuiper  log-lik
Short 1 0.535 -19.25 0.234 -13.92
Short 2 0.049 -21.27 0.003 -18.17
Short 3 0.314 -16.10 0.132 -8.81
Short 4 0.327 -24 .42 0.242 -17.66
Short 5 0.102 -19.20 0.022 -13.91

Short 6 0.392 -28.31 0.238 -25.98
Short 7 0.532 12.41 0.495 22.80
Short 8 0.296 -0.49 0.242 10.19
Newcomb 1 0.004 -85.25 0.000 -73.78
Newcomb 2 0.802 -60.55 0.737 -45.85
Newcomb 3 0.483 -75.97 0.330 -59.71

Michelson 1 0.247 -120.9 0.093 -104.7
Michelson 2 0.667 -111.9 0.520 -93.66
Michelson 3 0.001 -115.3 0.000 -100.0
Michelson 4 0.923 -109.8 0.997 -100.8
Michelson 5 0.338 -107.7 0.338 -97.05
Michelson 6 0.425 -139.6 0.077 -134.6

Cavendish 0.991 3.14 0.187 10.22




An example: copper data

Now use AIC or BIC (] ] ]
[ | ]) to choose the model.

The winner is the comb model.

Conclusion 1:
This shows the power of likelihood methods demonstrated by

their ability to give such a precise estimate of the quantity of
copper using data using data of such quality.

Conclusion 2:
This Is nonsense, something has gone badly wrong.



Two topologies

Generating random variables.

wo distribution functions F' and G and a uniform random
variable U

X=F'WU)=X2F Y=G'(U)=Y2Z2¢G.
Suppose F' and G close in the Kolmogorov or Kuiper metrics

dio(F, G) = max |F(z) — G(z)], d(F,G) = max [F'(y) — F(z) — (G(y) — G(2))].

Then X and Y will in general be close. Taking finite
precision into account can result in X =Y.



Two topologies

An example: F'= N(0,1) and G = Ceomb, (1.dsp) given by

1
Ccomb,(k,dsp = A Z F((x —w(j))/ds) (1—p)F(x)

J=1

where
w(j) = F(i/(k+1)),i=1,....k
and (k,ds,p) = (75,0.005,0.85).

C'comb,(k.ds,p) 1S @ mixture of normal distributions,
(k,ds,p) = (75,0.005,0.85) is fixed

The Kuiper distance is dy,(N(0,1), Ceomp) = 0.02.



Two topologies

Standard normal (black) and comb (red) random variables.




Two topologies

Phase 1 is based on distribution functions.

his is the level at which data distributed according to the
model are generated.

The topology of Phase 1 is typified by the Kolmogorov
metric dy, or, equivalently, by the Kuiper metric dy,.



Two topologies

Move to Phase 2:
Analyse the copper data using the normal and comb models.

For both models behave as if true, leads to likelihood.

Likelihood is density based ¢(0, x,) = f(x,,0).



Two topologies

Phase 1 based on F(x,60), Phase 2 on f(x,6), where

F(x,0) / f(u,0)d f(z,0) = D(F(x,0))

Phase 1 and Phase 2 connected by the linear differential
operator D.

When are two densities f and g close?

Use the L{ metric
= / f =g



Two topologies

JF = {F : absolutely continuous, monotone, F'(—00) =
0, F(oc0) = 1}

D : (F,dw) — (F,dy), D(F)=f

D is an unbounded linear operator and is consequently
pathologically discontinuous.

"he topology g4, induced by d, is weak, few open sets.
"he topology 94, induced by d; is strong, many open sets.

deo C Ddl



Two topologies

Standard normal and comb density functions.
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di(N(0,1), Ceomp) = 0.966.




Regularization

The location-scale problem F'((- — u)/o) with choice F' is
Ill-posed and requires regularization.

The results for the copper data show that ‘efficiency=small
confidence interval’ can be imported through the model

Tukey (| ]) call this a free lunch and states that
there is no such thing as a free lunch
TINSTAAFL

He calls models which do not introduce efficiency ‘bland’ or
‘hornless’.



Measure of blandness is the Fisher information

Regularization

Minimum Fisher models: normal and Huber 4.4 of

[
[

], see also

Copper data

Model  Kuiper, p-value log—lik. 95%-—conf. int. length  Fisher Inf.
Normal  0.204, 0.441 20.31  [1.970,2.062]  0.092  2.08-10°
Laplace  0.200, 0.304  20.09  [1.989,2.071]  0.082  1.41-10%
Comb 0.248, 0.321 31.37  [2.0248,2.0256] 0.0008 3.73-107




Regularization

Seems to imply - use minimum Fisher information models
Location and scale are linked in the model

Combined with Bayes or maximum likelihood may be
sensitive to outliers

Normal and Huber distributions Section 15.6 of

[ |

Cauchy, t-distributions not sensitive - Fréchet differentiable -
Kent-Tyler functionals.



Regularization

Regularize through procedure rather than model

Smooth M-functionals, locally uniformly differentiable.

(T7.(P),Ts(P)) solution of

/w(”j_TL )dp(:c) — 0,
[x (i) e = o



Regularization

Possible choice of ¢ and x

() — exp(cx) — 1
rt—1

Solve with ¢ = 5, retain Ts(P) and then solve (1) for T (P)
with ¢ = 1 to give a location functional 17.

0.95-approximation interval for copper data [1.973, 2.065],
Gaussian model [1.970,2.062].



A well-posed example

The location-scale problem is ill-posed but likelihood can fail
in well-posed problems.

The following example is due to | ]. Data are
distributed as

MN(0) = 0.5N (1, 0%) + 0.5N (g, 05)

with 0 = (uy, 0%, 1o, 05). Maximum likelihood and Bayes fail.

0 = argming dj,(P,, MN(6))
with the added bonus that you may decide that the data are
not distributed as M N () for any 6.
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A well-posed example

# = (0,1,1.5,0.01)
0 = (—0.029,1.053,1.494,0.0912)




Likelihood

(a) Likelihood reduces the measure of fit between a data set x,,
and a statistical model Py to a single number irrespective of
the complexity of both.

(b) Likelihood is dimensionless and imparts no information about
closeness.

(c) Likelihood is blind. Given the data and the model or models,
it Is not possible to deduce from the values of the likelihood
whether the models are close to the data or hopelessly
wrong.

(d) Likelihood does not order models with respect to their fit to
the data.



Likelihood

(e) Likelihood based procedures for model choice (AIC, BIC,

MDL, Bayes) give no reason for being satisfied or dissatisfied
with the models on offer.

(f) Likelihood does not contain all the relevant information in
the data a,, about the values of the parameter 6.

(g) Given the model, the sample cannot be reduced to the
sufficient statistics without loss of information.

(h) Likelihood is based on the differential operator and is con-
sequently pathologically discontinuous.

(i) Likelihood is evanescent: a slight perturbation of the model
Py to a model Pj can cause it to vanish.



Likelihood

On the positive side:
(j) Likelihood delimits the possible.

The likelihood principle:

Pointless and a waste of intellectual effort.

Birnbaum | ]: likelhood principle when model
Is ‘adequate’.

Adequate never spelt out, constitutes an intellectual failure.
Chasm between ‘adequate’ and ‘true’.

There are many adequate likelihoods, which one and why?



Approximate models

Project:
Give an account of data analysis which consistently treats

models as approximations.

A model P is an adequate approximation to a data set x,, if
‘typical’” data sets X ,,(P) generated under P ‘look like" x,,.




Approximate models

‘Approximation’ is a measure of closeness and this requires a
topology.

The topology Is a weak topology characterized by the
Kolmogorov metric.

Approximate the data set as given. Non-frequentist.

No true parameter so no confidence intervals in the
frequentist sense - no true value to be covered.



Approximate models

Bayesian approximation?

Parametric family Pg and prior 11 over ©. No two different
Py can both be true but two different Py can both be
approximations. No exclusion, no Dutch book, no coherence.

Within the standard Bayesian set-up there can be no concept
of approximation.

More generally there can be no likelihood based concept of

approximation.
In particular, no Kullback-Leibler, no AlIC, no BIC



Approximate models

Data «,,, family of models N (u,1) , ‘typical’=0.95, (95% of
the data generated under the model are classified as typical)
‘looks like'" = mean.

Under N(u, 1) typical means lie in

(u—1.96/v/n, u+ 1.96//n).

The mean x,, of the data looks like a typical mean of an
N (u, 1) sample, that is, N(u, 1) is an adequate
approximation, if

nw—196/v/n<z, <p+196/y/n



Approximate models

Approximation region

1.96 )

A(x,,0.95 R) = {u Hp— 2| < —=

v,

Note there is no assumption that the a,, are a rea
X, (1) for some ‘true’ p.

A more complicated approximation region

Alx,,a,N) = {(,u,a) : diw (P, N (1, 0%)) < gku(aq, n),

mZ&X i — p|/o < qout(ag, n), | Taew(Pr)| < g

1zation of

skew(ag, n),

Vil&, — pl /o < anorm(as), achisa((1 — a5)/2,n) <

n

> (e )/ < achisa((1 + a5)/ 20 |

1=1

Tsew Mmeasure of skewness. You have to pay for everything



Simulating long range financial data

Daily returns of Standard and Poor’s, 22381 observations
over about 90 years.
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Stylized facts 1: volatility clustering



Simulating long range financial data

Stylized facts 2: heavy tails, g-g-plot

03 02 -0 0 01 02 03




Simulating long range financial data

Stylized facts 3: slow decay of correlations of absolute values
(long term memory (7))
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Simulating long range financial data

Quantifying stylized facts:
Piecewise constant volatility with 76 intervals

[ ]
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Simulating long range financial data

Also take the unconditional volatility

S - Sy

t=1

and the long range return

- (ir@)

t=1

Into account.

In all 6 features of the data will be taken into account, all
quantified.



Simulating long range financial data

Basic model
R(t) = X(t)Z (1)
Model for >(¢) is the main problem.

Default for Z(t) is i.i.d. N(0,1) but allow for heavier or
ighter tails, correlations and dependency of sign of R(t) on
R(t)].




Simulating long range financial data

Piecewise constant log-volatility with 283 intervals (1st
screw)

: WMMW b

(O] sooo = 10000 = 15000 = 20000




Simulating long range financial data

Low frequency trigonometric approximation (2nd screw) and
randomized version

T
(@] 5000 10000 15000 20000

T
(@] 5000 10000 15000 20000



Simulating long range financial data

Add high frequency component (3rd screw) and noise (4th
screw) to the log-volatility.

Multiply volatility by Z(t) with screws for

(i) heaviness of tails (5th screw)

(ii) short term correlations (6th screw)

(iii) dependence of sign(R(t)) on |R(t)| (7th screw)

Adjust the screws if possible so that all six features have high
p-values, at least 0.1. Form of feature matching as in

[ |



Simulating long range financial data

A simulated data set

T
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Simulating long range financial data

Statistics for the simulated data set:

Intervals: 84 as against 76 for S+P

Mean absolute deviation of quantiles: 0.00067

Mean absolute deviation of acf: 0.020

Mean absolute volatility: 0.00773 as against 0.00766

Mean squared volatility: 0.000116 as against 0.000137
Returns: 37.93 as against 27.06

p-values based on 1000 simulations

returns intervals mean abs. vol. mean squ.vol. quantiles acf
0.934 0.531 0.292 0.305 0.977  0.532



Simulating long range financial data

How can one simulate a non-repeatable data set?



What can actually be estimated?

Title of 8.2d of | ]
Copper data. What do we want to estimate?
The amount of copper in the sample of water, say q,.

To do this the statistician often formulates a parametric
model Py, estimates 6 based on the data and then identifies
., With some function of 6, say h(8).



What can actually be estimated?

Models: Gaussian, Laplace and comb.

Symmetric, identify the quantity of copper with the point of
symmetry, namely .

Gives a consistent interpretation over the different models.

[ | data in analytical chemistry are often not
symmetric.



What can actually be estimated?

Log-normal model LN (p,0?).
ldentify amount of copper with A(u, o), h?
Consistency of interpretation across all four models?

Model P, identify quantity of water with T'(P)
T’ mean, median, M-functional, ...

No explicit parametric model.



Choice of regression functional

Dependent variable y, covariates x = (x4, ..., %))
Linear regression model

Y =2'8+¢
Which covariates to include is a question of model choice

Y = 2(S)B(S)+e, Sc{l,.. . k)

Assumptions about the distribution of .

Methods AIC, BIC, FIC (] 1), full
Bayesian etc.



Choice of regression functional

Distribution P

T,,.s(P) = argmings, [ |y~ o(S)'6(S)] dP(y.)

T,,.5(P) = argminys) [ (y— o(S)'8(S))* dP(y.

Discrete y

Tho(P) = argmings) — [ a(y) l(p(a(S)'B(S)/a(v) dP(y. 2

with for example




Choice of regression functional

Quantile regression. Stack loss data of | ],
data set provided by | ], example in

[ |

R output for 95% confidence interval based on rank inversion

coefficients lower bd upper bd
(Intercept) -39.68985507 -53.7946377 -24.49145429
stack.xAir.Flow 0.83188406 0.5090902 1.16750874
stack.xWater.Temp 0.57391304 0.2715066 3.03725908
stack.xAcid.Conc  -0.06086957 -0.2777188  0.01533628

Assume a linear regression model with i.1.d. error term ¢

Y =zx6+¢



Choice of regression functional

The sum of the absolute residuals without Acid.Conc is
43.694.

Sum with Acid.Conc is 42.081, reduction is 1.613.

Highest daily temperatures in Berlin from
01/01/2015-21/01/2015

6,8,6,5,4,3,6,7,9,13.5.8,12,8 10,10,5,4,1,2,2.

Replace Acid.Conc by Cos. Temp.Berlin

Inclusion of Cos.Temp.Berlin reduces sum of absolute
residuals by 1.162

Not much worse than Acid.Conc.



Choice of regression functional

Replace Acid.Conc by 21 i.i.d. N(0,1) random variables.

Repeat say 1000 times. In 21.2% of the cases greater
decrease in the sum of the absolute residuals than that due

to covariate Acid.Conc.
21.2% will be referred to as a p-value, p = 0.212.

Replace all three covariates by i.i.d. N(0,1) p=1.93e — 7



Choice of regression functional

p-values for the 2° = 8 possibilities

functional 0 1 2 3 4 5 6 I
p-value 1.93e-7 1.41e-2 4.90e-4 232e-1 5.02e-9 7.43e-3 2.57e-4 1.00

where j = j(S) = >, g2

A small p-value indicates that the omitted covariates have

some influence on the value of the dependent variate, at least
one is significant

Choose functionals with high p-values such that all included
covariates are significant

Choice is j = 3 corresponds to § = {1, 2}.



Choice of regression functional

For /5 regression simple asymptotic approximations for
p-values

~ 1—nopchis n(Hyn B .’En(S)ﬁqu(S)”% B ”yn _ wnﬁlqu%) B
p(S) = 1—pch q( . — 2.(8) 5O 2 k k(S)) .

where 5|Sq(8) = TgQ,S(Pn) and 5|Sq = Tg%gf(Pn) with
Sr={1,....k}



Non-significance regions

The ‘Stack-Loss' data are

42.37.37.28,18,18,19,20, 15, 14,14, 13,11,12.8,7,8,8.9, 15, 15

with median 15. The sum of the absolute deviations from
the median is 145.

The non-significance region is defined as those m such that
the difference between 37 |stack.loss; — m| and 145 is of
the same order as that which can be obtained by regressing
the dependent variable on random noise, that is, the
difference is not significant




Non-significance regions

Let ql1(c, m) denote the a-quantile of the random variable

21 21
E stack.loss; — m/| — irgf E stack.loss; — m — bZ,].
i=1 i=1

The non-significance region is defined as

N S (stack.loss, median, o)

21 21
= {m : Z stack.loss; — m| — Z stack.loss; — 145] < qll(a,m)} :



Non-significance regions

This can be calculated using simulations and gives

NS (stack.loss, median, 0.95) = (11.94, 18.47)

which may be compared with the 0.95-confidence interval
111, 18] based on the order statistics.

Covering properties? o = 0.95

N(0,1)

C(0,1)

Xi

Pois(4)

n

in.reg.

rank

in.reg.

rank

in.reg.

rank

in.reg.

rank

10
0.940 1.512
0.968 2.046
0.960 3.318
0.978 5.791
0.944 1.368
0.982 2.064
0.934 1.918
0.996 3.943

20
0.954 1.040
0.968 1.198
0.956 1.670
0.950 1.850
0.936 0.877
0.958 1.086
0.925 0.993
0.964 2.342

50
0.948 0.643
0.970 0.767
0.960 0.958
0.968 1.069
0.932 0.550
0.970 0.675
0.926 0.288
0.997 1.573

100
0.942 0.464
0.964 0.530
0.952 0.629
0.964 0.700
0.942 0.396
0.968 0.452
0.938 0.071
1.000 1.085

(2)



Non-significance regions

Asymptotics. Y; i.i.d. with median m and density f

med(Y ) — \/

qchisq(a, 1)

4f(m)3n ’

med(Y ) + \/

qchisq(a, 1)

4f(m)?*n

Method does not require an estimate of f(m).




Non-significance regions

Requires linear regression model with true parameter values.
Covering frequencies and average interval lengths for data
generated according to

Y = 81+ 085 Air.Flow+ B3-Water. Temp—+ B4- Acid.Conc+¢

with 8;,7 = 1,...,4 the ¢; estimates and different
distributions for the error term: o = 0.95.

5y B3 Ba
residuals in.reg. 0.944 0.265 0.982 0.682 0.998 0.248
rank  0.976 0.390 0.970 1.205 0.970 0.273
Normal in.reg. 0.954 0.381 0.946 1.042 0.964 0.442
rank 0.974 0.435 0.956 1.208 0.962 0.542
Laplace in.reg. 0.953 0.501 0.959 1.375 0.952 0.580
rank  0.966 0.594 0.959 1.697 0.960 0.761
Cauchy in.reg. 0.928 1.467 0.942 4.052 0.936 1.731
rank  0.936 1.948 0.946 5.676 0.942 2.984



An attitude of mind

D. W. Muller, Heidelberg

distanced rationality. By this we mean an atti-
tude to the given, which s not governed by any possible
or imputed immanent laws but which confronts it with
draft constructs of the mind in the form of models, hy-
potheses, working hypotheses, definitions, conclusions,
alternatives, analogies, so to speak from a distance, in

the manner of partial, provisional, approrimate knowl-
edge.

(Thesen zur Didaktik der Mathematik)
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