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Part I : Overview

 Problem: posterior inference on countably infinite 
Continuous Time Markov Chains (CTMCs) 

 Motivations: phylogenetic inference under evolutionary 
models with random dependencies across sites

 Proposed method:

 Proposals based on supermartingales on combinatorial 
potentials

 Weights given by exponentiation of random matrices
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Slipped strand mispairing (SSMs)

Levinson ’87

Example of Non-local Evolutionary Events

Slipped Strand Mispairing (SSM)
An example from Levinson ’87

Replication continues. Inserting TA repeat unit:
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Example of Non-local Evolutionary Events

Slipped Strand Mispairing (SSM)
An example from Levinson ’87

Normal pairing during DNA replication:
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Normal pairing 
during DNA 
replication

SSM:
Example of 

insertion of an 
extra TA 

repeat
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SSMs on a tree
Example of Non-local Evolutionary Events

An Example of Evolutionary Events
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String-valued branching process:
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SSMs on a branch
Example of Non-local Evolutionary Events

An Example of Evolutionary Events

TA C

SSM insertion: (G T)

TA CG

TG C

TG CTG

Point insertion: A

TG CTG A

CTG A
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A Ending sequence

Starting sequence0
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1 Point deletion: G
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2 Point mutation: A->G
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SSMs and phylogenetic inference

 Potential of SSM in phylogenetics:

 Interactions between SSMs and point mutations adds 
constrains---this can help resolving trees and alignments

 Very frequent in neutral regions (e.g. plant introns)

 This potential has not been exploited yet

 Reason: inference is computationally challenging
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Computational problem

 Our application (phylogenetic tree inference) requires 
SMC/PMCMC samplers...

 but the main ideas can be explained in a simpler 
setup:

 Computing a marginal transition probability,

 using importance sampling
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Marginal transition probability
Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M

Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.
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X1 = x

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i )). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

2

=

X2

XN = y

t
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Parameters: example
Model: String-valued Continuous Time Markov Chain

An Example of λ(x) and J(x → ·)
The rate of departing from x: λ(x)

λ(x) = nθsub + λpt + nµpt + λSSM + f(x)µSSM

n: length of x; f(x): the number of valid SSM deletion locations.

The jumping distribution: J(x → ·)
Mutation type from x to x′

J(x → x′) = 1
λ(x)






θsub Point substitution
λpt

n+1 Point insertion
µpt Point deletion
λSSM
f(x) SSM insertion
µSSM SSM deletion,
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where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law
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1, . . . , X|x∗|

= x∗
|x∗||E)
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∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(
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i
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∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i )). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X
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2
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i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i )). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

2

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
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where (N = n) = (
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i=1 Hi < T ≤
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∑n
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,
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i )). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).
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2

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i )). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

ν : X × FX → [0, 1]

νx({x′})

2

Note: this is 
explosion free 

(always assumed 
today)
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Parameters: example
Model: String-valued Continuous Time Markov Chain

An Example of λ(x) and J(x → ·)
The rate of departing from x: λ(x)

λ(x) = nθsub + λpt + nµpt + λSSM + f(x)µSSM

n: length of x; f(x): the number of valid SSM deletion locations.

The jumping distribution: J(x → ·)
Mutation type from x to x′

J(x → x′) = 1
λ(x)






θsub Point substitution
λpt

n+1 Point insertion
µpt Point deletion
λSSM
f(x) SSM insertion
µSSM SSM deletion,
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where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i )). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper
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where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law
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1, . . . , X|x∗|

= x∗
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where (N = n) = (
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Now,
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∑n−1
i=1 Hi < T ≤
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i )). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
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2 Notation for paper

X

P(XN = y|X1 = x)

Xi+1|Xi ∼ νXi

Hi ∼ Exp(λ); Hi = Ti − Ti−1

λ : X → (0,∞)

ν : X × FX → [0, 1]
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2

Note: this is 
explosion free 

(always assumed 
today)

Note: 
unbounded rate 

function
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Related work

 Finite case: efficient exact and approximate exponentiation and 
estimation of rate matrices (Albert 1962; Asmussen et al 1996; 
Hobolth et al. 2005; Tataru et al. 2011; inter alia)

 When the rate function is bounded: Uniformization (Jensen 
1953; Hobolth et al. 2009; inter alia), more recent jump-diffusion 
inference schemes using thinning for the discrete part (Casella 
et al. 2011, Murray Pollock’s talk)

 MCMC approaches (Rao et al. 2011)

 Work on countable spaces based on forward simulation (Saeedi 
et al. 2011, Läubli 2011)

 Birth-death processes (Crawford et al. 2011; inter alia)
samedi 22 septembre 2012



Proposed method: notation

State space: list of visited states between end points

Marginalized: transition times

|x∗|∏

i=1

νx∗
i
({x∗

i+1})P

X = (X1, X2, . . . , XN )

3

Target distribution:

|x∗|∏

i=1

νx∗
i
({x∗

i+1})P

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

3

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π(x∗) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

3

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

=
P (X = x∗|X1 = x)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X )

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X )

3
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Obtaining the marginal transition probability

Marginal transition obtained from the estimator of Z

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

=
P (X = x∗|X1 = x)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X )

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X )

3

}
}

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

=
P (X = x∗|X1 = x)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X )

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X )

3

αy
x = max{α, ν↓yx (X )}

α >
1

2

E ∼ β





−λ(X1) λ(X1)
−λ(X2) λ(X2)

−λ(XN ) λ(XN )





γ(x∗) Z

4

αy
x = max{α, ν↓yx (X )}

α >
1

2

E ∼ β





−λ(X1) λ(X1)
−λ(X2) λ(X2)

−λ(XN ) λ(XN )





γ(x∗) Z

4
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Proposal

Natural choice: Forward simulation

The space is infinite ⇒ positive probability of not reaching y

Notation: 

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

3

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

3
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Solution: introduce potentials ρy

 Functions on the state space

 Assume: ρy(x) = 0   iff   x = y

 Dependency on the length to end point also possible

Example: Levenshtein edit distance

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

3

ρ’ACTG’(‘CGG’) = min number of point insertion, deletion, subst.
= 2
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Using the potentials

 If for all x ≠ y:

 For ρ = Levenshtein, this holds because for x ≠ y there 
is always a string z reached in one operation and 
closer (or equal) to y

 Then we can build      such that:

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

3

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

P̃(N < ∞) = 1

3

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↑yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

3
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Construction

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
> 0

P̃

P̃(N < ∞) = 1

ν↓yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .
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︸ ︷︷ ︸
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λ(x∗
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∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn
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1− ν↓yx (X )
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Notation: Proposal restriced on states decreasing the potential:
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=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,
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n=|x∗|times
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1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
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∗
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3Example: for ρ = Levenshtein can pick  

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )
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x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (x)

∣∣∣ Xn = x
)
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P̃(N < ∞) = 1
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n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

ν̃x = αy
x

ν↓yx
ν↓yx (X )

+ (1− αy
x)

νx − ν↓yx
1− ν↓yx (X )

αy
x = max{α, ν↓yx (X )}

α >
1
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3
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Multiple excursions

Paths generated by      stop as soon as they hit y

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

3

This is not necessarily the case under 

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

P̃(N < ∞) = 1

ν↑yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

3

Solution: first sample a number of excursions E from a 
hyper-parameter distribution 

x
y

x
y E = 2

αy
x = max{α, ν↓yx (X )}

α >
1

2

E ∼ Geo(β)





−λ(X1) λ(X1)
−λ(X2) λ(X2)

−λ(XN ) λ(XN )





γ(x∗) Z

4
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Proposal hyper-parameters

 How to set α, β ?
 Optimal choice depends on the process and on t

 We use an ensemble of kernels with different 
combinations of α, β, ranging over several magnitudes

 The particles produced by the members of this ensemble 
compete; the weights and resampling naturally do selection

 Easy to justify with an auxiliary variable construction
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Weights

Integrating the holding times:

 High dimensional integral
 Results on convolution of exponential?

 Not directly applicable
 Expensive when rates have multiplicities 

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

P̃(N < ∞) = 1

ν↑yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

3

Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M

Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.

0 T
1

T
2

T
3

Branch length

Strings

TA CGx
1

TA Cx
2

TG Cx
3

TG CTGx
4

TG CTG Ax
5

CTG Ax
6

T
4

T
5

T
6
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X1 = x

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i )). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

2

=

X2

XN = y

t
H3
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Reduction to a matrix exponential

...

Idea: construct a finite rate matrix Q on the fly, for each particle

Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M

Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.
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X1 = x

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
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Now,
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|x∗|)
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=
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i=1 νx∗
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({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i )). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

2

=

X2

XN = y

t
H3

For each state visited in 
X, build an artificial state 

(with multiplicities)
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X1 = x

where T : (X × R+)∞ → X gives the state at T (overloading).
Model: Hi|Xi ∼ Expd(λ(Xi)), Xi|Xi−1 ∼ νXi−1 where λ : X → R+ is a rate

function and ν· is a jump kernel, the two parameters of the model.
Let also N : (R+)∞ → N denote the number of states visited before T

(counting multiplicities).
We will sample according to the law

π(x∗) = P(N = |x∗|, X1 = x∗
1, . . . , X|x∗|

= x∗
|x∗||E)

where (N = n) = (
∑n−1

i=1 Hi < T ≤
∑n

i=1 Hi).
Now,

π(x∗) =
1E(x∗)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi, X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)

P(Xe|Xs)

=
1E(x∗)P(X1 = x∗

1, . . . , X|x∗| = x∗
|x∗||Xs)P(

∑n−1
i=1 Hi < T ≤

∑n
i=1 Hi|X1 = x∗

1, . . . , X|x∗| = x∗
|x∗|)

P(Xe|Xs)

=
1E(x∗)(

∏n−1
i=1 νx∗

i
({x∗

i+1))P(
∑n−1

i=1 Zi < T ≤
∑n

i=1 Zi)

P(Xe|Xs)
,

where Zi ∼ Expd(λ(x∗
i )). We therefore build a IS algorithm with unormalized

density given by the numerator of the above equation. The average of the
unnormalized particles gives an estimate for the transition probability P(Xe|Xs).

2 Notation for paper

X

2

=

X2

XN = y

t
H3

For each state visited in 
X, build an artificial state 

(with multiplicities) There will be positive rates 
only between consecutive 

artificial states
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Reduction to a matrix exponential

...

Construct Q using the rate function parameter as follows:
E ∼ β





−λ(X1) λ(X1)
−λ(X2) λ(X2)

−λ(XN ) λ(XN )





4

0
0

0
...
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Reduction to a matrix exponential

...

Take the matrix exponential E ∼ β





−λ(X1) λ(X1)
−λ(X2) λ(X2)

−λ(XN ) λ(XN )





4

0
0

0
...M = exp

Value of the integral: given by entry M1,N-1

X = (X1, X2, . . . , XN )

T = (T1, T2, . . . , TN )

π({x∗}) = P(X = x∗|X1 = x,XN = y)

x∗ ∈ X ∗

=
1
(
x∗
|x∗| = y

)
P
(
X = x∗,

∑n−1
i=1 Hi < t ≤

∑n
i=1 Hi|X1 = x

)

P(XN = y|X1 = x)

P̃(X = x∗)

P̃(X = x∗) = P(X = x∗|X1 = x)

ρy : X → N

P
(
ρy (Xn+1) < ρy (Xn)

∣∣∣ ρy (Xn) > 0
)
> 0

P̃

P̃(N < ∞) = 1

ν↑yx (A) = νx (A ∩ {z : ρy(x) > ρy(z)})

P

∫
. . .

∫

︸ ︷︷ ︸
n=|x∗|times

λ(x∗
1) exp(−h1λ(x

∗
1)) . . .λ(x

∗
n−1) exp(hn−1x

∗
n−1)(1−exp(hnx

∗
n)) dh1 . . . dhn

3

=
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Numerical issues

 If all rates are distinct (in particular, same state not 
visited twice): exponentiation through diagonalisation 
is possible and fast

 Using sparsity: inversion is quadratic
 Can do the computation only for one entry of M

 If rates are not distinct: above method fails (Q does not 
have a complete set of linearly indep. eigenvectors)

 Can use Jordan-Chevalley decomposition (Q = A + N, A 
diag., N nilpotent)

 Simpler: Padé series + scaling & squaring method
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Experiments

 Numerical validations of consistency in # of particles
 All the ideas presented today tested on 2 (of the rare) 

countably infinite CTMCs with closed form for the marginals
 Linear birth death process 
 Poisson Indel Process

 Experiments on phylogenetic inference for the 
proposal presented today but without integrated 
holding times
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Experiments

 Task: reconstruction of tree topologies and branch 
lengths (error measured using tree metrics)

 10 taxa at the leaves

 Example of simulated data:

 Alignment not given

Experiments

A Subset of Simulated Data

Setting: SSM length is 3; θsub = 0.03; λpt = 0.05; µpt = 0.2; λSSM = 2.0; µSSM = 2.0
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Preliminary results
Experiments

Performance on Estimating Trees
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Tree inference using correct parameters:

(replications on 10 random trees & datasets)
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Scaling up to large datasets

 Large number of particles needed
 Large phylogenetic trees
 Mixing proposals with different hyper-parameter values α, β

 Motivation for parallel architectures
 Revised Moore’s law: parallel architectures
 Each particle is large

 particles are forests
 need to keep one string for each tree in forest
 ‘worst’ case: one string = one genome
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Part II : Entangled Monte Carlo (EMC)

 Goal:
 Do parallelization in such as way that the result is 

equivalent to running everything on a (hypothetical) single 
machine

 Complementary approach: modify SMC
 Éric Moulines’ talk on Island models from yesterday 
 Pierre Jacob’s talk on pairwise resampling scheme; this 

afternoon
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Stochastic maps

 A way to decouple randomness and state 
dependencies

 Consider an arbitrary kernel:
 Stochastic map:              -valued r.v. F such that 

 Example: alternate view on MCMC 
 Sample F1, F2, ... i.i.d.
 Pick x0  arbitrarily 
 Return:

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

and challenging. In the case of the SMC sampler from [2], the cost of transmitting one particle is
proportional to the product of the number of species under study, times the number of sites in the
sequences, times the number of characters possible at each site.

We also introduce the algorithms needed to do these reconstructions efficiently while maintaining a
distributed representation of the particle genealogies. The main algorithm is based on an alternative
representation of simulation borrowed from the field of perfect simulation [3]. We demonstrate
that using our algorithms, the computational cost involved in these reconstructions is negligible
compared to the corresponding gains obtained from parallelization. While we describe EMC in the
context of SMC simulation, it can accommodate any MCMC proposal. This is done by using the
construction of artificial backward kernels [4, 5], which we review in the next section.

There is a large literature on parallelization of both MCMC and SMC algorithms. For SMC, most
of the work has been on parallelization of the proposal steps [6], which is sufficient in setups such
as GPU parallelization where communication between computing units is fast and cheap. However
in generic clusters or peer-to-peer architectures, we argue that our more efficient parallelization of
the resampling step is advantageous. For MCMC, a large fraction of the literature assumes that
the kernel takes the form of local Gibbs update in a graphical model, and under certain conditions,
several blocks of variables can be updated in parallel. However the communication cost can be high
in highly connected graphical models as state information needs to be synchronized. Moreover, the
method is restricted to certain kinds of Gibbs kernel [7, 8, 9].

2 Background

We will denote the target distribution by π, which in a Bayesian problem would correspond to a
posterior distribution. The main goal is to compute the integral under π of one or more test functions
h, which we denote by π(h) for short. In a Bayesian problem, this arises as the posterior expectation
needed when computing a Bayes estimator. We will denote the state space by S , i.e. h : S → R,
π : FS → [0, 1], where (S,FS) is a probability space.

2.1 Stochastic maps

An important concept used in the construction of our algorithms is the idea of a stochastic map. We
start by reviewing stochastic maps in the context of a Markov chain, where it was first introduced to
design perfect simulation algorithms.

Let T : S × FS → [0, 1] denote the transition kernel of a Markov chain (generally constructed
by first proposing and then deciding whether to move or not using a Metropolis-Hastings (MH)
ratio). A stochastic map is an equivalent view of this chain, pushing the randomness into a list
of random transition functions. Formally, it is a (S → S)-valued random variable F such that
T (s,A) = P(F (s) ∈ A) for all state s ∈ S and event A ∈ FS . Concretely, these maps are
constructed by using the observation that T is typically defined as a transformation t(u, s) with
u ∈ [0, 1]. The most fundamental example is the case where t is based on the inverse cumulative
distribution method. We can then write F (s) = t(U, s) for a uniform random variable U on [0, 1].

With this notation, we get a non-standard, but useful way of formulating MCMC algorithms. First,
sample N stochastic maps F1, F2, . . . , FN , independently and identically. Second, to compute the
state of the chain after n transitions, simply return F1(F2(. . . (Fn(x0)) . . . )) = F1◦· · ·◦Fn(x0), for
an arbitrary start state x0 ∈ S, n ∈ {1, 2, . . . , N}. This representation decouples the dependencies
induced by random number generation from the dependencies induced by operations on the state
space. In MCMC, the latter are still not readily amenable to parallelization, and this is the motivation
for using SMC as the foundation of our method. We will show in Section 3 that SMC algorithms
can also be rewritten using stochastic maps.

2.2 SMC algorithms

Before going over our parallel version of SMC and to keep the exposition self-contained, we review
here the notation and description of standard, serial SMC algorithms from [10], which in turn is
based on the SMC framework of [11, 4, 5]. The samplers used in this paper are defined using
a proposal ν : S × FS → [0, 1]. Here, S can be an enlarged version of the target space, with
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and challenging. In the case of the SMC sampler from [2], the cost of transmitting one particle is
proportional to the product of the number of species under study, times the number of sites in the
sequences, times the number of characters possible at each site.

We also introduce the algorithms needed to do these reconstructions efficiently while maintaining a
distributed representation of the particle genealogies. The main algorithm is based on an alternative
representation of simulation borrowed from the field of perfect simulation [3]. We demonstrate
that using our algorithms, the computational cost involved in these reconstructions is negligible
compared to the corresponding gains obtained from parallelization. While we describe EMC in the
context of SMC simulation, it can accommodate any MCMC proposal. This is done by using the
construction of artificial backward kernels [4, 5], which we review in the next section.

There is a large literature on parallelization of both MCMC and SMC algorithms. For SMC, most
of the work has been on parallelization of the proposal steps [6], which is sufficient in setups such
as GPU parallelization where communication between computing units is fast and cheap. However
in generic clusters or peer-to-peer architectures, we argue that our more efficient parallelization of
the resampling step is advantageous. For MCMC, a large fraction of the literature assumes that
the kernel takes the form of local Gibbs update in a graphical model, and under certain conditions,
several blocks of variables can be updated in parallel. However the communication cost can be high
in highly connected graphical models as state information needs to be synchronized. Moreover, the
method is restricted to certain kinds of Gibbs kernel [7, 8, 9].

2 Background

We will denote the target distribution by π, which in a Bayesian problem would correspond to a
posterior distribution. The main goal is to compute the integral under π of one or more test functions
h, which we denote by π(h) for short. In a Bayesian problem, this arises as the posterior expectation
needed when computing a Bayes estimator. We will denote the state space by S , i.e. h : S → R,
π : FS → [0, 1], where (S,FS) is a probability space.

2.1 Stochastic maps

An important concept used in the construction of our algorithms is the idea of a stochastic map. We
start by reviewing stochastic maps in the context of a Markov chain, where it was first introduced to
design perfect simulation algorithms.

Let T : S × FS → [0, 1] denote the transition kernel of a Markov chain (generally constructed
by first proposing and then deciding whether to move or not using a Metropolis-Hastings (MH)
ratio). A stochastic map is an equivalent view of this chain, pushing the randomness into a list
of random transition functions. Formally, it is a (S → S)-valued random variable F such that
T (s,A) = P(F (s) ∈ A) for all state s ∈ S and event A ∈ FS . Concretely, these maps are
constructed by using the observation that T is typically defined as a transformation t(u, s) with
u ∈ [0, 1]. The most fundamental example is the case where t is based on the inverse cumulative
distribution method. We can then write F (s) = t(U, s) for a uniform random variable U on [0, 1].

With this notation, we get a non-standard, but useful way of formulating MCMC algorithms. First,
sample N stochastic maps F1, F2, . . . , FN , independently and identically. Second, to compute the
state of the chain after n transitions, simply return F1(F2(. . . (Fn(x0)) . . . )) = F1◦· · ·◦Fn(x0), for
an arbitrary start state x0 ∈ S, n ∈ {1, 2, . . . , N}. This representation decouples the dependencies
induced by random number generation from the dependencies induced by operations on the state
space. In MCMC, the latter are still not readily amenable to parallelization, and this is the motivation
for using SMC as the foundation of our method. We will show in Section 3 that SMC algorithms
can also be rewritten using stochastic maps.

2.2 SMC algorithms

Before going over our parallel version of SMC and to keep the exposition self-contained, we review
here the notation and description of standard, serial SMC algorithms from [10], which in turn is
based on the SMC framework of [11, 4, 5]. The samplers used in this paper are defined using
a proposal ν : S × FS → [0, 1]. Here, S can be an enlarged version of the target space, with
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and challenging. In the case of the SMC sampler from [2], the cost of transmitting one particle is
proportional to the product of the number of species under study, times the number of sites in the
sequences, times the number of characters possible at each site.

We also introduce the algorithms needed to do these reconstructions efficiently while maintaining a
distributed representation of the particle genealogies. The main algorithm is based on an alternative
representation of simulation borrowed from the field of perfect simulation [3]. We demonstrate
that using our algorithms, the computational cost involved in these reconstructions is negligible
compared to the corresponding gains obtained from parallelization. While we describe EMC in the
context of SMC simulation, it can accommodate any MCMC proposal. This is done by using the
construction of artificial backward kernels [4, 5], which we review in the next section.

There is a large literature on parallelization of both MCMC and SMC algorithms. For SMC, most
of the work has been on parallelization of the proposal steps [6], which is sufficient in setups such
as GPU parallelization where communication between computing units is fast and cheap. However
in generic clusters or peer-to-peer architectures, we argue that our more efficient parallelization of
the resampling step is advantageous. For MCMC, a large fraction of the literature assumes that
the kernel takes the form of local Gibbs update in a graphical model, and under certain conditions,
several blocks of variables can be updated in parallel. However the communication cost can be high
in highly connected graphical models as state information needs to be synchronized. Moreover, the
method is restricted to certain kinds of Gibbs kernel [7, 8, 9].

2 Background

We will denote the target distribution by π, which in a Bayesian problem would correspond to a
posterior distribution. The main goal is to compute the integral under π of one or more test functions
h, which we denote by π(h) for short. In a Bayesian problem, this arises as the posterior expectation
needed when computing a Bayes estimator. We will denote the state space by S , i.e. h : S → R,
π : FS → [0, 1], where (S,FS) is a probability space.

2.1 Stochastic maps

An important concept used in the construction of our algorithms is the idea of a stochastic map. We
start by reviewing stochastic maps in the context of a Markov chain, where it was first introduced to
design perfect simulation algorithms.

Let T : S × FS → [0, 1] denote the transition kernel of a Markov chain (generally constructed
by first proposing and then deciding whether to move or not using a Metropolis-Hastings (MH)
ratio). A stochastic map is an equivalent view of this chain, pushing the randomness into a list
of random transition functions. Formally, it is a (S → S)-valued random variable F such that
T (s,A) = P(F (s) ∈ A) for all state s ∈ S and event A ∈ FS . Concretely, these maps are
constructed by using the observation that T is typically defined as a transformation t(u, s) with
u ∈ [0, 1]. The most fundamental example is the case where t is based on the inverse cumulative
distribution method. We can then write F (s) = t(U, s) for a uniform random variable U on [0, 1].

With this notation, we get a non-standard, but useful way of formulating MCMC algorithms. First,
sample N stochastic maps F1, F2, . . . , FN , independently and identically. Second, to compute the
state of the chain after n transitions, simply return F1(F2(. . . (Fn(x0)) . . . )) = F1◦· · ·◦Fn(x0), for
an arbitrary start state x0 ∈ S, n ∈ {1, 2, . . . , N}. This representation decouples the dependencies
induced by random number generation from the dependencies induced by operations on the state
space. In MCMC, the latter are still not readily amenable to parallelization, and this is the motivation
for using SMC as the foundation of our method. We will show in Section 3 that SMC algorithms
can also be rewritten using stochastic maps.

2.2 SMC algorithms

Before going over our parallel version of SMC and to keep the exposition self-contained, we review
here the notation and description of standard, serial SMC algorithms from [10], which in turn is
based on the SMC framework of [11, 4, 5]. The samplers used in this paper are defined using
a proposal ν : S × FS → [0, 1]. Here, S can be an enlarged version of the target space, with

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

and challenging. In the case of the SMC sampler from [2], the cost of transmitting one particle is
proportional to the product of the number of species under study, times the number of sites in the
sequences, times the number of characters possible at each site.

We also introduce the algorithms needed to do these reconstructions efficiently while maintaining a
distributed representation of the particle genealogies. The main algorithm is based on an alternative
representation of simulation borrowed from the field of perfect simulation [3]. We demonstrate
that using our algorithms, the computational cost involved in these reconstructions is negligible
compared to the corresponding gains obtained from parallelization. While we describe EMC in the
context of SMC simulation, it can accommodate any MCMC proposal. This is done by using the
construction of artificial backward kernels [4, 5], which we review in the next section.

There is a large literature on parallelization of both MCMC and SMC algorithms. For SMC, most
of the work has been on parallelization of the proposal steps [6], which is sufficient in setups such
as GPU parallelization where communication between computing units is fast and cheap. However
in generic clusters or peer-to-peer architectures, we argue that our more efficient parallelization of
the resampling step is advantageous. For MCMC, a large fraction of the literature assumes that
the kernel takes the form of local Gibbs update in a graphical model, and under certain conditions,
several blocks of variables can be updated in parallel. However the communication cost can be high
in highly connected graphical models as state information needs to be synchronized. Moreover, the
method is restricted to certain kinds of Gibbs kernel [7, 8, 9].

2 Background

We will denote the target distribution by π, which in a Bayesian problem would correspond to a
posterior distribution. The main goal is to compute the integral under π of one or more test functions
h, which we denote by π(h) for short. In a Bayesian problem, this arises as the posterior expectation
needed when computing a Bayes estimator. We will denote the state space by S , i.e. h : S → R,
π : FS → [0, 1], where (S,FS) is a probability space.

2.1 Stochastic maps

An important concept used in the construction of our algorithms is the idea of a stochastic map. We
start by reviewing stochastic maps in the context of a Markov chain, where it was first introduced to
design perfect simulation algorithms.

Let T : S × FS → [0, 1] denote the transition kernel of a Markov chain (generally constructed
by first proposing and then deciding whether to move or not using a Metropolis-Hastings (MH)
ratio). A stochastic map is an equivalent view of this chain, pushing the randomness into a list
of random transition functions. Formally, it is a (S → S)-valued random variable F such that
T (s,A) = P(F (s) ∈ A) for all state s ∈ S and event A ∈ FS . Concretely, these maps are
constructed by using the observation that T is typically defined as a transformation t(u, s) with
u ∈ [0, 1]. The most fundamental example is the case where t is based on the inverse cumulative
distribution method. We can then write F (s) = t(U, s) for a uniform random variable U on [0, 1].

With this notation, we get a non-standard, but useful way of formulating MCMC algorithms. First,
sample N stochastic maps F1, F2, . . . , FN , independently and identically. Second, to compute the
state of the chain after n transitions, simply return F1(F2(. . . (Fn(x0)) . . . )) = F1◦· · ·◦Fn(x0), for
an arbitrary start state x0 ∈ S, n ∈ {1, 2, . . . , N}. This representation decouples the dependencies
induced by random number generation from the dependencies induced by operations on the state
space. In MCMC, the latter are still not readily amenable to parallelization, and this is the motivation
for using SMC as the foundation of our method. We will show in Section 3 that SMC algorithms
can also be rewritten using stochastic maps.

2.2 SMC algorithms

Before going over our parallel version of SMC and to keep the exposition self-contained, we review
here the notation and description of standard, serial SMC algorithms from [10], which in turn is
based on the SMC framework of [11, 4, 5]. The samplers used in this paper are defined using
a proposal ν : S × FS → [0, 1]. Here, S can be an enlarged version of the target space, with
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Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H ) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G ) {Section B}
8: Ir ← allocate(ρ, Ir−1,H ) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F )
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14
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3

Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

Sample a global collection of i.i.d. stochastic maps for both the 
proposal { Fi  } and resampling steps { Gi  }

Assume the global collection is transmitted to all machines 
(O(1) if pseudo-random)
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Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H ) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G ) {Section B}
8: Ir ← allocate(ρ, Ir−1,H ) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F )
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation
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avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-

4

Sample a global collection of i.i.d. stochastic maps for both the 
proposal { Fi  } and resampling steps { Gi  }

Assume the global collection is transmitted to all machines 
(O(1) if pseudo-random)

Each machine m 
is responsible of a 

subset of the 
particles
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Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H ) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G ) {Section B}
8: Ir ← allocate(ρ, Ir−1,H ) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F )
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation
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avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-
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Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H ) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G ) {Section B}
8: Ir ← allocate(ρ, Ir−1,H ) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F )
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation
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avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-
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Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H ) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G ) {Section B}
8: Ir ← allocate(ρ, Ir−1,H ) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F )
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation
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avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-
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Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H ) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G ) {Section B}
8: Ir ← allocate(ρ, Ir−1,H ) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F )
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation
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avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-
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Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H ) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G ) {Section B}
8: Ir ← allocate(ρ, Ir−1,H ) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F )
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
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avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-
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Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H ) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G ) {Section B}
8: Ir ← allocate(ρ, Ir−1,H ) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F )
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation
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Figure 2: Illustration of compact
particles (blue) and concrete parti-
cles (black).

avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-
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Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H ) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G ) {Section B}
8: Ir ← allocate(ρ, Ir−1,H ) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F )
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation
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avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-
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Algorithm 1 : EMC(α, ν, h, I0)
1: (F ,G ,H ) ← entangle(ν) {Section 3.3}
2: s ← empty-hashtable
3: ρ ← empty-genealogy
4: init(s, w)
5: for r ∈ {1, . . . , R} do
6: exchange(wr−1)
7: resample(wr−1, ρ, Ir−1,G ) {Section B}
8: Ir ← allocate(ρ, Ir−1,H ) {Section 3.1}
9: for i ∈ Ir do

10: s(i) ← reconstruct(s, ρ, i,F )
{Algorithm 2}

11: wr,k(i) ← α(s(ρ(i)), s(i))
12: end for
13: end for
14: process(s, w, h)

Algorithm 2 : reconstruct(s, ρ, i,F = {Fi : i ∈ I})
1: F ← I
2: while (s(i) = nil) do
3: F ← F ◦ Fi

4: i ← ρ(i)
5: end while
6: return F (s(i))

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation
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avoiding communication. However, this rarely happens in practice. Instead, a small number of
particles is often resampled a large number of times while many others have no offsprings. This
means that Ir can radically change across iterations. This raises an important question: how can a
machine compute a proposal if the particle from which to propose was itself computed by a different
machine?

The naive approach would consist in transmitting the ‘missing’ particles over the network. However,
even if basic optimizations are used (for example sending particles with multiplicities only once),
we show in Section 4 that this transfer can be slow in practice. Instead, our approach relies on a
combination of the stochastic maps with the particle genealogy to reconstruct the particle. Let us
see what this means in more detail, by going over the key steps of EMC, shown Algorithm 1.

First, note that the resampling step in SMC algorithms induces a one-to-many relationship between
the particle in generation r and those in generation r − 1. This relationship is called the particle ge-
nealogy, illustrated in Figure 1. Formally, a genealogy is a directed graph where nodes are particles
sr,k, r ∈ {1, . . . , R}, k ∈ {1, . . . ,K}, and where node sr−1,k is deemed the parent of node sr,k′ if
the latter was obtained by resampling s̃r−1,k′ = sr−1,k followed by proposing sr,k′ from s̃r−1,k′ .

Suppose for now that each machine kept track of the full genealogy, in the form of a hashtable
ρ : I → I of parent pointers. Each machine also maintains a hashtable holding the particles held in
memory in the reference machine s : I → S ∪ {nil} (the value nil represent a particle not currently
represented explicitly in the reference machine). Algorithm 2 shows that this information, s, ρ,F , is
sufficient to instantiate any query particle (indexed by i in the pseudo-code). Note that the procedure
reconstruct is guaranteed to terminate: in the procedure init, we set s(i(0, k)) to ⊥, and the weights
uniformly, hence ⊥ is an ancestor of all particles.

This high-level description raises several questions. How can we efficiently store and retreive the
stochastic maps? Can we maintain a sparse view of the genealogical information ρ, s to keep space
requirements low? Finally, how can we do resampling and particle allocation in this distributed
framework? We will cover these issues in the remaining of this section, describing at the same time
how the procedures allocate, resample and exchange are implemented.

3.1 Allocation and resampling

In SMC algorithms, the weights are periodically used for resampling the particles, a step also known
as the bootstrapping stage and denoted by resample in Algorithm 4. This is the only stage where
EMC requires communication over the network to be done. In most cases of interest, each machine
can transmit all the individual weights of its particles and to communicate it with every other ma-
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Resampling 

 At resampling, only transmit particle weights

 Genealogy can be updated efficiently from this 
information
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Details

 See NIPS paper:
 Jun, Wang, Bouchard-Côté (2012) NIPS.

 Datastructures the stochastic maps
 Constant storage using pseudo-randomness
 Need random access to the random number: binary trees of 

xor’ing 2 streams of random numbers 

 Allocations schemes: heuristics to minimize the 
amount of  particle transmission
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Experiments
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Figure 3: (a) The speedup factor for the 16S actinobacteria dataset with 100 taxa. (b) The speedup
factor for the 5S actinobacteria dataset with 100 taxa. (c) The speedup factor for the uniform weight
synthetic experiment (see text).
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Figure 4: (a) Total time for particle transfer (in red), total time for EMC (in blue). (b) Sample
generation time including reconstruction time (in black), reconstruction time (in blue), and particle
transfer time (in red) isolated by generation.

The timing results in this section builds on the results from Section 4.3 where we showed that NM

is small compared to N1. Here, we ran SMC algorithm for 100 generations and measured the total
runtime of the EMC algorithm and an SMC algorithm parallelized via explicit particle transfer—
see Figure 4 (a). We fixed the number of particles per machine at 100 and produced a sequence of
experiments by doubling the number of machines and hence the number of particles at each step.
In Figure 4 (b), we focused on the reconstruction time, sample generation time (which includes the
reconstruction time), and the particle transmission time by generation. As expected, the particle
transmission was the bottleneck to the SMC algorithm whereas the reconstruction time was stable,
which verifies that the reconstruction algorithm rarely traced deep.

The total timing result in Figure 4 (a) shows that the overhead arising from increasing the number of
particles (or increasing the number of machines) is much smaller compared to the particle transmis-
sion method. The breakdown time by generation in Figure 4 (b) shows that the particle transmission
time is volatile as it depends on the network latency and throughput. The reconstruction time is
stable as it relies only on the CPU cycles.

5 Discussion

We have introduced EMC, a method to parallelize an SMC algorithm over multiple nodes. The new
method is scalalable over large numbers of machines because it requires only a small amount of data
communication over the network, of size per particle independent of the scale of the inference prob-
lem. We have shown that the algorithm performs very well in practice on a Bayesian phylogenetic
example and our open source Java implementation is available for download at [anonymized].
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 Setup:
 Phylogenetic 
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 100 particles/EC2 

instance

 Comparison: 
 Particle 
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Future directions

 SMC algorithms for inference over countably infinite / 
combinatorial CTMCs

 Using these techniques to remove the bounded jump rate 
assumption in jump-diffusion methods

 New applications:

Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M
Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.
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Model: String-valued Continuous Time Markov Chain

Evolution of strings is denoted by M
Branch length is T = T6.
Strings {Xt : 0 ≤ t ≤ T}; Xt has a countable infinite domain of all possible
molecular sequences.

0 T
1

T
2

T
3

Branch length

Strings

TA CGx
1

TA Cx
2

TG Cx
3

TG CTGx
4

TG CTG Ax
5

CTG Ax
6

T
4

T
5

T
6
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Future directions

 EMC

 Working on another version where only the sum of the 
particle weights is transmitted (using DHT methods)

 Better understanding of when and why the method works 
well
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