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Introduction

We use particle filters [1] to estimate dynamically the time varying

MagnetoEncephaloGraphy and dipole model

Magnetoencephalography (MEG) is a functionalWe use particle filters [1] to estimate dynamically the time varying

parameters of brain activity, modelled with multiple current dipoles,

from MagnetoEncephaloGraphy (MEG) data.

In a previous study [2] a dynamic model was used where current

dipole locations moved according to a random walk. However, such

Magnetoencephalography (MEG) is a functional

imaging technique that measures non-invasively

the magnetic field produced by the neural

currents.

Modern MEG devices contain in between 100 anddipole locations moved according to a random walk. However, such

dynamic model does not reflect the neurophysiological interpretation

of a dipole as the activity of a (static) neural population.

Here we present a new state-space model of evolving dipoles, which

Modern MEG devices contain in between 100 and

500 sensors, each one sampling the magnetic

field every millisecond.

Here we present a new state-space model of evolving dipoles, which

appear and disappear, but whose locations are constant throughout

their lifetime [4]. To conduct inference under this model we propose

a strategy, based on the Resample-Move idea [3], that provides an

effective solution for the stationary dipole model.

In typical MEG experiments, several brain areas activate and

de-activate, with time-varying intensity.

In the dipolar approximation, the electrical current in a small

brain area is modeled by a point source, named current dipole.effective solution for the stationary dipole model. brain area is modeled by a point source, named current dipole.

A current dipole is an applied vector; its neurophysiological

interpretation regards the location as the location of a neural

population, and the strength as the amount of synchronization

of the neurons.

Simulations

Statistical Model

As in [2], we use a state-space model in which the neural current is a

time-varying set of current dipoles. Differently from [2], where the

of the neurons.

Simulations

We generated 100 synthetic data sets containing activity produced

by 1 to 5 sources. Source locations were randomized, but kept 3 cm

apart from each other.

time-varying set of current dipoles. Differently from [2], where the

dipole dynamics was modeled as a random walk in the brain volume,

we explicitly model dipole locations as stationary.
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Sample source configuration apart from each other.

We applied the bootstrap and the resample-move particle filter.

Point estimates were computed from the approximation to the
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Sample source configuration 

and dipole time courses
The neural current is a dipole set

Point estimates were computed from the approximation to the

posterior distiribution provided by the particle filter(s). Mis-

localisation metrics were computed to assess the difference

between the estimated and the true source configurations.
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tN number of dipoles at time t

In our Bayesian setting,

The bootstrap filter was run with 10,000 particles; the resample-

move filter was run with 10,000 particles, as well as with 500

particles, to provide a comparison at the same computational cost.
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In our Bayesian setting,

the prior for the neural

current is given by

particles, to provide a comparison at the same computational cost.

Mis-localisation metrics indicate that the resample-move algorithm

provides a substantial improvement over the bootstrap filter when

applied to make inference for the static dipole model.

The higher conditional likelihood confirms that resample-move
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In the transition 

kernel, new 

dipoles can 

appear, existing The higher conditional likelihood confirms that resample-move

algorithm finds substantially more probability mass than the

bootstrap.
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Conditional Likelihood
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The likelihood function embodies the 

forward model and assumption on the noise 

distribution, here zero-mean Gaussian.
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10,000 bootstrap

We are ultimately interested in the posterior distribution

distribution, here zero-mean Gaussian.
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Algorithm
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Time [ms]Time [ms] Time [ms]

Somatosensory Evoked Fields

We applied the resample-move particle filter – based on

the static dipole model – and (an improved version of) the

Algorithm

Particle filters [1] provide a general and powerful framework for

inference in state-space models. The “standard” particle filters use

importance sampling and resampling (steps 1 and 2 below) to

Resample-Move 

Static Model

Improved bootstrap

Random Walk Model

dSPM

Linear inverse

25 msthe static dipole model – and (an improved version of) the

bootstrap filter – based on the random walk model – to

experimental data recorded during stimulation of the

median nerve.

Visualisation of the posterior probability maps indicate

importance sampling and resampling (steps 1 and 2 below) to

produce samples distributed according to the posterior density;

however, these basic particle filters are not suited for inference on

static parameters.

25 ms

Visualisation of the posterior probability maps indicate

that the static model gathers more information on the

source location with time.

We combined a S.I.R. with a Resample-Move particle filter to avoid

degeneracy of the sample set; the algorithm consists of the

sequential application, at each time t, of three steps:sequential application, at each time t, of three steps:

1. Importance Sampling Importance sampling aims at obtaining

85 ms

The cumulative 

marginal likelihood 

indicates that the 

Cumulative marginal likelihood
 

1. Importance Sampling

Sample N dipole sets (particles)

from a proposal

and assign them weights
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Importance sampling aims at obtaining

samples distributed according to the

posterior; as this is not possible,

importance sampling uses a proposal

distribution and then weights the

samples to correct for this. Thanks to

indicates that the 

static  dipole model 

is a better 

representation of 

the underlying 
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distribution and then weights the

samples to correct for this. Thanks to

the sequential structure of the problem,

sampling and weighting can actually be

performed on the “marginal” state at

time t.

the underlying 

neurophysiological 

processes than the 

random walk model. 20 40 60 80 100
10
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Static Model

Random Walk Model

2. Resampling

),|( 1 ttt bjjq − time t.

Resampling removes particles with low

weights, and concentrates particles in

random walk model.
Time [ms]

ConclusionsResample the weighted particles

to obtain a uniformly weighted

particle set.

weights, and concentrates particles in

the high-probability region of the state

space.

Conclusions

We have presented a new state space model for dynamic inference on current dipole parameters from MEG data. The model reflects the common

neurophysiological interpretation of a current dipole as the activity of a small patch of cortex: dipoles appear and disappear, and dipole locations

3. MCMC Move
This MCMC move makes it possible to

track the static dipole locations. It

works by proposing an updated

neurophysiological interpretation of a current dipole as the activity of a small patch of cortex: dipoles appear and disappear, and dipole locations

are fixed throughout their lifetimes. To compute the model, we have developed a resample-move type algorithm that overcomes the limitations

of bootstrap filtering with our near-static parameters, and maintains diversity in the sample set for reasonable time spans.

Application to real data confirm that the static dipole model is comparatively more supported by the data than the previous random walk model.
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