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The Stochastic filtering Problem The filtering problem

(Ω,F ,P) probability space Z = (X ,Y ) = {(Xt ,Yt), t ≥ 0}
X the signal process - “hidden component”
Y the observation process - “the data” - Yt = f (X , “noise”).

The filtering problem: Find the conditional distribution of the signal Xt given
Yt = σ(Ys, s ∈ [0, t ]), i.e.,

πt (φ) = E[φ(Xt)|Yt ], t ≥ 0, φ ∈B(Rd ).

The model

V = (V i
t )

p
i=1, t ≥ 0}, W = {

(
W i

t
)m

i=1 , t ≥ 0} independent Brownian motions

Xt = X0 +

∫ t

0
f (Xs) ds +

∫ t

0
σ (Xs)dVs

Yt =

∫ t

0
h (Xs) ds + Wt ,
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The Stochastic filtering Problem The Kallianpur-Striebel formula

The process Y becomes a Brownian motion via a change of measure
(Girsanov’s theorem)

dP̃
dP

∣∣∣∣∣
Ft

= Zt
△
= exp

(
−
∫ t

0

m∑
k=1

γk (Xs)dUk
s − 1

2

∫ t

0

m∑
k=1

γk (Xs)
2 ds

)
, t ≥ 0.

Under P̃, Y becomes a Brownian motion independent of X .
The law of X remains unchanged.

The Kallianpur-Striebel formula

πt (φ) =
ρt (φ)

ρt(1),

where

ρt (φ) = Ẽ

[
φ(Xt) exp

(∫ t

0

m∑
k=1

γk (Xs) dY k
s − 1

2

∫ t

0

m∑
k=1

γk (Xs)
2 ds

)∣∣∣∣∣Yt

]
(1)
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The Stochastic filtering Problem The Kallianpur-Striebel formula

Discrete Time Framework

Pierre Del Moral, Arnaud Doucet and Ajay Jasra, Bernoulli Volume 18,
Number 1 (2012), 252-278

The result relies on a ingenious coupling argument. The particle filter with
random resampling times (T n

k )k≥0 is coupled with one with resampling
times (T̄k )k≥0 where (T̄k )k≥0 can be any deterministic times or times that
could depend on the observation process only (and not on the current
state of the particle filter). The authors show that, as n increases, T n

k are
exponentially close to T̄k . Since time runs discreetly, they must be equal
with high probability and the convergence result follows by analyzing the
particle filter with observation dependent resampling times. This
argument cannot be applied in a continuous-time framework. In
continuous time, the corresponding equivalent of T n

k and T̄k can be
different no matter how close they are.

Douc, R. and Moulines, E. (2008). Limit theorems for weighted samples
with applications to sequential Monte Carlo methods. Ann. Statist.
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The Stochastic filtering Problem The algorithm

The approximation will take the form

π n
t =

n∑
j=1

ān
j (t) δvn

j (t)
. ρn

t =
n∑

j=1

an
j (t) δvn

j (t)
.

Time 0.

choose vn
j (0) i.i.d., L

(
vn

j (0)
)
= π0,

πn
0 =

n∑
j=1

1
n
δvn

j (0)
ρn

0 =
n∑

j=1

ρ0(1)
n

δvn
j (0)

.

{T n
k }k∈N be a strictly increasing sequence of predictable stopping times.

Time interval
[
T n

k ,T
n
k+1

]
.

The particles move with the same law as X

vn
j (T ) = vn

j (Tk )+

∫ T

Tk

f (vn
j (s)) ds+

∫ T

Tk

σ(vn
j (s)) dV (j)

s , j = 1, . . . , n, (2)

(V (j))n
j=1 are independent Ft -adapted p-dimensional Bm independent of

Y and independent of all other random variables in the system.
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The Stochastic filtering Problem The algorithm

Each particle is assigned a normalized weights ān
j (T ), j = 1, . . . ,n, for

arbitrary stopping time T ∈ [Tk ,Tk+1) given by

ān
j (T ) :=

an
j (T )∑n

k=1 an
k (T )

where

an
j (T ) = exp

(∫ T

Tk

h(vn
j (s))

⊤ dYs −
1
2

∫ T

Tk

∥h(vn
j (s))∥2 ds

)
. (3)

For T ∈ [Tk ,Tk+1), define

πn
T =

n∑
j=1

ān
j (T )δvn

j (T ).

At the end of the (random) interval [Tk ,Tk+1), the correction procedure (e.g.
sample n-times from πn

Tk+1−) is implemented, the particles are re-indexed and
their weights reinitialized to 1.The aim of the correction procedure is to avoid
the sample degeneracy.
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The Stochastic filtering Problem Predictable Stopping Times for Other Measures of Sample Degeneracy

Examples:
The effective sample size of the system. Define

n̂eff =
1∑n

j=1(ā
n
j (T ))2

, (4)

1 ≤ n̂eff ≤ n.
Define Tk := inf{t ≥ Tk−1 : neff ≤ λthresn}, λthres ∈ (0, 1).

The coefficient of variation CV, where

CV :=

1
n

n∑
j=1

(
nān

j (t)
2 − 1

)2

 1
2

(5)

0 ≤ CV ≤
√

n − 1.
CV = (n/neff − 1)1/2.
Define Tk := inf{t ≥ Tk−1 : CV > α}, α ∈

(
0,

√
n − 1

)
.
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The Stochastic filtering Problem Predictable Stopping Times for Other Measures of Sample Degeneracy

The (soft) maximum of the unnormalized weights an
j (T ) = exp(wn

j (T ))
where

wn
j (T ) :=

∫ T

Tk

h(vn
j (s))

⊤ dYs −
1
2

∫ T

Tk

∥h(vn
j (s))∥2 ds, j = 1, . . . , n.

Then
max
1≤j≤n

an
j (T ) = exp(max

1≤j≤n
wn

j (T )). (6)

max1≤j≤n wn
j (T ) = limr→∞

log
∑n

j=1 exp(r wn
j (T ))

r ≡ SM(r).
Define Tk := inf{t ≥ Tk−1 : SM(r) ≥ α}, α > 1.

The entropy Et , where

Et = −
n∑

j=i

ān
j (t) log ān

j (t) (7)

Et = −
∑n

j=i ān
j (t) log ān

j (t).
Define Tk := inf{t ≥ Tk−1 : Et ≤ β}, β ∈ (0, log n).
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Convergence Results

Introduce the measure-valued process ρn = {ρn
t : t ≥ 0} to be defined by

ρn
t := ξn

t π
n
t , t ≥ 0,

where ξn = {ξn
t : t ≥ 0} is the process defined as ξn

t :=
∏∞

i=1
1
n

∑n
j=1 an,i

j (t)
with

an,i
j (t) := exp

(∫ Ti∧t

Ti−1∧t
h(vn

j (s))
⊤ dYs −

1
2

∫ Ti∧t

Ti−1∧t
∥h(vn

j (s))∥2 ds
)
. (8)

Define
Nn

t the number of resampling instances that occur before time t
For µ finite signed measure define

||µ||p = sup
{φ∈C1

b (Rd ),∥φ∥1,∞≤1}
(E [(µ(φ))p])

1/p
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Convergence Results

.
Theorem (D.C, O. Obanubi, 2012)
..

......

Assume that there exists p > 1 such that for all t > 0

sup
n>0

E[(Nn
t )

p] < ∞. (9)

Then for any T ≥ 0 and for any r < p, there exists a constant α = α(T ),
independent of n such that

sup
t∈[0,T ]

||ρn
t − ρt ||2r ≤

α√
n

sup
t∈[0,T ]

||πn
t − πt ||r ≤

α√
n

(10)

Remarks:
• We do not assume that the resampling times converge as typically they will
depend on πn and therefore their convergence cannot be a priori assumed.
• Condition (9) implies that limk→∞ T n

k = ∞. In particular, that there are only a
finite number of resampling times in any finite interval.
• Condition (9) is satisfied for any sequence of deterministic times that
converge to ∞ and for random times determined by the ESS, CV and the soft
maximum weights criteria.
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A Central Limit Theorem The limiting process

Let Nφ be an (Ft ∨ Y)-adapted square-integrable martingale given by

Nφ
t =

∫ t

0

∫
Rd

√
ρ̃s ((∇φ)⊤σσ⊤(∇φ))B(dx , ds)

+
∞∑

k=1

1[0,t](Tk )ρTk (1)
√
πTk (φ

2)− πTk−(φ)
2Υk

where B(dx , ds) is a Brownian sheet or space-time white noise, {Υk}k∈N is a
sequence of i.i.d standard normal r.v. mutually independent given Y.
.
Theorem
..

......

If U := {Ut : t ≥ 0} is a DMF (Rd )[0,∞)-valued process such that for φ ∈ C2
0(Rd )

Ut(φ) = U0(φ) +

∫ t

0
Us(Aφ)ds + Nφ

t +
m∑

k=1

∫ t

0
Us(hkφ) dY k

s (11)

then U is pathwise unique.
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A Central Limit Theorem The limiting process

.
Theorem (D.C, O. Obanubi, 2012)
..

......

Assume that for any k ≥ 0, limn→∞ T n
k = Tk , where (Tk )k≥0 is a strictly

increasing sequence of predictable stopping times such that

sup
n>0

E[(Nn
t )

p] < ∞. (12)

lim
δ→0

sup
n>0

[ sup
s∈[0,t]

E[(Nn
s+δ − Nn

s )
p|Fs]] = 0. (13)

Then {
√

n(ρn
t − ρt)}n converges in distribution to U satisfying

Ut(φ) = U0(φ)+

∫ t

0
Us(Aφ)ds+Nφ

t +
m∑

k=1

∫ t

0
Us(hkφ) dY k

s , φ ∈ C2
0(Rd ), (14)

where Nφ is a martingale with quadratic variation

⟨Nφ
· ⟩t =

∫ t

0
ρ̃s
(
(∇φ)⊤σσ⊤(∇φ)

)
ds

+
∞∑

k=1

[
1[0, t](Tk )ρTk (1)

2 [πTk (φ
2)− πTk−(φ)

2|Tk−
]]

.
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A Central Limit Theorem The limiting process

.
Corollary
..

......

Let Ūn : {Ūn
t : t ≥ 0} be the process defined as Ūn

t :=
√

n(πn
t − πt), t ≥ 0.

Under the same condtions as above, the process {Ūn}n converges in
distribution to the measure-valued process Ū : {Ūt : t ≥ 0} defined as

Ūt =
1

ρt(1)
(Ut − Ut(1)πt) , t ≥ 0, (15)

where U satisfies (14).

We assume now that the resampling times converge.
Condition (13) is satisfied for random times determined by the ESS, CV
and the soft maximum weights criteria.
Condition (13) is not satisfied for any sequence of deterministic times that
converge. For this a variation of (13) needs to be imposed.
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Final remarks

We analyse (continuous time) particle filters where resampling takes
place at times that form a sequence of (predictable) stopping times
We prove that, under very general conditions imposed on the sequence
of resampling times, the corresponding particle filters converge.
The conditions are verified when the resampling times are chosen in
accordance to effective sample size of the system of particles, the
coefficient of variation of the particles’ weights and, respectively, the (soft)
maximum/minimum of the particles’ weights.
We also deduce central-limit theorem type results for the approximating
particle system with random resampling times.
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