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Introduction

Notations

o (X,,Xy)n>0 is a sequence of measurable sets.

e By(X,, X,) is the Banach space of all bounded and measurable functions
on (X,, Xy,).

@ (X,)n>0 is a non-homogenous Markov chain with initial distribution nyo,

and Markov kernels (Mp,)n>1.

e Feynman-Kac flow

def

M (fr) = Yn(fnu)/m(1),
(fn) CE | fuXn) J] 90(Xp)

0<p<n
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Introduction

Feynman-Kac flow

@ Define by P(X,,, X,,) the set of probabilities on (X, X,).

@ The sequence of probabilities (1, )n>0 satisfies the following recursion:
TIn+1 = "I’n(nn)Mn+1 s
where ¥, : P(X,,, X,) = P(Xn, Xy) is defined by:

det 1
nn)(An) = 7 (gn)

/ gn(zn) Mn(dzn), An € Xy .
Ap
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Island bootstrap approximation

Particle approximation

o Let N, be an integer. For any integer p we set (X,, X,) = = (XD, x@h),

o Define the Markov kernel M ,, ;1 from (X, X,) to (Xp41, Xnt1) as the
product measure

Mn+1(xn7 n+1 : H \II ( (Xn7 '))Mnﬁ*l(A:z,-Q—l) )

1<i<Ny

where m(xy, -) stands for the empirical measure of x,, given for any
A, € X, by

m(xn, A N1 Z(Szz n)
=1
@ The particles are multinomially resampled with probabilities proportional

to their potential {gn(xﬁb)}f-v:ll; new particle positions are then sampled
from the Markov kernel M, 1.
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Island bootstrap approximation

Particle approximation

o Define a Markov chain {X,} >0 where for each n € N,

QN1

with initial distribution 'ryo = 77 and transition kernel M, 1.

@ N;-particle approximations

i (fn) € (X, fn)
'Ynl(fn) = Nl fn H np gp

0<p<n

C. Dubarry, P. Del Moral, E. Moulines 7/32



Island bootstrap approximation

Unbiasedness of the particle approximation

Theorem (Del Moral, 199x)

For any fn € By(Xn, Xn), YA (fn) is an unbiased estimator of v, (fn):

E[%]Lvl(fn)]:E nivl(fn) H 77;\71(910)

0<p<n

=E [ fn(Xn) H 9p(Xp)

0<p<n
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Island bootstrap approximation

The island Feynman-Kac model

e For x, = (z}, - ,zN1) € X1t define the sample averaged potential

Ny
def 1 i
9, (Xn) = m(Xn,gn) = N z: gn(Ts) -
=1

e Feynman-Kac model

M.(Fn) =¥ (Fn) /A0 (1)

’Y’VL(fn):]E fn(X") H gp(X;D) )

0<p<n
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Island bootstrap approximation

The island Feynman-Kac model

Since g,,(X,) = nh*(gp), the unbiasedness property implies that for any f,, of
the form f, (xn) = N; ' 3002 fa(ah)

E [fnm) 11 gp<xp>] —E lmxn) 11 g,,<xp>] ,

0<p<n 0<p<n

or equivalently

Yr(fn) =(fn) and 7, (f,) =nn(fn) - l

C. Dubarry, P. Del Moral, E. Moulines 10/32



Island bootstrap approximation

The island Feynman-Kac model

@ From now on, a population of particles X, is called an island.

Idea: we may apply the interacting particle system approximation of the
Feynman-Kac semigroups both within each island but also across island.

e To be more specific, we will now describe the so-called double bootstrap
algorithm where the bootstrap algorithm is applied both within an island
but also across the islands.

o Of course, many other options are available (more to come )
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The double bootstrap algorithm
[ Jelele]
Algorithm description

Feynman-Kac at the island level

o Define by P(X,,, X,,) the set of probabilities measures on (X,,, X,).
@ The sequence of measures (7,,)n>0 satisfies the following recursion
MNpt+1 = ‘Il”ﬂ(nn)Mn+1 )
where ¥, : P(X,,, X,,) = P(X,,, X,) is defined by

def 1

= m/A g,(x)n,(dx), A,ecX,.
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The double bootstrap algorithm
[e] Tele]
Algorithm description

The double bootstrap algorithm

i selection ~i mutation i
(gn) (gn) (£n+1) ’

@ Let N2 be the number of interacting islands.

@ During the selection stage, we select randomly N> islands (E;)
1<i<Ny

among the current islands (Ei)1<i<1v2 € X2 with probability
proportional to the empirical mean of the individuals in each island

N1
9.(&) =N 'Y gn(€7) 1<i< Ny .

Jj=1

@ During the mutation transition, selected islands (Z;)f\fl evolve randomly

to a new configuration &/, according to the Markov transition M 1.
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The double bootstrap algorithm
[e]e] o]

Algorithm description

The double bootstrap

o Define the Markov kernel L), from (X232, X$N2) to (X072, &A2N?) for
any (xp,...,x52) € X)2 and (A} 1,...,AN2) € X2 by

N 1 Ny a1 N.
L2 (Xn, o Xn 2 Apyy X oo X AR
def 1 N. i
= J] ®u(mxn,....x22, ) Mari (AL,
1<i< N3
where m(x),...,x%?,.) stands for the empirical measure of the islands

(xL,...,x%2) given for any A, € X,, by

N2
mch X0 A) Y (M)
1

=
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The double bootstrap algorithm
[e]e]e] ]
Algorithm description

The double bootstrap algorithm

1: for p from 0 to n — 1 do

2: Sample I, = (Ii)f\b1 multinomially with proba. prop. to
(Nil EJ 19p(§p’7)) -
3: for i from 1 to N2 do
4: Sample J,, = (J;’J);yzll multinomially with proba. prop. to
i\ N1
I,
(gp(gpp )) :
j=1
5: For 1 < j < Ni, sample independently pr according to
J?
Mp+1(fp i)
6: end for
7: end for
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The double bootstrap algorithm
[ leJele]

Bias and variance of the double bootstrap

Bootstrap approximation: bias and variance

Theorem

For any time horizon n > 0 and any bounded function f, € By(X,, Xy), we
have

Jm NE [0 (£) = ma(f)] = Ba(fa)

Jim NiVar (1 (£2)) = Va(£)

where By, (frn) and Vi (fn) can be computed explicitly.
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The double bootstrap algorithm
[e] Jele]

Bias and variance of the double bootstrap

Double bootstrap approximation: bias and variance

For any time horizon n > 0 and any fn € By(X,, Xn), we have

Nj—00 Ng—00

lim lim N1N2Va1'( 2(m (,fn))> = Va(fn) + Vn(fn) 3

N1 —00 Ng—ro0

where Bp(fn), Bu(fn), Va(fn), Va(fn) can be computed explicitly.

@ The rate of the interacting island (V2 islands each with N; individuals) is
the same as the one of the single island model with N1 N2 particles.

@ Even though the constant terms may be worst in the interacting island
model, it allows to use parallel implementations.
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The double bootstrap algorithm
[e]e] o]

Bias and variance of the double bootstrap

Independent islands

Theorem

For any time horizon n. > 0 and any f, € By(Xn, X»), we have

lim Ny {E [ (m(, f))] = (F) } = Ba(fa) .

N1 —o0

N?Eloo N1 NoVar (552 (m(-, fn))) = Va(fn)

where By, (fn) and Vy,(fn) are the same than for the single island model.

Although the variance of the particle approximation is inversely proportional to
N1 N3, the bias is independent of Ny and is inversely proportional to N.
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The double bootstrap algorithm
[efe]e] ]

Bias and variance of the double bootstrap

SEE

© Linear Gaussian Model

o Xpt1=9¢Xp+0oulp,
o Y, =Xp+0uVp,

Computing the predictive distribution of the state X,, given the
observations Yo.n—1 = Y0:n—1 Up to time n — 1 can be cast into the
framework of Feynman-Kac model by setting for all p > 0

1
Mpi1(zp, dTpi1) = W €0 [_(J/’Hl - @Up)z/(QUi)] dzpi

0p(p) = —— exp [~ (yp — 25)2/(20%)] .

\V2Toy
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The double bootstrap algorithm
[e]e]e]e]
Bias and variance of the double bootstrap

How to choose between interacting and independent islands?

Independent islands Interacting islands
Balf)? (Balfa) + Balf)’

Squared bias ez ——
Nl Nl N2

. Va(f2) Va(fn) + Vi (fn)
Variance N.Ns NN

Va(ln) . Bu(f2)*  Valfa) + Valfn)
Sum NN, | N? N1 N

2
= N1>Bin(7fn)N2.

n n

Valfn) | Bulfn)® _ Valfn) + Va(fn)
N1N2 N12 N1N2
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The double bootstrap algorithm
[ le]

Numerical application

Numerical application: Linear Gaussian Model

The model is defined by
Xp+1 :¢Xp+o—uUp ; Yp:Xp+Uqu .

@ n+ 1 =11 observations were generated with ¢ = 0.9, o, = 0.6 and
oy = 1.
We have E [Xn|Y0;n71 = yo;n71] = T]n(Id)

@ We compare interacting to independent islands through

E [(n (1) - . (10))°] - & | (7220 - 7.(1))]

o | (71 - (1))’
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The double bootstrap algorithm
o] ]

Numerical application

Results for the LGSS model

Ny =100 Ny =250 Ny = 500 N3 = 1000

7 T } T T ] +

Ny =100 | [] - ] i [ | L] :
B wall = = T 0

J---
1]
{1

wn[E 8 [0 [E

wem (g (B8 [P e) [P
N I 1 o4 oL
Mmoo OB TH B (B8] [P

l (1) Bootstrap (2) Independent |

Figure: Interacting versus independent island renormalized estimators.
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Extensions

Effective Sample Size Interaction

o Define

(S i)
P (wngn( ))2

1 1 N
e’ﬂ»a: x":(‘rn7wn7"'7xnl>wn )GX

@ Define m(xn, ) stands for the empirical measure of x, given for any
An € Xy by
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Extensions

Effective Sample Size Interaction

Consider the Markov kernel M,

Mn+1(xn7 An+1) =

Hf\;ll 5w;g"(z;)(B;L+1)Mn+l(m?n7 A:LIL+1) Xn € 977«,04
1Y 61(Bit 1) ¥n(m(%n, ) Mni1(Aht1) Xn & Ona

Define a Markov chain {X},>0 where for each n € N,

X = [(€hwh), o, (6N wh)] €X,
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Extensions

ESS: particle approximation

Ni-particle approximations of the measures 7,, and v,

(1) X o) = i Do () -

"’L 1

V() i (fa) H 7 (gp) -

0<p<n

For any fn € By(Xn, Xn), ¥A*(fn) is an unbiased estimator of v, (fn):

E [ ()] =E [ (f) TT m ()| =E [fa(Xa) [T en(X

0<p<n 0<p<n
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Extensions

ESS: Feynman-Kac approximation

o For x,, = (zh,wp, - ,zht, wh) € X,, we set

9 (x0) & m(xn,g) = angn( ) -

TL»L 1

@ The associated Feynman-Kac model {(n,,,9n)}n>0 is

N (Fn) =Y (F0)/¥n (1)
Yolfn) =E | f.(Xn) J] 9,(X)]| .

0<p<n
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Extensions

ESS: Feynman-Kac approximation

=np ' (gn), for any f, of the form
o\ —1 . .
Fo(xn) = (Zf\/:ll w%) SN wh fa (k) where fr € By(Xan, Xn),

0<p<n

Elmxn) 11 gp<Xp>] —E[fn(xn) 11 gp<xp>] ,

Therefore
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Extensions

1: for p from 0 to n — 1 do
2: Selection step and weight a lization b islands:
eff _ Na i i, No i i iy)2

3 sengT = (S alay el wh)) /SN2 (2hap(eh i)

f ff
4 if N3¥ > arglands N2 the‘n ) . .
5: For 1 < i < N, set Q;H_l =Q;gp(s;,w;).

i IV
6 Set Ip:(I;’)i=21 =(1,2,...,Ng).
7 else N
— i 2 _
8 Set QP_H7(Q;+l)i:17(1,...,1).
9 Sample I, = (11)V2 multinomially with proba. prop. to (s’z'i (&1, wi ))NQ
: ple I, = (1), % y p! . prop. pIp(Epr@p)). 2
10: end if
11: Island mutation step:
12: for i from 1 to Ng do
13: Particle selection and weight i within each island:
14: same business as usual
15: end for
16: end for
1 No ; 1 Ny y iy
17: Approximate 7., (fr,) by N3 - Z Q, NT g Z wﬁ».? fn (gnd)
i—1 95 i=1 i wn? =1
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Extensions

Results for the ESS model

Ny = 100 Ny =250 Ny =500 N = 1000
Ny = 1000 FL\ FL\ FL\ FL\ lil r‘ﬁ lﬁl lil = lﬁl lj !H
i = R = L = R A e iy =

‘ (1) ESS (2) Bootstrap (2) Independent ‘
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Extensions

Number of interactions

Table: Number of interactions between islands for the ESS within ESS estimator as a
percentage of the one the ESS within bootstrap estimator in the LGM.

Nz | 400 250 500 1000
N,
00 730 476 492 4.98
250 088 0.60 0.34 0.32
500 0.04 0.02 0 0
1000 0 0 0 0
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