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O. PAPASPILIOPOULOS & S.S. SINGH

N. CHOPIN Warwick 1/ 67



Introduction
GIMH

PMCMC
SMC2

Conclusion

Outline

1 Introduction

2 GIMH

3 PMCMC

4 SMC2

5 Conclusion

N. CHOPIN Warwick 2/ 67



Introduction
GIMH

PMCMC
SMC2

Conclusion

the whole SMC vs MCMC debate...

MCMC is more versatile

SMC is more specialised, but better at what it does

PMCMC (and related approaches) ≈ MCMC+SMC: best of
both worlds?
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Main theme of this talk

At first glance, PMCMC and related methods may be understood
as: some magic which allows to replace in MCMC an intractable
quantity by an unbiased Monte Carlo estimate, while preserving
the validity of the approach.
However, this is only half of the story:

various variations and extensions of PMCMC cannot be
derived from this unbiasness property only: Particle Gibbs,
SMC2, etc.

Worse, unbiasedness is not sufficient: a ‘blind’ replacement
may lead to invalid algorithms.

Of course, an ‘invalid’ algorithm may remain valid in a ‘double
asymptotics’ sense (number of MCMC iterations, and number of
MC samples used at ach iteration, both goes to infinity), but this
is much less appealing.
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General framework

To fix ideas, consider joint distribution π(θ, x), where x is often
much bigger than θ, and

1 either we are interested only in π(θ) =
∫
π(θ, x) dx :

2 or we would like to construct a sampler that would behave
almost as well as a ”good” marginal sampler.

In Bayesian Statistics, one typically has:

π(θ, x) ∝ p(θ)p(x |θ)p(y |x , θ)
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GIMH

In addition, consider the following unbiased estimator of π(θ):

π̂(θ) =
1

N

N∑
n=1

π(θ, xn)

q(xn)
, x1:N iid∼ q(x)

GIMH (Beaumont, 2003) is Metropolis with π(θ) replaced by π̂(θ):

GIMH

From current point θm
1 Sample θ? ∼ T (θm, θ?)

2 With probability 1 ∧ r , take θm+1 = θ?, otherwise θm+1 = θm,
where

r =
π̂(θ?)T (θ?, θm)

π̂(θm)T (θm, θ?)

Is GIMH a non-standard HM sampler w.r.t. standard target π(θ)?
N. CHOPIN Warwick 7/ 67
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Validity of GIMH

Property 1

The following quantity

π̄(θ, x1:N) =
N∏

n=1

q(xn)π̂(θ)

is a joint probability density, whose θ-marginal is π(θ).

Proof: Direct consequence of unbiasness; fix θ then∫ N∏
n=1

q(xn)π̂(θ) dx1:N = E [π̂(θ)] = π(θ)
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GIMH as a Metropolis sampler

Property 2

GIMH is a Metropolis sampler with respect to joint distribution
π̄(θ, x1:N). The proposal is T (θm, θ?)

∏N
n=1 q(xn? ).

Proof: current point is (θm, x
1:N
m ), proposed point is (θ?, x

1:N
? ) and

HM ratio is

r = ������∏N
n=1 q(xn? )π̂(θ?)T (θ?, θm)������∏N

n=1 q(xnm)

������∏N
n=1 q(xnn )π̂(θm)T (θm, θ?)������∏N

n=1 q(xn? )

Thus, GIMH is a standard Metropolis sampler w.r.t. non-standard
(extended) target π̄(θ, x1:N).
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There is more to life than this

Property 3

Extend π̄(θ, x1:N) with k |θ, x1:N ∝ π(θ, xk)/q(xk), then,

the marginal dist. of (θ, xk) is π(θ, x).

Conditional on (θ, xk), xn ∼ q for n 6= k , independently.

Proof: let

π̄(θ, x1:N , k) =

{
N∏

n=1

q(xn)

}
π(θ, xk)

q(xk)
=

∏
n 6=k

q(xn)

π(θ, xk)

then clearly the sum w.r.t. k gives π̄(θ, x1:N), while the above
properties hold.
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Main lessons

Unbiasedness (of p̂(θ)) has just been used as an intermediate
result.

Unbiasedness does not provide any intuition on Proposition 3;
i.e. (a) how to sample not only θ, but (θ, x) ; and (b) ability
to do Gibbs sampling.

Finally, unbiasedness does not necessary lead to a valid
algorithm.

N. CHOPIN Warwick 11/ 67
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Unbiasness without an auxiliary variable representation

This time, consider instead a target π(θ) (no x), involving an
intractable denominator; an important application is Bayesian
inference on likelihoods with intractable normalising constants:

π(θ) ∝ p(θ)p(y |θ) = p(θ)
hθ(y)

Z (θ)

Liang & Lin (2010)’s sampler

From current point θm
1 Sample θ? ∼ T (θm, θ?)

2 With probability 1 ∧ r , take θm+1 = θ?, otherwise θm+1 = θm,
where

r =
̂(Z (θm)

Z (θ?)

)
p(θ?)hθ?(y)T (θ?, θm)

p(θm)hθm(y)T (θm, θ?)
.
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PMCMC: introduction

PMCMC (Andrieu et al., 2010) is akin to GIMH, except a more
complex proposal mechanism is used: a PF (particle filter). Thus,
the same remarks will apply:

Unbiasness (of the likelihood estimated provided by the PF) is
only an intermediate result for establishing the validity of the
whole approach.

Unbiasness is not enough to give you intuition on the validity
of e.g. Particle Gibbs.
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State Space Models

A system of equations

Hidden states (Markov): p(x1|θ) = µθ(x1) and for t ≥ 1

p(xt+1|x1:t , θ) = p(xt+1|xt , θ) = fθ(xt+1|xt)

Observations:

p(yt |y1:t−1, x1:t−1, θ) = p(yt |xt , θ) = gθ(yt |xt)

Parameter: θ ∈ Θ, prior p(θ). We observe y1:T = (y1, . . . yT ),
T might be large (≈ 104). x and θ will also be of several
dimensions.

There are several interesting models for which fθ cannot be written
in closed form (but it can be simulated).

N. CHOPIN Warwick 15/ 67
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State Space Models

Some interesting distributions

Bayesian inference focuses on:

static: p(θ|y1:T ) dynamic: p(θ|y1:t) , t ∈ 1 : T

Filtering/Smoothing (traditionally) focus on (∀t ∈ 1 : T ):

pθ(xt |y1:t) pθ(xt |y1:T )

More challenging:

static: p(θ, x1:T |y1:T ) dynamic: p(θ, x1:t |y1:t) , t ∈ 1 : T

N. CHOPIN Warwick 16/ 67
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Examples

Population growth model{
yt = xt + σwεt

log xt+1 = log xt + b0 + b1(xt)
b2 + σεηt

θ = (b0, b1, b2, σε, σW ).

N. CHOPIN Warwick 17/ 67
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Examples

Stochastic Volatility (Lévy-driven models)

Observations (“log returns”):

yt = µ+ βvt + v
1/2
t εt , t ≥ 1

Hidden states (“actual volatility” - integrated process):

vt+1 =
1

λ
(zt − zt+1 +

k∑
j=1

ej)

N. CHOPIN Warwick 18/ 67
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Examples

. . . where the process zt is the “spot volatility”:

zt+1 = e−λzt +
k∑

j=1

e−λ(t+1−cj )ej

k ∼ Poi
(
λξ2/ω2

)
c1:k

iid∼ U(t, t + 1) ei :k
iid∼ Exp

(
ξ/ω2

)
The parameter is θ ∈ (µ, β, ξ, ω2, λ), and xt = (vt , zt)

′.

See the results

N. CHOPIN Warwick 19/ 67
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Why are those models challenging?

. . . It is effectively impossible to compute the likelihood

p(y1:T |θ) =

[∫
XT

p(y1:T |x1:T , θ)p(x1:T |θ)dx1:T

]
Similarly, all other inferential quantities are impossible to compute.

N. CHOPIN Warwick 20/ 67
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Problems with MCMC approaches

Metropolis-Hastings:
1 p(θ|y1:T ) cannot be evaluated point-wise (marginal MH)
2 p(x1:T , θ|y1:T ) are high-dimensional and it is hard to design

reasonable proposals

Gibbs sampler (updates states and parameters):
1 The hidden states x1:T are typically very correlated and it is

hard to update them efficiently in a block
2 Parameters and latent variables highly correlated

Common: they are not designed to recover the whole
sequence p(x1:t , θ | y1:t) for t ∈ 1 : T .
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Particle filters

Consider the simplified problem of targeting

pθ(xt+1|y1:t+1)

This sequence of distributions is approximated by a sequence of
weighted particles which are properly weighted using importance
sampling, mutated/propagated according to the system dynamics,
and resampled to control the variance.

Below we give a pseudo-code version. Any operation involving the
superscript n must be understood as performed for n = 1 : Nx ,
where Nx is the total number of particles.
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Step 1: At iteration t = 1,

(a) Sample xn1 ∼ q1,θ(·).

(b) Compute and normalise weights

w1,θ(xn1 ) =
µθ(xn1 )gθ(y1|xn1 )

q1,θ(xn1 )
, W n

1,θ =
w1,θ(xn1 )∑N
n=1 w1,θ(x i1)

.

Step 2: At iteration t = 2 : T

(a) Sample the index ant−1 ∼M(W 1:Nx
t−1,θ) of the ancestor

(b) Sample xnt ∼ qt,θ(·|xa
n
t−1

t−1 ).

(c) Compute and normalise weights

wt,θ(x
ant−1

t−1 , x
n
t ) =

fθ(xnt |x
ant−1

t−1 )gθ(yt |xnt )

qt,θ(xnt |x
ant−1

t−1 )
, W n

t,θ =
wt,θ(x

ant−1

t−1 , x
n
t )∑Nx

n=1 wt,θ(x
ait−1

t−1 , x
i
t)
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Particle filtering

time
Figure: Three weighted trajectories x1:t at time t.
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Particle filtering

time
Figure: Three proposed trajectories x1:t+1 at time t + 1.
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Particle filtering

time
Figure: Three reweighted trajectories x1:t+1 at time t + 1
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Observations

At each t, (wn
t , x

n
t )Nx

n=1 is a particle approximation of
pθ(xt |y1:t).

Resampling to avoid degeneracy. If there were no interaction
between particles there would be typically polynomial or worse
increase in the variance of weights

Taking qθ = fθ simplifies weights, but mainly yields a feasible
algorithm when fθ can only be simulated.
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Unbiased likelihood estimator

A by-product of PF output is that

ẐN
t =

T∏
t=1

(
1

Nx

Nx∑
n=1

w
(i)
t

)

is an unbiased estimator of the likelihood Zt(θ) = p(y1:t |θ) for all
t.

(Not trivial, see e.g Proposition 7.4.1 in Pierre Del Moral’s book.)
The variance of this estimator grows typically linealy with T .
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PMCMC

Breakthrough paper of Andrieu et al. (2011), based on the
unbiasedness of the PF estimate of the likelihood.

Marginal PMCMC

From current point θm (and current PF estimate p̂(y |θm)):

1 Sample θ? ∼ T (θm, dθ?)

2 Run a PF so as to obtain p̂(y |θ?), an unbiased estimate of
p(y |θ?).

3 With probability 1 ∧ r , set θm+1 = θ?, otherwise θm+1 = θm
with

r =
p(θ?)p̂(y |θ?)T (θ?, θm)

p(θm)p̂(y |θm)T (θm, θ?)
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Validity

Property 1

Let ψt,θ(x1:N
1:t , a

1:N
1:t−1) be the joint distribution of all the the

random variables generated by a PF (for a fixed θ) up to time t,
then the following quantity

πt(θ, x
1:N
1:t , a

1:N
1:t−1) =

p(θ)

p(y1:t)
ψt,θ(x1:N

1:t , a
1:N
1:t−1)p̂(θ|y1:t)

is a pdf, such that the θ-marginal is p(θ|y1:t).

Proof: unbiasedness∫
πt(·) d(x1:N

1:t , a
1:N
1:t−1) =

p(θ)

p(y1:t)
E [p̂(y1:t |θ)]

=
p(θ)p(y1:t |θ)

p(y1:t)
= p(θ|y1:t)

N. CHOPIN Warwick 30/ 67



Introduction
GIMH

PMCMC
SMC2

Conclusion

More direct proof for T = 2 (and qθ = fθ)

ψ2,θ(x1:N
1:2 , a

1:N
1 ) =

N∏
n=1

µθ(xn1 )

{
N∏

n=1

fθ(xn2 |x
an1
1 )W

an1
1,θ

}
with W n

1,θ = w1,θ(xn1 )/
∑N

n=1 w1,θ(xn1 ), w1,θ(x1) = gθ(y1|x1). So

π2(θ, x1:N
1:2 , a

1:N
1 ) =

p(θ)

p(y1:t)
ψ2,θ(·)

{
1

N

N∑
n=1

w1,θ(xn1 )

}{
1

N

N∑
n=1

w2,θ(xn2 )

}

=
p(θ)

N2p(y1:t)

N∑
n=1

gθ(y2|xn2 )fθ(xn2 |x
an1
1 )

gθ(x
an1
1 )

�������∑N
n=1 w1,θ(xn1 )��

���
���{

N∑
n=1

w1,θ(xn1 )

}

×µθ(x
an1
1 )

∏
i 6=an1

f1,θ(x i1)


∏

i 6=n

fθ(x i2|x
ai1
1 )W

ai1
1


N. CHOPIN Warwick 31/ 67
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Interpretation

π2(θ, x1:N
1:2 , a

1:N
1 ) =

1

N
× 1

N

N∑
n=1

p(θ, x
an1
1 , xn2 |y1:2)

∏
i 6=n

µθ(x i1)

∏
i 6=n

fθ(x i2|x
ai1
1 )W

ai1
1


which is a mixture distribution, with probability 1/N that path n
follows p(θ, x1:2|y1:2), and other paths follows a conditional SMC
distribution (and an1 is Uniform in 1 : N).
From this calculation, one easily deduce the unbiasedness property
(directly!) but also properties similar to those of the GIMH.
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Additional properties (similar to GIMH)

If we add component k ∈ 1 : N with conditional distribution
∝W k

2 , then the joint pdf π2(θ, x1:N
1:2 , a

1:N
1 , k) is such that (a)

(θ, x
ak1
1 , xk2 ) follows the target distribution p(θ, x1:2|y1:2); and

(b) the N − 1 remaining trajectories admit some conditional
dist. knwown as the conditional SMC distribution.

Marginal PMCMC is a Metropolis sampler with invariant
distribution π2(θ, x1:N

1:2 , a
1:N
1 ), and proposal distribution

T (θ, θ?)ψ2,θ?(x1:N
1:2 , a

1:N
1 ).

We can do a Gibbs step, by re-generating the N − 1
trajectories that differ from trajectory k .
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Note on resampling schemes

Calculations are easier when the standard multinomial scheme is
considered, but most results carry over to any resampling scheme
that is marginally unbiased (that is, the marginal probability that
ait = j is W j

t ).
The conditional SMC step is slightly more involved when
alternative resampling schemes are used, but (up to some simple
modifications), it is still doable, and seems to lead to better mixing
properties (ongoing work with Sumeet Singh).
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PMCMC Summary

As announced, unbiasedness is not sufficient to motivate
theoretically PMCMC, nor to give intuition on how it works.

In fact, direct calculations obtain unbiasedness as a
by-product, rather than an useful result per se.
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Preliminary

So far, we have played with replacing intractable quantities with
unbiased estimated within Metropolis samplers. Note however we
could do the same within an importance sampler. For instance, the
following approach has been used in Chopin and Robert (2007).

To compute the evidence p(y) of some state-space model

Sample points θn from the prior p(θ).

For each θn, run a PF (for fixed θ = θn) to obtain an estimate
p̂(y |θn) of the likelihood.

Compute

p̂(y) =
1

N

N∑
n=1

p̂(y |θn)

N. CHOPIN Warwick 37/ 67
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Objectives

1 to derive sequentially

p(θ, x1:t |y1:t), p(y1:t), for all t ∈ {1, . . . ,T}

2 to obtain a black box algorithm (automatic calibration).
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Main tools of our approach

Particle filter algorithms for state-space models (this will be to
estimate the likelihood, for a fixed θ).

Iterated Batch Importance Sampling for sequential Bayesian
inference for parameters (this will be the theoretical algorithm
we will try to approximate).

Both are sequential Monte Carlo (SMC) methods
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IBIS

SMC method for particle approximation of the sequence p(θ | y1:t)
for t = 1 : T . PF is not going to work here by just pretending that
θ is a dynamic process with zero (or small) variance. Recall the
path degeneracy problem.

In the next slide we give the pseudo-code of the IBIS algorithm.
Operations with superscript m must be understood as operations
performed for all m ∈ 1 : Nθ, where Nθ is the total number of
θ-particles.
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Sample θm from p(θ) and set ωm ← 1. Then, at time t = 1, . . . ,T

(a) Compute the incremental weights and their weighted
average

ut(θ
m) = p(yt |y1:t−1, θ

m), Lt =
1∑Nθ

m=1 ω
m
×

Nθ∑
m=1

ωmut(θ
m),

(b) Update the importance weights,

ωm ← ωmut(θ
m). (1)

(c) If some degeneracy criterion is fulfilled, sample θ̃m

independently from the mixture distribution

1∑Nθ
m=1 ω

m

Nθ∑
m=1

ωmKt (θm, ·) .

Finally, replace the current weighted particle system:

(θm, ωm)← (θ̃m, 1).
N. CHOPIN Warwick 41/ 67
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Observations

Cost of lack of ergodicity in θ: the occasional MCMC move

Still, in regular problems resampling happens at diminishing
frequency (logarithmically)

Kt is an MCMC kernel invariant wrt π(θ | y1:t). Its
parameters can be chosen using information from current
population of θ-particles

Lt is a MC estimator of the model evidence

Infeasible to implement for state-space models: intractable
incremental weights, and MCMC kernel
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Our algorithm: SMC2

We provide a generic (black box) algorithm for recovering the
sequence of parameter posterior distributions, but as well filtering,
smoothing and predictive.

We give next a pseudo-code; the code seems to only track the
parameter posteriors, but actually it does all other jobs.
Superficially, it looks an approximation of IBIS, but in fact it does
not produce any systematic errors (unbiased MC).
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Sample θm from p(θ) and set ωm ← 1. Then, at time
t = 1, . . . ,T ,

(a) For each particle θm, perform iteration t of the PF: If

t = 1, sample independently x1:Nx ,m
1 from ψ1,θm , and

compute

p̂(y1|θm) =
1

Nx

Nx∑
n=1

w1,θ(xn,m1 );

If t > 1, sample
(
x1:Nx ,m
t , a1:Nx ,m

t−1

)
from ψt,θm

conditional on
(
x1:Nx ,m

1:t−1 , a1:Nx ,m
1:t−2

)
, and compute

p̂(yt |y1:t−1, θ
m) =

1

Nx

Nx∑
n=1

wt,θ(x
an,mt−1,m

t−1 , xn,mt ).

N. CHOPIN Warwick 43/ 67
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(b) Update the importance weights,

ωm ← ωmp̂(yt |y1:t−1, θ
m)

(c) If some degeneracy criterion is fulfilled, sample(
θ̃m, x̃1:Nx ,m

1:t , ã1:Nx
1:t−1

)
independently from

1∑Nθ
m=1 ω

m

Nθ∑
m=1

ωmKt

{(
θm, x1:Nx ,m

1:t , a1:Nx ,m
1:t−1

)
, ·
}

Finally, replace current weighted particle system:

(θm, x1:Nx ,m
1:t , a1:Nx ,m

1:t−1 , ωm)← (θ̃m, x̃1:Nx ,m
1:t , ã1:Nx ,m

1:t−1 , 1)
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Observations

It appears as approximation to IBIS. For Nx =∞ it is IBIS.

However, no approximation is done whatsoever. This
algorithm really samples from p(θ|y1:t) and all other
distributions of interest. One would expect an increase of MC
variance over IBIS.

The validity of algorithm is essentially based on two results: i)
the particles are weighted due to unbiasedness of PF estimator
of likelihood; ii) the MCMC kernel is appropriately constructed
to maintain invariance wrt to an expanded distribution which
admits those of interest as marginals; it is a Particle MCMC
kernel.

The algorithm does not suffer from the path degeneracy
problem due to the MCMC updates

N. CHOPIN Warwick 44/ 67
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The MCMC step

(a) Sample θ̃ from proposal kernel, θ̃ ∼ T (θ, d θ̃).

(b) Run a new PF for θ̃: sample independently
(x̃1:Nx

1:t , ã1:Nx
1:t−1) from ψt,θ̃, and compute

Ẑt(θ̃, x̃
1:Nx
1:t , ã1:Nx

1:t−1).

(c) Accept the move with probability

1 ∧
p(θ̃)Ẑt(θ̃, x̃

1:Nx
1:t , ã1:Nx

1:t−1)T (θ̃, θ)

p(θ)Ẑt(θ, x
1:Nx
1:t , a1:Nx

1:t−1)T (θ, θ̃)
.

It can be shown that this is a standard Hastings-Metropolis kernel
with proposal

qθ(θ̃, x̃1:Nx
1:t , ã1:Nx

1:t ) = T (θ, θ̃)ψt,θ̃(x̃1:Nx
1:t , ã1:Nx

1:t )

invariant wrt to an extended distribution πt(θ, x
1:Nx
1:t , a1:Nx

1:t−1).
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Some advantages of the algorithm

Immediate estimates of filtering and predictive distributions

Immediate and sequential estimator of model evidence

Easy recovery of smoothing distributions

Principled framework for automatic calibration of Nx

Population Monte Carlo advantages
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Validity

SMC2 is simply a SMC sampler with respect to the sequence:

πt(θ, x
1:N
1:t , a

1:N
1:t−1)

the reweigthing step t → t + 1 (a) extends the dimension, by
sampling x1:N

t+1, a
1:N
t ; and (b) computes πt+1(·)/πt(·).

The move step is a PMCMC step that leaves πt invariant.
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Technical point

As in PMCMC, one may extend πt by adding index k that picks
some trajectory, which, jointly with θ, is sampled from the current
posterior p(θ, x1:t |y1:t). However, it is more difficult to define an
importance sampling step with respect to the extended space (that
includes k), so, we must discard k before progressing to time t + 1.
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Numerical illustrations: SV
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Figure: Squared observations (synthetic data set), acceptance rates, and
illustration of the automatic increase of Nx .

See the model
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Numerical illustrations: SV
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Figure: Concentration of the posterior distribution for parameter µ.
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Numerical illustrations: SV

Multifactor model

yt = µ+βvt+v
1/2
t εt+ρ1

k1∑
j=1

e1,j+ρ2

k2∑
j=1

e2,j−ξ(wρ1λ1+(1−w)ρ2λ2)

where vt = v1,t + v2,t , and (vi , zi )n=1,2 are following the same
dynamics with parameters (wiξ,wiω

2, λi ) and w1 = w ,
w2 = 1− w .
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Numerical illustrations: SV
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Figure: S&P500 squared observations, and log-evidence comparison
between models (relative to the one-factor model).
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Numerical illustrations

Athletics records model

g(y1:2,t |µt , ξ, σ) = {1− G (y2,t |µt , ξ, σ)}
2∏

n=1

g(yi ,t |µt , ξ, σ)

1− G (yi ,t |µt , ξ, σ)

xt = (µt , µ̇t)
′ , xt+1 | xt , ν ∼ N (Fxt ,Q) ,

with

F =

(
1 1
0 1

)
and Q = ν2

(
1/3 1/2
1/2 1

)

G (y |µ, ξ, σ) = 1− exp

[
−
{

1− ξ
(
y − µ
σ

)}−1/ξ

+

]
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Numerical illustrations
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Figure: Best two times of each year, in women’s 3000 metres events
between 1976 and 2010.
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Numerical illustrations: Athletics records

Motivating question

How unlikely is Wang Junxia’s record in 1993?

A smoothing problem

We want to estimate the likelihood of Wang Junxia’s record in
1993, given that we observe a better time than the previous world
record. We want to use all the observations from 1976 to 2010 to
answer the question.

Note

We exclude observations from the year 1993.

See the model
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Numerical illustrations

Some probabilities of interest

pyt = P(yt ≤ y |y1976:2010)

=

∫
Θ

∫
X
G (y |µt , θ)p(µt |y1976:2010, θ)p(θ|y1976:2010) dµtdθ

The interest lies in p486.11
1993 , p502.62

1993 and pcondt := p486.11
t /p502.62

t .
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Numerical illustrations
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Figure: Estimates of the probability of interest (top) p502.62
t , (middle)

pcondt and (bottom) p486.11
t , obtained with the SMC2 algorithm. The

y -axis is in log scale, and the dotted line indicates the year 1993 which
motivated the study.
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Final Remarks on SMC2

A powerful framework

A generic algorithm for sequential estimation and state
inference in state space models: only requirements are to be
able (a) to simulate the Markov transition fθ(xt |xt−1), and (b)
to evaluate the likelihood term gθ(yt |xt).

The article is available on arXiv and our web pages

A package is available at:

http://code.google.com/p/py-smc2/.
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General conclusions

Auxiliary variables algorithms are not so complicated, when
they are understood as standard samplers on extended spaces.

offers excellent performance, at little cost (in the user’s time
dimension); almost magic.

Many applications not yet fully explored; e.g. variable
selection, see C. Schäfer’s PhD. thesis.

Many avenues for future research, e.g. the active particle
framework of Anthony Lee (work with Arnaud and
Christophe).
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Why does it work? - Intuition for t = 1

At time t = 1, the algorithm generates variables θm from the prior
p(θ), and for each θm, the algorithm generates vectors x1:Nx ,m

1 of
particles, from ψ1,θm(x1:Nx

1 ).
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Thus, the sampling space is Θ×XNx , and the actual “particles” of
the algorithm are Nθ independent and identically distributed copies
of the random variable (θ, x1:Nx

1 ), with density:

p(θ)ψ1,θ(x1:Nx
1 ) = p(θ)

Nx∏
n=1

q1,θ(xn1 ).
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Then, these particles are assigned importance weights
corresponding to the incremental weight function
Ẑ1(θ, x1:Nx

1 ) = N−1
x

∑Nx
n=1 w1,θ(xn1 ).

This means that, at iteration 1, the target distribution of the
algorithm should be defined as:

π1(θ, x1:Nx
1 ) = p(θ)ψ1,θ(x1:Nx

1 )×
Ẑ1(θ, x1:Nx

1 )

p(y1)
,

where the normalising constant p(y1) is easily deduced from the
property that Ẑ1(θ, x1:Nx

1 ) is an unbiased estimator of p(y1|θ).
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Direct substitutions yield

π1(θ, x1:Nx
1 ) =

p(θ)

p(y1)

Nx∏
n=1

q1,θ(x i1)

{
1

Nx

Nx∑
n=1

µθ(xn1 )gθ(y1|xn1 )

q1,θ(xn1 )

}

=
1

Nx

Nx∑
n=1

p(θ)

p(y1)
µθ(xn1 )gθ(y1|xn1 )


Nx∏

n=1,i 6=n

q1,θ(x i1)


and noting that, for the triplet (θ, x1, y1) of random variables,

p(θ)µθ(x1)gθ(y1|x1) = p(θ, x1, y1) = p(y1)p(θ|y1)p(x1|y1, θ)

one finally gets that:

π1(θ, x1:Nx
1 ) =

p(θ|y1)

Nx

Nx∑
n=1

p(xn1 |y1, θ)


Nx∏

n=1,i 6=n

q1,θ(x i1)

 .
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By a simple induction, one sees that the target density πt at
iteration t ≥ 2 should be defined as:

πt(θ, x
1:Nx
1:t , a1:Nx

1:t−1) = p(θ)ψt,θ(x1:Nx
1:t , a1:Nx

1:t−1)×
Ẑt(θ, x

1:Nx
1:t , a1:Nx

1:t−1)

p(y1:t)

and the following Proposition
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Proposition

The probability density πt may be written as:

πt(θ, x
1:Nx
1:t , a1:Nx

1:t−1) = p(θ|y1:t)

× 1

Nx

Nx∑
n=1

p(xn1:t |θ, y1:t)

Nt−1
x


Nx∏
n=1

i 6=hnt (1)

q1,θ(x i1)


×


t∏

s=2

Nx∏
n=1

i 6=hnt (s)

W
ais−1

s−1,θqs,θ(x is |x
ais−1

s−1 )


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