
Resampling on parallel architectures

Pierre Jacob with P. Del Moral, A. Lee, L. Murray, G. Peters

September 20th, 2012
Recent Advances in Sequential Monte Carlo, CRiSM

Pierre Jacob Resampling on parallel architectures 1/ 18



Outline

1 Resampling on parallel architectures

2 Avoiding global interactions

3 Proposed algorithm

Pierre Jacob Resampling on parallel architectures 2/ 18



Outline

1 Resampling on parallel architectures

2 Avoiding global interactions

3 Proposed algorithm

Pierre Jacob Resampling on parallel architectures 3/ 18



Resampling on parallel architectures

Discrete-time model

Markov chain (Xn) for n ∈ N with laws (Pn) on the path space:

Pn(x0:n) = µ0(x0)
∏

0≤p<n

Mp+1(xp, xp+1).

For potential functions (Gn), introduce Feynman–Kac measures:

Qn(x0:n) =
1

Zn

 ∏
0≤p<n

Gp(xp)

Pn(x0:n).

Pierre Jacob Resampling on parallel architectures 3/ 18



Resampling on parallel architectures

Sequential Monte Carlo

To approximate some integrals w.r.t. Feynman–Kac measures,
introduce a system of particles (ξ1:Nn ) as follows:

At time 0: ∀i ∈ {1, . . . ,N} ξi0 ∼ µ0 and set w i
0 = 1

N .

Then at time n > 0:

∀i ∈ {1, . . . ,N} ain−1 ∼ r(·|i ,w1:N
n−1)

∀i ∈ {1, . . . ,N} ξin ∼ Mn(ξ
ain−1

n−1 , ·)
∀i ∈ {1, . . . ,N} w i

n = Gn(ξin)

where r(·|i ,w1:N
n−1) is a distribution on {1, . . . ,N}.

Pierre Jacob Resampling on parallel architectures 4/ 18



Resampling on parallel architectures

Sequential Monte Carlo

To approximate some integrals w.r.t. Feynman–Kac measures,
introduce a system of particles (ξ1:Nn ) as follows:

At time 0: ∀i ∈ {1, . . . ,N} ξi0 ∼ µ0 and set w i
0 = 1

N .

Then at time n > 0:

∀i ∈ {1, . . . ,N} ain−1 ∼ r(·|i ,w1:N
n−1)

∀i ∈ {1, . . . ,N} ξin ∼ Mn(ξ
ain−1

n−1 , ·)
∀i ∈ {1, . . . ,N} w i

n = Gn(ξin)

where r(·|i ,w1:N
n−1) is a distribution on {1, . . . ,N}.

Pierre Jacob Resampling on parallel architectures 4/ 18



Resampling on parallel architectures

Computational effort

Most of the effort usually lies in

drawing from the transition Mn

and evaluating the potential Gn.

This can be done independently for all particles (ξ1:Nn ).

The remaining task is the resampling step.

Problem

Drawing from r typically requires computing
∑

1≤i≤N w i
n or some

other “Reduce” step. This can take time because of memory
transfer and asynchronicity.

Pierre Jacob Resampling on parallel architectures 5/ 18



Resampling on parallel architectures

Computational effort

Most of the effort usually lies in

drawing from the transition Mn

and evaluating the potential Gn.

This can be done independently for all particles (ξ1:Nn ).

The remaining task is the resampling step.

Problem

Drawing from r typically requires computing
∑

1≤i≤N w i
n or some

other “Reduce” step. This can take time because of memory
transfer and asynchronicity.

Pierre Jacob Resampling on parallel architectures 5/ 18



Resampling on parallel architectures

Computational effort

Most of the effort usually lies in

drawing from the transition Mn

and evaluating the potential Gn.

This can be done independently for all particles (ξ1:Nn ).

The remaining task is the resampling step.

Problem

Drawing from r typically requires computing
∑

1≤i≤N w i
n or some

other “Reduce” step. This can take time because of memory
transfer and asynchronicity.

Pierre Jacob Resampling on parallel architectures 5/ 18



Resampling on parallel architectures

Computational effort

Most of the effort usually lies in

drawing from the transition Mn

and evaluating the potential Gn.

This can be done independently for all particles (ξ1:Nn ).

The remaining task is the resampling step.

Problem

Drawing from r typically requires computing
∑

1≤i≤N w i
n or some

other “Reduce” step. This can take time because of memory
transfer and asynchronicity.

Pierre Jacob Resampling on parallel architectures 5/ 18



Resampling on parallel architectures

Asynchronicity

Asynchronicity can occur for various reasons:

heterogeneous architecture,

drawing from Mn is more or less expensive depending on xn,
e.g. if it implies numerically solving a differential equation,

evaluating Gn is more or less expensive depending on xn.

Asynchronicity has terrible consequences on the resampling step:
all particles wait for one “slow” particle instead of going on to the
next steps.

Pierre Jacob Resampling on parallel architectures 6/ 18



Resampling on parallel architectures

Asynchronicity

Asynchronicity can occur for various reasons:

heterogeneous architecture,

drawing from Mn is more or less expensive depending on xn,
e.g. if it implies numerically solving a differential equation,

evaluating Gn is more or less expensive depending on xn.

Asynchronicity has terrible consequences on the resampling step:
all particles wait for one “slow” particle instead of going on to the
next steps.

Pierre Jacob Resampling on parallel architectures 6/ 18



Resampling on parallel architectures

Asynchronicity

Asynchronicity can occur for various reasons:

heterogeneous architecture,

drawing from Mn is more or less expensive depending on xn,
e.g. if it implies numerically solving a differential equation,

evaluating Gn is more or less expensive depending on xn.

Asynchronicity has terrible consequences on the resampling step:
all particles wait for one “slow” particle instead of going on to the
next steps.

Pierre Jacob Resampling on parallel architectures 6/ 18



Resampling on parallel architectures

Asynchronicity

Asynchronicity can occur for various reasons:

heterogeneous architecture,

drawing from Mn is more or less expensive depending on xn,
e.g. if it implies numerically solving a differential equation,

evaluating Gn is more or less expensive depending on xn.

Asynchronicity has terrible consequences on the resampling step:
all particles wait for one “slow” particle instead of going on to the
next steps.

Pierre Jacob Resampling on parallel architectures 6/ 18



Resampling on parallel architectures

Example: SMC2

Each particle corresponds to a vector of parameters in a state
space model context.

Evaluating its weight implies estimating the associated
likelihood value.

Estimating the likelihood for a given parameter θ means
running a particle filter given θ.

Some (bad) values of θ are such that the particle filter takes
longer, and eventually correspond to small likelihood values.

Most particles wait for the “slowest” one that eventually gets
killed.

This is very frustrating.

Pierre Jacob Resampling on parallel architectures 7/ 18



Resampling on parallel architectures

Example: SMC2

Each particle corresponds to a vector of parameters in a state
space model context.

Evaluating its weight implies estimating the associated
likelihood value.

Estimating the likelihood for a given parameter θ means
running a particle filter given θ.

Some (bad) values of θ are such that the particle filter takes
longer, and eventually correspond to small likelihood values.

Most particles wait for the “slowest” one that eventually gets
killed.

This is very frustrating.

Pierre Jacob Resampling on parallel architectures 7/ 18



Resampling on parallel architectures

Example: SMC2

Each particle corresponds to a vector of parameters in a state
space model context.

Evaluating its weight implies estimating the associated
likelihood value.

Estimating the likelihood for a given parameter θ means
running a particle filter given θ.

Some (bad) values of θ are such that the particle filter takes
longer, and eventually correspond to small likelihood values.

Most particles wait for the “slowest” one that eventually gets
killed.

This is very frustrating.

Pierre Jacob Resampling on parallel architectures 7/ 18



Resampling on parallel architectures

Example: SMC2

Each particle corresponds to a vector of parameters in a state
space model context.

Evaluating its weight implies estimating the associated
likelihood value.

Estimating the likelihood for a given parameter θ means
running a particle filter given θ.

Some (bad) values of θ are such that the particle filter takes
longer, and eventually correspond to small likelihood values.

Most particles wait for the “slowest” one that eventually gets
killed.

This is very frustrating.

Pierre Jacob Resampling on parallel architectures 7/ 18



Resampling on parallel architectures

Example: SMC2

Each particle corresponds to a vector of parameters in a state
space model context.

Evaluating its weight implies estimating the associated
likelihood value.

Estimating the likelihood for a given parameter θ means
running a particle filter given θ.

Some (bad) values of θ are such that the particle filter takes
longer, and eventually correspond to small likelihood values.

Most particles wait for the “slowest” one that eventually gets
killed.

This is very frustrating.

Pierre Jacob Resampling on parallel architectures 7/ 18



Resampling on parallel architectures

Example: SMC2

Each particle corresponds to a vector of parameters in a state
space model context.

Evaluating its weight implies estimating the associated
likelihood value.

Estimating the likelihood for a given parameter θ means
running a particle filter given θ.

Some (bad) values of θ are such that the particle filter takes
longer, and eventually correspond to small likelihood values.

Most particles wait for the “slowest” one that eventually gets
killed.

This is very frustrating.

Pierre Jacob Resampling on parallel architectures 7/ 18



Resampling on parallel architectures

Pierre Jacob Resampling on parallel architectures 8/ 18



Resampling on parallel architectures

New resampling schemes

An example of such a scheme is proposed in:

GPU acceleration of the particle filter: the Metropolis resampler
Lawrence Murray (arXiv 1202.6163).

This is an approximate scheme: a bias is introduced compared to
e.g. multinomial resampling.
The same will apply for our proposed algorithm.

Pierre Jacob Resampling on parallel architectures 9/ 18



Outline

1 Resampling on parallel architectures

2 Avoiding global interactions

3 Proposed algorithm

Pierre Jacob Resampling on parallel architectures 10/ 18



Avoiding global interactions

Back to Feynman–Kac

In the Feynman–Kac model, we have the following recursion for
the time-marginal distributions µn of Qn:

µn+1 = ΨGn(µn)Mn+1

= µnSn,µnMn+1

for ΨG the Boltzmann–Gibbs transformation: ΨG (µ)(f ) = µ(fG)
µ(G)

and Sn,µ a Markov transition that depends on µ.

Pierre Jacob Resampling on parallel architectures 10/ 18



Avoiding global interactions

Case of bounded potentials

We are going to consider the following transitions:

Sn,µn(x , dy) = αGn(x)δx(dy) + (1− αGn(x))ΨGn(µn)(dy)

for αGn ≤ 1.

Note that global interactions in the resampling step appear
through ΨGn(µn).

Pierre Jacob Resampling on parallel architectures 11/ 18



Avoiding global interactions

Case of bounded potentials

We are going to consider the following transitions:

Sn,µn(x , dy) = αGn(x)δx(dy) + (1− αGn(x))ΨGn(µn)(dy)

for αGn ≤ 1.

Note that global interactions in the resampling step appear
through ΨGn(µn).

Pierre Jacob Resampling on parallel architectures 11/ 18



Avoiding global interactions

In SMC, the sequence of measures µn is approximated by particles:

µNn =
1

N

N∑
i=1

δξin .

“Recycling-jump sampling”

Plugging µNn in the previous expression, we obtain:

Sn,µNn
(ξin, dy) = αGn(ξin)δξin(dy)

+ (1− αGn(ξin))

 N∑
j=1

Gn(ξjn)∑N
j=1 Gn(ξjn)

δ
ξjn

(dy)

 .

Pierre Jacob Resampling on parallel architectures 12/ 18



Avoiding global interactions

Getting rid of global interactions

If Gn(ξin), i = 1, . . . ,N were even, this scheme would be close to:

S̃n,µNn
(ξin, dy) = αGn(ξin)δξin(dy) + (1− αGn(ξin))

 1

N

N∑
j=1

δ
ξjn

(dy)


but there is no reason why the weights should be even.

Pierre Jacob Resampling on parallel architectures 13/ 18



Avoiding global interactions

Intermediate time steps

For some integer m, consider the sequence tk = k/m for k ∈ N.

Introduce the Feynman–Kac model (M
(m)
tk ,G

(m)
tk ) for k ∈ N:

M
(m)
tk = Mn if tk = n ∈ N and M

(m)
tk = δ otherwise.

G
(m)
tk = G

1/m
btkc

and denote by µ
(m)
tk the time-marginal distribution of the

associated Feynman–Kac measure.

Pierre Jacob Resampling on parallel architectures 14/ 18



Avoiding global interactions

Property

We have µ
(m)
tk = µn when tk = n ∈ N, so that the original model is

embedded in a finer discrete-time model.

Motivation

If m is large, the one-step weights are quite even, thus S̃tk ,µtk
is

close to Stk ,µtk
, therefore we can bypass global interactions.

More formally. . .

. . . we can get results of the type

‖Ψ
G

(m)
tk

(µNtk )− µNtk‖TV ≤
supx |Gbtkc(x)|

m
.

Pierre Jacob Resampling on parallel architectures 15/ 18



Avoiding global interactions

Property

We have µ
(m)
tk = µn when tk = n ∈ N, so that the original model is

embedded in a finer discrete-time model.

Motivation

If m is large, the one-step weights are quite even, thus S̃tk ,µtk
is

close to Stk ,µtk
, therefore we can bypass global interactions.

More formally. . .

. . . we can get results of the type

‖Ψ
G

(m)
tk

(µNtk )− µNtk‖TV ≤
supx |Gbtkc(x)|

m
.

Pierre Jacob Resampling on parallel architectures 15/ 18



Avoiding global interactions

Property

We have µ
(m)
tk = µn when tk = n ∈ N, so that the original model is

embedded in a finer discrete-time model.

Motivation

If m is large, the one-step weights are quite even, thus S̃tk ,µtk
is

close to Stk ,µtk
, therefore we can bypass global interactions.

More formally. . .

. . . we can get results of the type

‖Ψ
G

(m)
tk

(µNtk )− µNtk‖TV ≤
supx |Gbtkc(x)|

m
.

Pierre Jacob Resampling on parallel architectures 15/ 18



Outline

1 Resampling on parallel architectures

2 Avoiding global interactions

3 Proposed algorithm

Pierre Jacob Resampling on parallel architectures 16/ 18



Proposed algorithm

We are going to follow the modified resampling step:

S̃n,µNtk
(ξitk , dy) = G

(m)
tk (ξitk )δξitk

(dy)+(1−G
(m)
tk (ξitk ))

 1

N

N∑
j=1

δ
ξjtk

(dy)


using the so-called “Clock Resampling” algorithm.

Clocks

Each particle ξi is associated with a uniform variable U i ∼ U[0,1].
When

∏
0≤p≤k G

(m)
tp (ξitp) ≤ U i , the particle jumps.

When it jumps, it goes uniformly to any location among ξ1:Ntk
.

Pierre Jacob Resampling on parallel architectures 16/ 18



Proposed algorithm

We are going to follow the modified resampling step:

S̃n,µNtk
(ξitk , dy) = G

(m)
tk (ξitk )δξitk

(dy)+(1−G
(m)
tk (ξitk ))

 1

N

N∑
j=1

δ
ξjtk

(dy)


using the so-called “Clock Resampling” algorithm.

Clocks

Each particle ξi is associated with a uniform variable U i ∼ U[0,1].
When

∏
0≤p≤k G

(m)
tp (ξitp) ≤ U i , the particle jumps.

When it jumps, it goes uniformly to any location among ξ1:Ntk
.

Pierre Jacob Resampling on parallel architectures 16/ 18



Proposed algorithm

Clock resampling algorithm, discrete-time

1: ∀i ∈ {1, . . . ,N} init P i
G ← 1.

2: ∀i ∈ {1, . . . ,N} draw U i ∼ U[0,1].
3: for k = 0 to m − 1 do
4: for i ∈ {1, . . . ,N} do
5: update product of potentials P i

G ← P i
G × G

(m)
tk (ξitk ).

6: if P i
G ≤ U i then

7: draw new location i ← j ∼ U1:N .
8: copy ξitk+1

← ξjtk .

9: reset P i
G ← 1.

10: draw a new variable U i ∼ U[0,1].
11: end if
12: end for
13: end for

Pierre Jacob Resampling on parallel architectures 17/ 18



Proposed algorithm

Extension: continuous-time version

We can allow any intermediate time between integer times: the
particle jumps exactly at time t such that(

Gbtc(ξ
i
t)
)(t−btc)/m

= U i .

Extension: unbounded potentials

Unbounded potentials can be dealt with “birth” mechanisms.

No numerical results yet. . .

Pierre Jacob Resampling on parallel architectures 18/ 18


	Resampling on parallel architectures
	Avoiding global interactions
	Proposed algorithm

