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Perfect simulation algorithm of a trajectory under a Feynman-Kac law
L Introduction

Notations

> Xi,Xo,... is a Markov chain in E with initial law M; and
transition M (say E = RY or Z)

> Gi, Gy, ---: E — R, are potentials
> total time: P

One is interested in the law :

o(F) = E(f(X1, ..., Xp) [125 Gi(Xi))
BT Gi(X)) ’
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Ll\/lel:ropolis—like algorithm on extended space

Simple branching system

» Start with Ny particles.

» The particle X! (i-th particle at time n) has AnJrl offsprings
with law P(AL | = j) = fo411(Gn(X}),j) (independant of other
particles).

> Total number of particles : N3 = SN .y

Density :

P

qo(N, . .., Np, (AD), HM1 D11

n=2

HfﬂlnlAIHMnlv
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I—Mel:ropolis—like algorithm on extended space

Extension

Take a trajectory and draw a branching system conditionned to
contain this trajectory.
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LMetropolis—like algorithm on extended space

Extension

When a particle is blue at position x at time n — 1, the number of
children is chosen with law :

n(Gn-1(x),J)
fo(Gn-1(x),0)

P(j offsprings) = f( n—1(x),J) = 1 f
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Ll\/lel:ropolis—like algorithm on extended space

Extension

When a particle is blue at position x at time n — 1, the number of
children is chosen with law :

P(j offsprings) = ?,,(Gn_1(x),j) 1 ff‘G(G 1(x ();(.;)O)

We choose f, such that i:g’j:) = ”G';,H‘X’ (Vn,j,g) (take

)
f;'l(guo) =1- Wv fn(gLI) = mv 1 SJ S kn)
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Ll\/lel:ropolis—like algorithm on extended space

Proposal

Take a branching system like above, select a particle at time P and
its ancestral line. We get some density g on the space of (size of
each generation)x (numbers of offsprings) x (positions) x (special
trajectory).
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Ll\/lel:rc'polis—like algorithm on extended space

Proposal

Take a branching system like above, select a particle at time P and
its ancestral line. We get some density g on the space of (size of
each generation)x (numbers of offsprings) x (positions) x (special
trajectory).
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Ll\/lel:ropolis—like algorithm on extended space

Acception /rejection

Target law : trajectory with the law 7, to which we add a
(conditionned) branching system. We have a law 7 on “forests”.

(o) _ NeITE IGilloo
q(. .. ) le ’
with Z := E(T]"Z} G,(Xa)) (partition function).




Perfect simulation algorithm of a trajectory under a Feynman-Kac law
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g

Markov chain

> start with trajectory, extend it into a “forest”
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» when at point X (in “forests"): propose X,
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LMetropolis—like algorithm on extended space

Markov chain

> start with trajectory, extend it into a “forest”

» when at point X (in “forests"): propose X,

> accept with probability

F(X)a(x) _ We
#()a(x) — Ne’
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Ll\/lel:ropolis—like algorithm on extended space

Markov chain

v

start with trajectory, extend it into a “forest”

v

when at point X' (in “forests”): propose X,

7(X)q
m(X)q

) _
)= W

v

accept with probability g

v

then prune the forest to have only the colored trajectory.
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Ll\/lel:ropolis—like algorithm on extended space

Markov chain

v

start with trajectory, extend it into a “forest”

v

when at point X' (in “forests”): propose X,

v

accept with probability ;

> then prune the forest to have only the colored trajectory.

We have here a Markov process on the trajectory space whose
invariant law is 7.
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LMetropolis—like algorithm on extended space

Markov chain

extension proposal

111 :

B T

acception
° /rejection/ l

pruning
or :
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LCoupling from the past

Coupling from the past in a nutshell

Transition of a Markov chain (Zj) expressed with i.i.d. variables
(Uk):
Ziy1 = h(Zk, Uksa).

Suppose (Z) has invariant law 7. For a starting point z and
n >0, set

77, =2, 2% = h(Z7, Un), ..., 28 = h(Z7,, U).

If T such that Z§ = Z§', Vz,2/: Z?; =2z, Z7; = 2/, then Z{ ~ .



Perfect simulation algorithm of a trajectory under a Feynman-Kac law

LCoupIing from the past

Coupling from the past algorithm

Space A / /3/ /1

start with law A\-/”
I

u]
o)
I
i
it
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LCoupIing from the past

Coupling from the past algorithm

Space A

max |

start|with law

T

min |
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LCoupling from the past

Detection of a coupling time

Look for a time such that the red proposal is accepted for all
possible blue trajectories.

\

Bound the number of squares at the bottom and you bound the
acceptation ratio.
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L Examples

Directed polymers in Z
Draw U(i,j) i.i.d. of Bernoulli law (i € N, j € Z). Take (X,) the
simple random walk in Z with Xo = 0. Set G;(j) = exp(—5U(i,J))-
To draw a trajectory of length n, the cost is O(n?).

50

100 kd

Figure: 500 trajectories
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L Examples

Directed polymers in Z

150

Figure: 100 trajectories
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L Examples

Radar detection
2
Transition (in R) : M(x,dy) = -2 exp (—%)

V2rb?
2
Gn(x) = \/21”7 exp (—(XECZ") ) , where (X,,) has transition M and

Yn = Xn + cen (65 ~ N(0,1)).
You can bound the number of offspring of any trajectory by
discretizing the space (works for a € [-1,1]).
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