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Introduction

Notations

I X1,X2, . . . is a Markov chain in E with initial law M1 and

transition M (say E = Rd or Zd )

I G1,G2, · · · : E → R+ are potentials

I total time : P

One is interested in the law :

π(f ) =
E(f (X1, . . . ,XP)

∏P−1
i=1 Gi (Xi ))

E(
∏P−1

i=1 Gi (Xi ))
.
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Metropolis-like algorithm on extended space

Simple branching system

I Start with N1 particles.

I The particle X i
n (i-th particle at time n) has Ai

n+1 o�springs

with law P(Ai
n+1 = j) = fn+1(Gn(X

i
n), j) (independant of other

particles).

I Total number of particles : Nn+1 =
∑Nn

i=1 A
i
n+1.

Density :

q0(N1, . . . ,NP , (A
i
n), (X

i
n)) =

N1∏
i=1

M1(X
i
1)

P∏
n=2Nn−1∏

i=1

fn(Gn−1(X
i
n−1),A

i
n)
∏
j∈...

M(X i
n−1,X

j
n)


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Metropolis-like algorithm on extended space

Extension

Take a trajectory and draw a branching system conditionned to

contain this trajectory.
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Metropolis-like algorithm on extended space

Extension

When a particle is blue at position x at time n − 1, the number of

children is chosen with law :

P(j o�springs) = f̂n(Gn−1(x), j) =
fn(Gn−1(x), j)

1− fn(Gn−1(x), 0)
.

We choose fn such that f̂n(g ,j)
fn(g ,j)

= ‖Gn‖∞
g (∀n, j , g) (take

fn(g , 0) = 1− g
‖Gn‖∞ , fn(g , j) =

g
kn‖Gn‖∞ , 1 ≤ j ≤ kn).
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Metropolis-like algorithm on extended space

Proposal

Take a branching system like above, select a particle at time P and

its ancestral line. We get some density q on the space of (size of

each generation)×(numbers of o�springs)×(positions)×(special
trajectory).
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Metropolis-like algorithm on extended space

Acception/rejection

Target law : trajectory with the law π, to which we add a

(conditionned) branching system. We have a law π̂ on �forests�.

π̂(. . . )

q(. . . )
=

NP

∏P−1
i=1 ‖Gi‖∞
N1Z

,

with Z := E(
∏P−1

n=1 Gn(Xn)) (partition function).
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Metropolis-like algorithm on extended space

Markov chain

I start with trajectory, extend it into a �forest�

I when at point X (in �forests�): propose X ,

I accept with probability π̂(X )q(X )

π̂(X )q(X )
= NP

NP
,

I then prune the forest to have only the colored trajectory.

We have here a Markov process on the trajectory space whose

invariant law is π.
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Markov chain
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Coupling from the past

Coupling from the past in a nutshell

Transition of a Markov chain (Zk) expressed with i.i.d. variables

(Uk):
Zk+1 = h(Zk ,Uk+1).

Suppose (Zk) has invariant law π. For a starting point z and

n ≥ 0, set

Z z
−n = z , Z z

−n+1 = h(Z z
−n,Un) , . . . , Z

z
0 = h(Z z

−1,U1).

If T such that Z z
0 = Z z ′

0 , ∀z , z ′: Z z
−T = z , Z z ′

−T = z ′, then Z z
0 ∼ π.
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Coupling from the past

Coupling from the past algorithm
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Coupling from the past

Detection of a coupling time

Look for a time such that the red proposal is accepted for all

possible blue trajectories.
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Bound the number of squares at the bottom and you bound the

acceptation ratio.
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Examples

Directed polymers in Z
Draw U(i , j) i.i.d. of Bernoulli law (i ∈ N, j ∈ Z). Take (Xn) the
simple random walk in Z with X0 = 0. Set Gi (j) = exp(−βU(i , j)).
To draw a trajectory of length n, the cost is O(n2).

Figure: 500 trajectories
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Examples

Directed polymers in Z

Figure: 100 trajectories
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Examples

Radar detection
Transition (in R) : M(x , dy) = 1√

2πb2
exp
(
− (y−ax)2

2b2

)
,

Gn(x) =
1√
2πc2

exp
(
− (x−Yn)2

2c2

)
, where (Xn) has transition M and

Yn = Xn + cεn (εn ∼ N (0, 1)).
You can bound the number of o�spring of any trajectory by

discretizing the space (works for a ∈ [−1, 1]).

� : X

� : Y

� : perfect simula-

tion
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