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The Hidden Markov model (HMM)

HMM is a time series model comprised of with two processes
{Xe € X, Y: € Y}i>1
{Xt}+>1 is the hidden Markov process with initial and transition densities uo, fo

X1~ po(x),  Xe|(Xue—1 = x1:e—1) ~ fo(x|xe—1),

{Y:}+>1 is the conditionally independent observation process.
Yel({Xi}iz1 = {xi}iz1, { Yitize = {xi}ize) ~ go(y[xt).

We assume that the model is parametrised by # € ® C RY, © compact.
The actual observed data is Y, Y2, ... assumed to be generated by 60" € ©
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ABC in HMMs

® Given Y1, Vs, ...V, generated from the HMM {Xt, Yi}e>1, we seek for
the MLE of 6" which maximises the log-likelihood of the observations:

OumLe = arg maxy g log po( Vi)

pol¥i) = [ nol)eo (o) [ ] Gsloecr ) i

£=2
@ We are interested in MLE in HMMs where gy is intractable:

@ either not analytically available,
@ or prohibitive to calculate

@ However, we can sample from gy(-|x) as follows: There is a density vy on
U and a function 79 : U X X :— Y such that

@ Draw U ~ vy(+|x), vg rather simple.
o Y =m7(U,x) ~ go(-[x)

@ The assumption of vy and 7y is the core of ABC.
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Standard ABC MLE for HMM

The ABC approximation to the likelihood of Y1., for some fixed 6 € © is

Po (Y1 € B, ..., Ya € By ) o pj(Vin)
= / ,ue(Xl)gg(\A/ﬂXl) [H fQ(Xt717Xt)g§(§/t|Xt) dxi:n
xn t=2

By, C Y the ball around y with radius € and the perturbed observation density is
. 1
go(ylx) = B g9(U|X)”B;(U)d“
|By|

Standard ABC MLE: Oagc MLE,n = arg maxgpceo pg(f/l;,,).

@ We are maximising the likelihood of observations Yi., as if they were
generated from the perturbed HMM {X;, Y¢}is1 = { X, Yi + €Z: }e1.

@ This perturbed HMM {Xi, Y, }+>1 has transitional laws fy and g§.

@ 0Oasc MLE,» converges to a 0 # 0%, the bias is proportional to e.
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Noisy ABC MLE for HMM

@ Standard ABC MLE maximises the likelihood Yi., under the law of the
Rerturbed HMM {X¢, Y{ }+>1 with transitional laws f, and g5 although
Y1.n are generated from the HMM {X;, Y;}:>1 with transitional laws

f@: 86
@ This model discrepancy is alleviated by Noisy ABC MLE:

@ Add noise to data:
Vi=Yi+eZ, t=1,...,n where Z & U,
@ Maximise the likelihood of the noisy data
ON-ABC MLE,n = arg max Po(Yin)-

@ Noisy ABC noted by Wilkinson (2008), Fearnhead and Prangle (2010)

@ On.aBC MLE,n is asymptotically unbiased but statistically less efficient.
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Two extensions

@ Use of summary statistics: If the data sequence )A’l, RN Y, is too
high-dimensional, use

S(Ya,..., V) =5(N),...,S(Va)
for some function S(-) that maps from R™ — [R’”/, m < m.

@ Markovian structure of the data is preserved.
o If the mapping S(-) preserves the identifiability of the system, then
conclusions continue to hold.

@ Smoothed ABC: Using other types of noise can preserve the conclusions
(and it is sometimes necessary!) In general,

{Xe, yte}tzo = {Xe, Yt + €Zi }e>0

i . )
where the {Z:},., are such that Z; "<" K, & is a centred kernel density,
say Gaussian. Than the perturbed observation density will be

g0 = [l ie - o]
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Recall

@ Standard ABC MLE: Maximise p§(Yi.,) under the law of HMM
{Xt, Y£ }e>1 with transitional laws fy and g5.

@ Noisy ABC MLE: Maximise pg(\A/f:,,) under the law of HMM {X;, Y }:>1
with transitional laws fy and gg.

But how to implement these ABC MLE ideas?
ABC is based on sampling Y;. So, how about working with the HMM
{(Xe, Y), Y }ex1 with

® either Y = V; (ABC MLE)

@ or Y = Y¢ (noisy ABC MLE)
This HMM may be OK for SMC filtering (by sampling Y: we can get rid of
having to calculating gp); but its transitional law is still intractable - hence of

limited use.
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Implementing ABC MLE

Recall the intermediate variables U; and 749(Us, x¢) to sample from gy (+|x:).
Construct the modified HMM {R; = (X, Ut), Y{ }e>1 where

Ue M vg,  YE=10(X) + €2, Z Mk,

@ This HMM has tractable initial and transitional densities mg, g9 and hg:

me(r) = po(x)ve(ulx), go(r'|r) = fo(x'[x)pe (u'[x"),

1 1

holyIn) = = [2 (v = ()]

@ Can be shown that MLE for this HMM indeed maximises the ABC
likelihood
itvin = [ momni(vile) ol s,
(X xu)n t=2

o If Y, = Y1, = Standard ABC MLE,
o If Y&, = Y&, = Noisy ABC MLE
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Implementing ABC MLE: Gradient ascent MLE

Given Y7, = y1.n, we want to maximise pg(Y:,) for the HMM
{R: = (X, Ur), Y}e>1 whose law is given by

1 71
7o) = po(Ia(ulx), - o(r' 1) = ol BOmae X)), olylr) = £ [ <y = ()]
Gradient ascent MLE: Given the estimator ¢; at iteration /,
9i+1 = 91’ + 'Yiv9 |0g Pg()/f:n)b:g,.

Step size sequence {v;}i>o satisfy Y. v =00, >_. 77
By Fisher's identity

Vo log pi(yin) = Eo | > Vologqo (Re| Re—1) + Vo log ho (Y{|R:)| Yin = yi

t=1

st(Re—1,Re)

Note: Vg log hg (y|r) = Vg logk [%(y - Tg(r))} requires smooth .

ABC MLE in HMM



Implementing ABC MLE

Online calculation of the gradient

Vlog pj(yin) = Eo | > Vlogqo (R Re-1) + Vlog hy (Y{|R:)| Yin = yin

t=1

st(Re—1,Rt)

Online smoothing of Sp.n(r.n) = >, so(ri—1,r) is available via a recursion
(Del Moral et al, 2009)

Tg,n(rn) = [EQ [SG,n(Rl:n)|Rn = In, yle;n = yl:n]
=Eo[To,n—1(Rn—1) + so(Rn—1, rn)| Yiin—1 = Yi:n—1] (1)

\Y% IOg p;(yl:n) =Ly [T9,n(Rn)| Yle:n = yl:n] (2)

@ Equation (1) requires integration w.r.t

po(drn—1ly1:n—1)fo(rnlra—1)
o(dra—1|y1n—1,m) = .
Po(drn-1lysn-1, ) fPe(dfn—1\y1:n—1)f9(fn\fn—1)dfn—1

@ Equation (2) requires integration w.r.t. pg(dra|yi:n)
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SMC approximation to the gradient

@ Exact calculation of forward smoothing recursion for is rarely the case.

@ A stable SMC approximation are available:
Assume we run a particle filter for the HMM {R,, Y} },>1 to obtain
approximations to {pe(dra|y1:n) }n>1

W (dralysn) = ZW o (drn), ZW

At time we calculate
o fori=1,....N
o [TOs(RD+ Rﬁ”)} W25 (ROIRY)
Tnl = ) 7
> Wl (ROIREY)
o VVlog ps(yrn) = SN, THOIWY
@ This algorithm requires O(N?) calculations per time n.
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Online gradient ascent MLE

@ The batch gradient ascent MLE algorithm may be inefficient when n is
large

@ An alternative to the batch algorithm is online gradient ascent MLE. (Del
Moral et al (2011), Poyiadjis et al (2011)): Given y1.,—1, assume we have
the estimate 0,_1. When y, is received, we update

9n = en—l + 'ang |Og pG(_yn|y1:n—1)‘

0=6p_1 ’

@ One SMC approximation of Vy log pg(yn|yi:n—1) is (Poyiadjis et al,
2011)
N N N
Vo log po(yn|y1:n-1) = Vg log po(y1:n) — Vi log po(y1:n-1)

o A (slightly) different approximation uses the filter derivate (Del
Moral et al, 2011):

@ Stability of the SMC online gradient ascent algorithm is
demonstrated (Del Moral et al, 2011).
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Special case: i.i.d. random variables

@ {Yi}ti>1 areiid. wrt. go(').
@ We generate U € U from pgp, and by applying a transformation function
Tg : U — Y so that 79(U) ~ go.
@ po(Yy|Yen_1) = po(Yys) = the batch and online update rules reduce to
@ Batch gradient ascent: Given Y7, = yi.,, at iteration i

n
0i = 0i—1+ i Z Vo log Pa()/r)‘eze(,v_n

t=1

@ Online gradient ascent: when Y = y, is received

On = On1 + Vo log po(y)|,_, -

Vologply) = [ [Vologvolu) + Totog (vl pouly)s, (3

@ The original O(N?) algorithm reduces to an O(N) algorithm = one can
use Monte Carlo with more samples.
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Controlling stability of the gradient

@ If the additional gradients Vg log qg(r’|r) or Vg log hg(y|r) have very high or
infinite variances; we expect failure of gradient ascent MLE (e.g. a-stable).
@ In particular, assuming x = A/(0,1),

Volog hy (Y¥|R) = 5 (¥ = 70(R))Vara(R)

To overcome this problem, we can transform the observations \A/k using a
one-to-one differentiable function ¢ : Y — V.

@ Then, we perform ABC MLE for {(X¢, Ut), th‘e}tzl where this time
YV = (Ye) + €Zi, Ze ~PN(0,1), t>1

@ |In this case, hg(y|r) changes to hg’(y\r) = N(y;¥(1o(r)), €2).
@ We choose v such that the gradient of the new log-observation density

Vg log hy (YV<|R) = = [Y¥“ = ¥(79(R))]| Vouo(ra(R))

o?
has smaller variance than it would have if no transformation were used.
@ In noisy ABC MLE, we obtain the noisy data by Yf’w = P(Yr) + eZs.
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Numerical examples
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MLE for a-stable distribution

A(a, B, 1, ) is the a-stable distribution where its parameters,
0= (a,B,pu,0) € ©=(0,2] x [-1,1] x R x [0, 00),

are the shape, skewness, location, and scale parameters, respectively.
We generate from A(c, 3, i, o) by sampling U = (UY, U®)), where
UY ~ Unif(—7/2,7/2) and U® ~ Exp(1) independently, and setting

Y :=719(U) := oto,g(U) + .
(1-a)/a

S 6slna +Ba /3 (COS +Ba ﬁ)) O(#].
a, (cos(UM))T/ex ’
ta,s(U) =
_ [( +BUW) tan U mo (%)} a=1
2
ta (ﬁtan z2)

To 1/2a
Bag=—""27 5 ;5= (1+Btn27ra)
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MLE for a-stable distribution

@ We want to use noisy ABC MLE with Gaussian x for A(a, 83, u, o)

@ Variance of the A(a, 3, i, o) is infinity, unless @ = 2; hence the gradients
Vo log hg(Y|Ut) are not stable when Y = Y; + 0. Z:.

@ Instead, we propose using the transformation 1) = tan~! to have
\A/f’w = tan_l(s\’t) + eZ;
to make the gradient ascent algorithm stable. Then we have
hy (v|u) = N(y; tan ™ [re(u)], €*)

VgTo(u)

Ve log hy (y|u) = Eiz Ly = tan [ (u)l] T
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online gradient ascent noisy ABC MLE for a-stable

P } :

Figure: On the left: Online estimation of a-stable parameters from a
sequence of i.i.d. random variables transformed with tan=!(-) using online
gradient ascent noisy ABC MLE. True parameters are § = (1.5,0,0,1).
On the right: Gradient of incremental likelihood for the a-stable
parameters.
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ABC MLE vs Noisy ABC MLE: Bias
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Figure: Online gradient ascent estimates (averaged over 50 runs) using
noisy smoothed ABC MLE and smoothed ABC MLE. For the noisy
smoothed ABC MLE, a different noisy data sequence is used in each run.
True parameters (a, 3, 1, 0) = (1.5,0.5,0,0.5) are indicated with a
horizontal line.
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MLE for g-and-k distribution

The g-and-k distribution is determined by (A, B, g, k, ¢) and is defined by its
quantile function Qp, which is the inverse of the cumulative distribution
function Fy

e—&%(u)

Qo(u) = Fg_l(u) =A+B [1 + c1 —

m} (1+ ¢(u)2)kq5(u), ue(0,1).

where ¢(u) is the u'th standard normal quantile. The parameters
0=(g,k,A B) € ©®=Rx(—0.5,00) xR x [0,00) are the skewness, kurtosis,
location, and scale parameters, and c is usually fixed to 0.8. Note that Qg in is

differentiable w.r.t. 8, so the gradient ascent algorithms are applicable.
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Online gradient ascent noisy ABC MLE for g-and-k
distribution
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Figure: Mean and the variance (over 50 runs) of online gradient ascent
estimates using noisy ABC MLE. Same noisy data sequence is used in
each run. True parameters (g, k, A, B) = (2,0.5, 10, 2) are indicated with
a horizontal line.
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Batch gradient ascent noisy ABC MLE for g-and-k
distribution

Batch gradient ascent ABC MLE algorithm on 500 data sets of n = 1000 i.i.d.
samples from the same g-and-k distribution.

g - mean: 2.004 var: 0.0151 k- mean: 0.503 var: 0.0021 A~ mean; 9.995 var: 0.0052 B - mean: 1.996 var: 0.0213
0.1 o o,

o o o o
15 2 25 03 04 05 06 07 96 98 10 102 104 15 2 25 3
9 [} A B

Figure: Approximate distributions (histograms over 20 bins) of the
estimates for 500 different data sets with § = (2,0.5,10,2)

The mean and variance of the MLE estimates for (g, k, A, B) are
(2.004, 0.503,9.995,1.996) and (0.0151, 0.0021, 0.0052, 0.0213) respectively.
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HMM example: The stochastic volatility model with
symmetric a-stable returns

@ The model for { X, Yi}i>1 is:
2

¢2
Yil (X = xk) ~ %’ A(a,0,0,1), t>1. (4)

N(O ) Xk = @Xeo1 +0x Vi, Vi, ~N(0,1), k>2,

® Noisy ABC MLE for V¢ = tan *(Y4) 4+ eZ, Zx ~N(0,1).
@ The densities 7y, qo, and hg of the HMM {Rk = (Xk, Uk)7 Y,f}k21

1 )

mo(r) = N (%0, 0%/ (1 = 6*) Ui /2:n/2 (4" Yo, 00 (V)™

1 e)

a0(r'|r) = N (s 6%, 0%) ~Uin 22 (0" D) jo,00 (@)™

he,y (y|r) = N(y;tan™ (ex/zta,o(U)),UfL
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HMM example: The stochastic volatility model with
symmetric a-stable returns: online gradient ascent noisy

ABC MLE
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Figure: Online estimation of SVaR parameters using online gradient
ascent algorithm to implement noisy ABC MLE. True parameter values
6 =(1.9,0.9,0.1) are indicated with a horizontal line.
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HMM example: The stochastic volatility model with

symmetric a-stable returns: online EM noisy ABC MLE («
known)

1 12 14
num. of samp. () 10

Figure: Online estimation of SVaR parameters using the online EM
algorithm to implement noisy ABC MLE. True parameter values
6 = (1.9,0.9,0.1) are indicated with a horizontal line.
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Conclusion

@ Noisy ABC MLE for HMMs is a consistent method for
parameter estimation

@ SMC implementations are practical: Gradient ascent, EM, etc.
@ Stability should be concerned.

@ Future work: sharper error analysis, new methods, new
applications ...7
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