
Probability at Warwick
Young Researchers Workshop

Trickle-down growth models,
Doob-Martin boundaries,
and random matrices

Steven N. Evans

University of California at Berkeley

July, 2010

Steven N. Evans Probability at Warwick Young Researchers Workshop



THIS VERSION OF THE NOTES IS INCOMPLETE.
I WILL ADD TO THEM DURING THE WORKSHOP.
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Classical Pólya urn

Start with a red and green ball in an urn.

At each point in time, pick a ball uniformly at random from the urn and
replace it along with one of the same color.
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Pólya sequences

Let µ be a finite measure on a Polish space E.

Say that a sequence {Xn}∞n=1 of r.v. with values in E is a Pólya sequence
with parameter µ if for every Borel set B ⊆ E

P{X1 ∈ B} =
µ(B)

µ(E)
(1)

and
P{Xn+1 ∈ B |X1, . . . , Xn} =

µn(B)

µn(E)
(2)

where

µn := µ+

n∑
i=1

δXi

and δx denotes the unit point mass at x.

The successive draws in the classical Pólya urn is a Pólya sequence with
E = {red, green} and µ{red} = µ{green} = 1.
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For finite E, the sequence {Xn}∞n=1 represents the results of successive
draws from an urn where initially the urn has “µ{x} balls of color x” and,
after each draw, the ball drawn is replaced and another ball of its same
color is added to the urn.

Without the restriction to finite E, for any Borel measurable function φ
from E to another space F , the sequence {φ(Xn)}∞n=1 is a Pólya sequence
with parameter µ ◦ φ−1, where µ ◦ φ−1(A) = µ{x ∈ E : φ(x) ∈ A}.
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Dirichlet distributions

Recall that a random variable (Z1, . . . , Zn) taking values in the simplex

{(z1, . . . , zn) : zk ≥ 0 ∀k,
∑
k

zk = 1}

has a Dirichlet distribution with parameter (α1, . . . , αn) if (Z1, . . . , Zn−1)
has density

Γ(
∑
k αk)∏

k Γ(αk)

∏
k

z
αk−1
k ,

where zn := (1−
∑n−1
k=1 zk).

Exercise: Compute the joint moment P[
∏
k Z

mk
k ] for mk ∈ N0.

Note: I will usually use P[·] for expected value.
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Ferguson random measures

Let µ be a finite Borel measure on the Polish space E.

A random probability measure µ∗ on E has a Ferguson distribution with
parameter µ if for every finite partition (B1, . . . , Br) of E the vector
(µ∗(B1), . . . , µ∗(Br)) has a Dirichlet distribution with parameter
(µ(B1), . . . , µ(Br)) (when µ(Bi) = 0, this means µ∗(Bi) = 0 with
probability 1).
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Blackwell – MacQueen theorem

Theorem 1

Let {Xn}∞n=1 be a Pólya sequence with parameter µ. Then,

(i) µn/µn(E) converges with probability 1 as n→∞ to a limiting discrete
measure µ∗,

(ii) µ∗ has a Ferguson distribution with parameter µ,

(iii) given µ∗, the variables X1, X2, . . . are independent with distribution µ∗.
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Proof. Suppose first that E is finite, say E = {1, 2, ..., r}. Let µ∗, {Xn}∞n=1 be
variables whose joint distribution is defined by (ii) and (iii). If πn is the
empirical distribution of X1, . . . , Xn, then it follows from the strong law of
large numbers that πn → µ∗ with probability 1 as n→∞. Since

µn
µn(E)

=
µ+ nπn
µ(E) + n

,

(i) follows.
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It remains to show that {Xn}∞n=1 is a Pólya sequence with parameter µ, which
is equivalent to

P(A) =
∏
x

µ(x)[n(x)]

µ(E)[n]
, (3)

where A := {X1 = x1, . . . , Xn = xn}, n(x) denotes the number of i with
xi = x, and a[k] = a(a+ 1) . . . (a+ k − 1). Since

P(A |µ∗) =
∏
x

µ∗(x)n(x),

we get

P(A) = P

[∏
x

µ∗(x)n(x)

]
. (4)

That the right sides of (3) and (4) are equal is just the formula for the
moments of Dirichlet distributions. The case of general E follows by a
straightforward approximation procedure.
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One perspective on the Blackwell – MacQueen theorem

Recall that when E is finite,

P{X1 = x1, . . . , Xn = xn} =
∏
x

µ(x)[n(x)]

µ(E)[n]
,

where n(x) := {1 ≤ i ≤ n : xi = x}. Note the symmetry. The symmetry
holds for general E.

If Q is the distribution of {Xn}∞n=1 and Fµ is the distribution of a
Ferguson distribution with parameter µ, then

Q(B) =

∫
ν⊗∞(B) Fµ(dν).

That is, Q is a convex combination of product measures with identical
factors.
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Exchangeability and spreadability

Consider an infinite random sequence ξ = {ξn}∞n=1 ∈ E∞ where E is a
Polish space.

Say that ξ is exchangeable if

(ξk1 , ξk2 , . . . )
d
= (ξ1, ξ2, . . . ) (5)

for any finite permutation (k1, k2, . . . ) of N.

Say that ξ is spreadable if (5) holds for all strictly increasing sequences
k1 < k2 < . . .

Note: exchangeable ⇒ spreadable ⇒ stationary.
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Invariant events

If ξ is stationary, an event A ∈ F is invariant if
A = {ω ∈ Ω : (ξ1(ω), ξ2(ω), . . .) ∈ B} for some Borel set B ⊆ E∞ such
that

P ({(ξ1, ξ2, . . .) ∈ B}4{(ξ2, ξ3, . . .) ∈ B}) = 0.

Exercise: Show that the invariant events form a σ-field Iξ and that this
σ-field is generated by the limits

lim
n→∞

1

n

n∑
k=1

f(ξk, . . . , ξk+m−1)

for m ∈ N and bounded Borel functions f : Em → R. (Why do these
limits exist?)
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de Finetti’s and Ryll–Nardzewski’s theorems

Theorem 2

The following conditions are equivalent for any infinite random sequence ξ
taking values in a Polish space E:

(i) ξ is exchangeable;

(ii) ξ is spreadable;

(iii) P{ξ ∈ · | η} = η ⊗ η ⊗ · · · a.s. for some random probability measure η on
E.

The random measure η is then a.s. unique and equals P{ξ1 ∈ · | Iξ}.

Exchangeable probability measures are convex combinations of product
measures with identical factors.
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Convex sets and extreme points

Suppose that E is a real vector space and A ⊆ E.
A point x of A is an extreme point of A if the relations

a ∈ A, b ∈ A,
x = (1− λ)a+ λb,
0 ≤ λ ≤ 1,

together entail that x is either a or b.

Write exA for the extreme points of A.
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Exercise

Show that the extreme points of the convex set of exchangeable probability
measures on E∞, where E is a Polish space, are the product measures with
identical factors.
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The Krein-Milman Theorem

Theorem 3

Let E be a real, Hausdorff, locally convex, topological vector space and K a
nonempty, compact, convex subset of E. Then K is the closed convex hull in
E of the set of extreme points of K.

Note: A consequence of the Krein-Milman theorem is that any point x ∈ K
can be represented as

x =

∫
y λ(dy)

⇔

φ(x) =

∫
exK

φ(y)λ(dy), ∀φ ∈ E∗

for some probability measure λ supported on the closure of exK.
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Exercises

Suppose that E is the Hilbert space
`2 := {(x1, x2, . . .) ∈ RN :

∑
n x

2
n <∞}. Put

K := {(x1, x2, . . .) ∈ E :
∑
n 2nx2

n ≤ 1}. Show that K is compact and
convex. Show that exK = {(x1, x2, . . .) ∈ E :

∑
n 2nx2

n = 1} and that
the closure of exK is K, so Krein-Milman doesn’t say much in this case.

Give an example of a compact, convex subset K ⊂ Rd for which exK is
not closed.
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Exercise – Birkhoff’s theorem

Suppose that P is an n× n matrix that is doubly stochastic; that is, P
has non-negative entries and each row and column add to 1. Use
Krein-Milman to show that there are permutation matrices Πk and pk ≥ 0
with

∑
k pk = 1 such that P =

∑
k pkΠk (a permutation matrix is a

matrix that has a single 1 in each row and column and zeros elsewhere).
Hint: Note that if P is not a permutation matrix, then for some N there
are pairs of indices (i1, j1), (i2, j2), . . . , (i2N , j2N ) such that P (ik, jk) > 0,
ik = ik+1 if k is odd, and jk = jk+1 if k is even (with the convention
2N + 1 = 1).

Recall that [n] := {1, 2, . . . , n}. Set

S := {(k1, . . . , kn) ∈ [n]n : ki 6= kj , i 6= j}.

Show that there is an S-valued Markov chain
{Xm}∞m=0 = {(Xm(1), . . . , Xm(n))}∞m=0 such that for each i the process
{Xm(i)}∞m=0 is a Markov chain with transition matrix P .
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Uniqueness?

de Finetti’s theorem asserts that an exchangeable probability measure is a
unique convex combination of product measures.

If K is a convex subset of Rd such that each x ∈ K is a unique convex
combination of points in exK, then K is a simplex.

How is the set of exchangeable probability measures like a simplex?
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Another perspective on the Blackwell – MacQueen theorem

Let {Xn}∞n=1 be a Pólya sequence with parameter µ.

Put Yn :=
∑n
k=1 δXk and Y0 := 0. Show that {Yn}∞n=0 is a Markov chain

(Exercise). Write P (y, dz) := P{Yn+1 ∈ dz |Yn = y}.
Recall that µ∗ := limn→∞

1
n
Yn exists and the invariant σ-field of

{Xn}∞n=1 = tail σ-field of {Yn}∞n=0 = σ(µ∗) =: T .
If Z = Φ(µ∗) is a bounded, non-negative, T -measurable r.v., then

P [Z |Y0, . . . , Yn] =

∫
Φ(ν) Fµ+Yn(dν) =: Ψ(Yn)

is a martingale and ∫
Ψ(z)P (y, dz) = Ψ(y)

– the function Ψ is regular or harmonic.

Conversely, if Ψ is a bounded, non-negative, harmonic function, then
{Ψ(Yn)}∞n=0 is a martingale, Ψ(Yn) = P [Z |Y0, . . . , Yn] for some
T -measurable Z, and Z = Φ(µ∗) for some Φ.
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Recall that
y 7→

∫
Φ(ν) Fµ+y(dν)

is a harmonic function.
Note that ∫

Φ(ν) Fµ+y(dν) =

∫
Φ(ν)

dFµ+y

dFµ
(ν) Fµ(dν).

This suggests that

y 7→ dFµ+y

dFµ
(ν)

is a non-negative harmonic function for each ν and any non-negative
harmonic functions is a unique non-negative “linear combination” of these
functions.
Equivalently, the non-negative harmonic functions that take the value 1 at
the measure 0 form a convex set, and perhaps an arbitrary such function h
has a representation as

y 7→
∫
dFµ+y

dFµ
(ν)π(dν)

for some unique probability measure π on the set of probability measures
on E.
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Exercise

Suppose that E = {1, 2, . . . , r}, so that the state space of
Yn =

∑n
k=1 δXk may be thought of as (N0)r.

Show that

hν(y) :=
dFµ+y

dFµ
(ν)

=
(
∑
k(µk + yk)− 1)∑

k yk∏
k(µk + yk − 1)yk

∏
k

ν
yk
k ,

where (a)` := a(a− 1) · · · (a− `+ 1) is the usual Pochhammer symbol.

Show by direct calculation that the function hν is harmonic for Y .

Let P (y, z) be the transition matrix for Y . Show that

1

hν(y)
P (y, z)hν(z)

is also a transition matrix. What is the corresponding Markov chain?
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Choquet Theory – existence

Suppose that E is a locally convex topological vector space and K is a
non-empty, metrizable, compact, convex subset of E.

Let µ be a probability measure on K. A point x in E is said to be a
barycenter of µ if f(x) =

∫
K
f dµ for every continuous linear functional f

on E. (We will sometimes write µ(f) for
∫
K
fdµ.)

Fact: Each µ has a unique barycenter. (Exercise)

If µ is a measure on K and S is a Borel subset of K, we say that µ is
supported by S if µ(K\S) = 0.
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Proposition 4

The extreme points of the compact, convex set K form a Gδ set.

Proof: Suppose that the topology of K is given by the metric d, and for each
integer n ≥ 1 let Fn := {x : x = 2−1(y + z), y, z ∈ K, d(z, y) ≥ 1/n}. It is
easily checked that each Fn is closed, and that a point x of K is not extreme if
and only if it is in some Fn. Thus, the complement of the extreme points is an
Fσ.
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Proposition 5

Suppose that x ∈ K. Then x is an extreme point of K if and only if the point
mass δx is the only probability measure on K with barycenter x.

Proof. Exercise.
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Proposition 6

The compact, convex set K is affinely homeomorphic to a (norm-)compact,
convex subset of a Hilbert space.

Proof. This is well-known. Try it as an exercise, but it is rather difficult.
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Theorem 7

Each x ∈ K is the barycenter of a probability measure µ supported by exK.

Proof. We may suppose that K is a compact convex subset of a Hilbert space
(H, ‖‖). Put

γ := sup

{∫
K

‖h‖2 µ(dh) : x =

∫
K

hµ(dh)

}
.

Find {µn} such that x =
∫
K
hµn(dh) for all n and γ = limn

∫
K
‖h‖2 µ(dh).

The probability measures on K are weak∗ compact, so we can suppose that
µn → µ weak∗ for some µ.
Note that x =

∫
K
hµ(dh) and γ =

∫
K
‖h‖2 µ(dh).
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Consider u ∈ K of the form u = (v + w)/2 for v 6= w. Then,

‖v‖2 + ‖w‖2

2
=
∥∥∥v + w

2

∥∥∥2

+
∥∥∥v − w

2

∥∥∥2

= ‖u‖2 +
∥∥∥v − w

2

∥∥∥2

.

Suppose that y =
∫
K
hσ(dh) where σ =

∑
k pkδuk with u1 = u. Put

τ := p1
1

2
(δv + δw) +

∑
k>1

pkδuk .

Then, y =
∫
K
hσ(dh) and∫

K

‖h‖2 σ(dh) <

∫
K

‖h‖2 τ(dh).

Consequently, if µ is not supported on exK it can be “improved” (this takes
some work involving approximation by discrete measures).
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Choquet Theory – uniqueness

Assume wlog that K is contained in a closed hyperplane which misses the
origin.

The convex set K̃ := {αx : α ≥ 0, x ∈ K} is the cone generated by K.

The convex cone K̃ induces a translation invariant partial ordering on E:
x ≥ y if and only if x− y ∈ K̃.

We call K a simplex if K̃ is a lattice in the partial order induced by K;
that is, if each pair x, y in K̃ has a least upper bound. (We say that z is
the least upper bound for x and y if z ≤ w whenever w ≥ x and w ≥ y.)
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K

0

z

x y
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Exercise

Let K := {(x, y, z) ∈ R3 : |x| ≤ 1, |y| ≤ 1, z = 1}.

Show that there are points of K that are not unique convex combinations
of the extreme points.

Show that K̃ is not a lattice.

Show for there exists a′, a′′ ≥ 0 and b′, b′′ ∈ R3 such that
(a′K + b′) ∩ (a′′K + b′′) is non-empty but not of the form aK + b for
some a ≥ 0 and b ∈ R3.

Steven N. Evans Probability at Warwick Young Researchers Workshop



Theorem 8

Suppose that K is a non-empty, metrizable, compact, convex subset of a
locally convex space E. The following assertions are equivalent

(1) K is a simplex.

(2) For all a′, a′′ ≥ 0 and b′, b′′ ∈ E, either (a′K + b′) ∩ (a′′K + b′′) is empty
or of the form aK + b for some a ≥ 0 and b ∈ E.

(3) For each x ∈ K there is a unique probability measure µ supported on exK
such that µ has barycenter x.
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Transition matrices and Green kernels

Let I be a countable set and let Π be a sub-stochastic I × I matrix. Define the
Green kernel Γ of Π as the I × I matrix

Γ(i, j) :=

∞∑
n=0

Πn(i, j) ≤ ∞

so that, formally, Γ = (I −Π)−1.
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Markov chains

Let X = {Xn}∞n=0 be a Markov chain on I (with coffin state ∂ adjoined) with
1-step transition matrix Π. That is,

Pi0{X1 = i1, . . . , Xn = in} = Π(i0, i1)Π(i1, i2) . . .Π(in−1, in).

Then,
Γ(i, j) = Pi[time spent by X in j].
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Transience

ASSUMPTION. There exists a reference point b in I such that

0 < Γ(b, j) <∞, ∀ j ∈ I.

Consequently,

(i) the chain can get to any state from state b;

(ii) every state is transient.
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Martin kernels

The strong Markov property of X shows that

Γ(i, j) = Pi{Dj <∞}Γ(j, j) ≤ Γ(j, j), ∀ i, j, (6)

where
Dj := inf{n ≥ 0 : Xn = j}.

Define the Martin kernel κ on I × I as

κ(i, j) :=
Γ(i, j)

Γ(b, j)
. (7)

Exercise: Show that

κ(i, j) =
Pi{X hits j}
Pb{X hits j} .
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It follows from (6) (Exercise) that

κ(i, j) ≤ κ(j, j) <∞, ∀ i, j. (8)

It is another easy consequence of the strong Markov property (Exercise) that

κ(i, j) ≤ κ(i, i) <∞, ∀ i, j. (9)

Steven N. Evans Probability at Warwick Young Researchers Workshop



Excessive functions

A function f from I to R is called excessive (respectively, regular) (for Π) if

(i) 0 ≤ f <∞;

(ii) Πf ≤ f (respectively Πf = f).

The set of excessive functions forms a cone C in RI . The topology of C is the
one induced by that of RI , that is, the topology of pointwise convergence.

Exercise: Show that if f is excessive (resp. regular), then {f(Xn)}∞n=0 is a
super-martingale (resp. martingale).
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Because of our standing assumption,

θ(j) := sup
n

Πn(b, j) > 0,

and since a function f in C satisfies

f ≥ Πf ≥ Π2f ≥ . . . ,

we have
f(b) ≥ θ(j)f(j), ∀j. (10)

In particular, every f in C may be written as

f = f(b)f∗, f∗ ∈ S := {f ∈ C : f(b) = 1}.

The study of the cone C thus reduces to the study of its section S.
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Representation of excessive function – existence

Proposition 9

The set S is a compact convex metrizable subset of the locally convex linear
topological space RI .

Theorem 10

If f ∈ S then there exists a probability measure ν on supported on exS such
that

f(i) =

∫
exS

ξ(i) ν(dξ) (11)
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Representation of excessive function – uniqueness

Theorem 11

Furthermore, the measure ν is uniquely determined by the excessive function f .

We know Theorem 11 will follow from the next lemma.

Lemma 12

The cone C is a lattice in its intrinsic order.

Note: The intrinsic order � on C is defined as follows: for x, z ∈ C, we write
x� z if ∃u ∈ C with x+ u = z.
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Let µ be a (non-negative) measure on I such that

Γµ(i) :=
∑
j∈I

Γ(i, j)µ(j) <∞, ∀ i.

Then Γµ is called the potential (due to the charge µ).

Since
ΠΓµ = Γµ− µ ≤ Γµ, (12)

the function Γµ is excessive.

The equation
µ = Γµ−ΠΓµ (13)

determines µ from Γµ, and

ΠnΓµ =
∑
k≥n

Πkµ ↓ 0 as n→∞. (14)
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Riesz decomposition theorem

Theorem 13

If f is excessive, then f has a unique decomposition

f = ν + Γµ (15)

where ν is regular and µ is a measure on I. Indeed,

ν = lim
n

Πnf, (16)

µ = f −Πf (17)
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Proof:· Define µ by (17). Then µ(i) ≥ 0, ∀ i, and

(I + Π + . . .+ Πn)µ = f −Πn+1f.

The Monotone Convergence Theorem yields (15) with ν as is (16). The
properties (13) and/or (14) make the uniqueness assertion obvious.
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We can now prove Lemma 12 by showing that if

f1 = ν1 + Γµ1, f2 = ν2 + Γµ2,

then the greatest lower bound and least upper bound operations ∧∧ and ∨∨
witnessing the lattice structure of C in its intrinsic order is exhibited by the
equations

f1 ∧ ∧f2 = lim
n

Πn(ν1 ∧ ν2) + Γ(µ1 ∧ µ2),

f1 ∨ ∨f2 = f1 + f2 − f1 ∧ ∧f2,

where

(ν1 ∧ ν2)(i) := ν1(i) ∧ ν2(i), (µ1 ∧ µ2)(i) := µ1(i) ∧ µ2(i)
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Exercise

Verify the above claim. It may help to note that any regular function
dominated by a potential (in the usual partial order on functions) is zero and so
if ν is a regular function with ν ≤ f1 ∧ f2, then ν ≤ limn Πn(ν1 ∧ ν2).
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Exercise

Suppose that I = N× N, Π((i, 1), (i+ 1, 1)) = 1
2
, Π((i, 1), (i, 2)) = 1

2
, and

Π((i, j), (i, j + 1)) = 1 for j ≥ 2.

Compute Γ and κ for this chain (there is only one possible choice of
reference point b).

Describe the regular functions explicitly.

Compute explicitly the greatest lower bound of two regular functions in
the intrinsic order.
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Proposition 14

For each j in I the function κ(·, j) is a (non-regular) extremal element of S.
Every extremal element of S that is not of the form κ(·, j) for some j in I is
regular.
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The Martin compactification

Since potential determines charge, the map

φ : I → S ⊂ RI , φ(j) := κ(·, j)

is injective.

Identify I with φ(I) and let F be the compact closure of I( = φ(I)) in S.
The set F is called the Martin compactification of I.

Since the topology of F is inherited from that of RI , the following holds:
For each i, the map κ(i, ·) extends continuously to F , so we have a map
κ : I × F → R+.

For ξ ∈ F\I, we sometimes use the alternative notation κ(i, ξ) for ξ(i).
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Doob-Hunt theorem

Theorem 15

Every extremal element of S is of the form κ(·, ξ) for some ξ in F . Let Fe be
the set of ξ in F for which κ(·, ξ) is extremal. Then each f in S can be written
uniquely as

f =

∫
Fe

κ(·, ξ) ν(dξ) = ν + Γµ

where ν is a probability measure on Fe,

ν :=

∫
Fe\I

κ(·, ξ) ν(dξ)

is regular, and
µ(j) := [Γ(b, j)]−1ν(j).
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Once we establish the first sentence of Theorem 15, the remainder of the
theorem follows from the Choquet results (10) and (11) and we then have
exS = Fe ⊂ F .
It is enough to prove every element f of S may be written as

f =

∫
F

κ(·, ξ) ν(dξ)

for some (not necessarily unique) probability measure ν on F .

This is because it will follow that S is the closed convex hull of F , and the
following result shows that the extremal elements of S are contained in F .
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Proposition 16

Suppose that E is a Hausdorff LCTVS and A is a compact subset of E whose
closed convex hull K is compact. Then each extreme point of K belongs to A.

Proof. Let x be an extreme point of K. If U is any closed convex
neighborhood of 0 in E, then there exist finitely many points ai of A,
1 ≤ i ≤ n, such that the sets ai +U cover A. Let Ki be the closed convex hull
of A ∩ (ai + U). Each Ki is compact. The convex hull of the union of the Ki,
being compact, contained in K, and containing A, must be K itself.
Hence, x =

∑n
i=1 λixi with xi in Ki, λi ≥ 0, and

∑n
i=1 λi = 1. Since x is an

extreme point of K, x must coincide with xi for some i. Thus x belongs to
Ki ⊂ ai + U , and so x belongs to A+ U . Since A is closed and U is arbitrary,
it follows that x belongs to A, as claimed.
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We have now reduced the problem of proving Theorem 15 to that of proving:

Claim: Every element f of S may be written as

f =

∫
F

κ(·, ξ) ν(dξ)

for some (not necessarily unique) probability measure ν on F .
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Proof of the Claim. Fix f in S. Choose a measure β such that

0 < Γβ(i) <∞,∀ i.

By (8), it is enough to choose β so that β(j) > 0, ∀ j, and∑
Γ(j, j)β(j) <∞. Let

fn(i) := min(f(i), nΓβ(i)).

Then fn is excessive, and since fn is dominated by the potential nΓβ, it
follows from (14) and the Riesz theorem that fn is a potential:

fn(i) =
∑

Γ(i, j)µn(j) =
∑

κ(i, j)νn(j), (18)

where νn = Γ(b, j)µn(j).
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Since fn(b) = f(b) = 1 for large n, and κ(b, j) = 1, ∀ j , it follows that (for
large n) νn is a probability measure on F with νn(I) = 1.
Since F is compact metrizable, Pr(F ) is compact metrizable in the weak
topology. Let ν be a sub-sequential limit of {νn} in Pr(F ). Then the
statement follows from (18).
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The following analytical problem remains:

How can we determine the ’extremal’ part Fe of F?
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Example: Simple random walk

Let X be the simple random walk on Zd, d ≥ 3, such that

Π(i, j) =

{
(2d)−1 if |j − i| = 1

0 otherwise

Our standing assumptions hold with the reference state b = 0. It is well known
that

Γ(i, j) ∼ constant|j − i|2−d (|j − i| → ∞)

Since
κ(i, j) ∼ |j − i|2−d/|j|2−d

it is clear that F is the one-point compactification I ∪ {∞} of I and that
κ(i,∞) = 1, ∀i.
Thus, every regular function is constant.
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Example: Space-time coin-tossing

Consider Xn := (Hn, n) where Hn represents the number of heads in n tosses.
Put

I := {(m,n) ∈ Z2 : 0 ≤ m ≤ n}.

Π((m,n); (m+ 1, n+ 1)) = 1−Π((m,n); (m,n+ 1)) =
1

2

Then, for (m,n) and (r, s) in I,

Γ((m,n); (r, s)) =


(
s− n
r −m

)
2−(s−n) if 0 ≤ r −m ≤ s− n

0 otherwise

Taking b = (0, 0), we find from Stirling’s formula that if s→∞ and
r/s→ t ∈ [0, 1] then

κ((m,n); (r, s))→ ht(m,n) := 2ntm(1− t)n−m
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The Martin topology can be regarded as identifying (m,n) in I with
(1 + n)−1(m,n) ∈ R2, with F\I = [0, 1]× {1} and

ht = κ(·, ξ) (ξ = (t, 1) ∈ F\I).

Thus f is a regular element of S if and only if there exists a probability
measure ν on [0, 1] such that

f(m,n) =

∫ 1

0

2ntm(1− t)n−mν(dt) (19)

The Weierstrass Approximation Theorem makes it obvious that ν is uniquely
determined by f in (19). Hence, ht is extremal for every t ∈ [0, 1].
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Probabilistic interpretation of the Martin compactification

Recall that ζ is the life-time of X.

Theorem 17

Almost surely on {ζ =∞}
Xζ− := lim

n
Xn

exists in the topology of F and Xζ− ∈ Fe.

Put
Xζ− := Xζ−1 on {ζ <∞}.

(We are not interested in the case when X starts at ∂.) Recall that b is the
reference state in terms of which the Martin kernel is defined.

Theorem 18

Let
1 =

∫
Fe

κ(·, ξ) ν1(dξ)

be the Martin representation of the (excessive) constant function 1. Then

Pb{Xζ− ∈ B} = ν1(B), B ⊆ Fe.
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Example

To get f(·, ·) = 1 in the space-time coin-tossing example (19), we have to
choose ν to be the unit mass at 1

2
. Thus, Theorems 17 and 18 contain the

strong law for tossing a fair coin.
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Doob h-transforms

Assume that h ∈ S is strictly positive on I.

The Doob h-transform Πh of Π is defined as follows:

Πh(i, j) := h(i)−1Π(i, j)h(j)

Then Πh is sub-stochastic. We have, with obvious notation,

κh(i, j) =
h(b)

h(i)
κ(i, j)

and f ∈ Sh if and only if hf ∈ S.
Thus, F and Fe are unaffected if we change from Π to Πh.

Hence if X(h) is a chain with one-step transition matrix Πh then

X(h)(ζ(h)−) exists in Fe almost surely.

Here ζ(h) denotes inf{n : X(h)(n) = ∂}.

Steven N. Evans Probability at Warwick Young Researchers Workshop



Theorem 19

A strictly positive function h in S is extremal in S if and only if for some single
point ξ of F , we have

X(h)(ζ(h)−) = ξ, almost surely.

Then, ξ ∈ Fe and h = κ(·, ξ).

We say in this case that X(h) is X conditioned to converge to ξ.
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Example: Space-time coin-tossing

Return to space-time coin-tossing and take h = ht for some fixed t ∈ [0, 1].
Then h = κ(·, ξ), where ξ = (t, 1) ∈ F\I, and

Πh((m,n); (m+ 1, n+ 1)) = 1−Πh((m,n); (m,n+ 1)) = t.

Thus, the h-transform corresponds to the case of space-time coin-tossing for a
coin with probability t of heads. By the strong law of large numbers, X(h) → ξ
so that ht is extremal.
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Exercise

Consider the Pólya sequence {Xn}∞n=1 with values in a finite set E for
some parameter µ. Put Yn :=

∑n
k=1 δXk and Y0 := 0.

Show that the points added in Martin compactification may be identified
with space of probability measures on E and the trace of the Martin
topology on these points is homeomorphic to the usual topology of weak
convergence of probability measures.

Show that that with this identification, the h-transformed process
associated with a probability measure ν is the process constructed in the
same manner as Y from an i.i.d. sequence with common distribution ν.
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Complete rooted binary tree

Denote by {0, 1}? :=
⊔∞
k=0{0, 1}

k the set of finite tuples or words drawn
from the alphabet {0, 1} (with the empty word ∅ allowed).
Write an `-tuple (v1, . . . , v`) ∈ {0, 1}? more simply as v1 . . . v`.

Define a directed graph with vertex set {0, 1}? by declaring that if
u = u1 . . . uk and v = v1 . . . v` are two words, then (u, v) is a directed
edge (that is, u→ v) if and only if ` = k + 1 and ui = vi for i = 1, . . . , k.

This directed graph is the complete rooted binary tree (rooted at ∅).
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Finite rooted binary trees

A finite rooted binary tree is a non-empty subset t of {0, 1}? with the
property that if v ∈ t and u ∈ {0, 1}? is such that u→ v, then u ∈ t.

The vertex ∅ (that is, the empty word) belongs to any such tree t and is
the root of t.
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Coding permutations as labeled binary trees

Suppose that r(1), . . . , r(n) is a listing of [n] := {1, 2, . . . , n} in some
order.
Label n of the vertices of the complete binary tree as follows:

Label ∅ with 1.
Successively for 2 ≤ k ≤ n, attempt to label a vertex with k, starting with
the root ∅. If the vertex u we are currently trying to label with k is already
labeled (by some 1 ≤ j ≤ k), next try to label the vertex

u0 if k is before j in the list,
u1 if k is after j in the list.

Stop when we reach an unlabeled vertex.

The set of labeled vertices form a finite rooted binary tree, and we can
recover r(1), . . . , r(n) from the tree and its labels.
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Random permutations

Let {Uk}∞k=1 be i.i.d. uniform r.v. on [0, 1].

Define a random permutation Πn of [n] by requiring that Πn(i) < Πn(j)
if and only if Ui < Uj .

Each permutation Πn is uniformly distributed.

Identify Πn with the ordered list

Rn(1), . . . , Rn(n) = Π−1
n (1), . . . ,Π−1

n (n).

That is,
URn(1) < URn(2) < . . . < URn(n).

The corresponding ordered list for Πn+1 is obtained by inserting n+ 1 into
one of the n− 1 “slots” between the successive elements of the list or into
one of the two “slots” at the beginning and end of the list, with all n+ 1
possibilities being equally likely.

Steven N. Evans Probability at Warwick Young Researchers Workshop



Binary search tree process

Apply the procedure for building labeled rooted binary trees to the
successive permutations Π1,Π2, . . . to produce a sequence of labeled trees
{Ln}∞n=1, where Ln has n vertices labeled by [n].

Exercise: Show that the sequence {Ln}∞n=1 is a Markov chain that evolves
as follows. Given Ln, there are n+ 1 words of the form v = v1 . . . v` such
that v is not a vertex of the tree Ln but the word v1 . . . v`−1 is. Pick such
a word uniformly at random and adjoin it (with the label n+ 1 attached)
to produce the labeled tree Ln+1.
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Unlabeled binary search tree process

If we remove the labels from each tree Ln, then the resulting sequence
{Tn}∞n=1 of finite rooted binary trees is also a Markov chain.

Write Gn (respectively, Dn) for the number of vertices in Tn of the form
0v2 . . . v` (resp. 1v2 . . . v`). That is, Gn and Dn are, respectively, the
sizes of the left and right subtrees below the root ∅.
Note that Gn + 1 and Dn + 1 are, respectively, the number of “slots” to
the left and to the right of 1 in the collection of n+ 1 slots between
successive elements or at either end of the ordered list Rn(1), . . . , Rn(n).

Exercise: Show that {(Gn, Dn)}∞n=1 is a Markov chain and conditional on
the past up to time n, if (Gn, Dn) = (g, d), then (Gn+1, Dn+1) takes the
values (g + 1, d) and (g, d+ 1) with respective conditional probabilities
g+1
g+d+2

and d+1
g+d+2

.

That is, there is a Pólya sequence {Xn}∞n=1 with state-space
E := {left, right} and parameter µ({left}) = µ({right}) = 1 (i.e. a
classical Pólya urn) such that

Gn := #{1 ≤ k ≤ n : Xk = left}

Dn := #{1 ≤ k ≤ n : Xk = right}.
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Hierarchy of Pólya sequences

For a fixed word u1 . . . uk ∈ {0, 1}?, the pair consisting of
the number of vertices of the form u1 . . . uk0v2 . . . v`
the number of vertices of the form u1 . . . uk1v2 . . . v`

evolves just like {(Gn, Dn)}∞n=1 provided that we only observe the pair at
times when it changes state.

Thus, the process {Tn}∞n=1 may be constructed from an infinite collection
of independent, identically distributed Pólya sequences, with one sequence
for each vertex of the complete binary tree {0, 1}?, by equipping the
sequence for each vertex with a clock that depends on the evolution of the
sequences associated with vertices that are on the path from the root to
the given vertex.
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Exercise

Put Xn := Tn+1, so that X0 = {∅}. As usual, we can think of starting
this Markov chain in other states and write Pt for the corresponding
distribution when the initial state is the finite rooted binary tree t.
Given a tree t and a vertex u ∈ t, write t(u) for the vertices that are below
u (that is, the vertices v such that the path from the root ∅ to v passes
through u – this includes u itself).
Show that

P{∅}{X hits t} =
∏
u∈t

(#t(u))−1.

Show more generally that for s ⊆ t

Ps{X hits t} =

(
#t

#s

)−1 ∏
v∈t\s

(#t(v))−1,

Conclude that the Martin kernel with base point {∅} is

K(s, t) =

(
#t

#s

)−1 ∏
u∈s

#t(u)

for s ⊆ t (and 0 otherwise).
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Another coding of permutations by labeled trees

A tree is now just a finite, connected, acyclic graph, and the root of such a
tree is just a distinguished vertex.

As before, associate a a permutation π of [n] with the ordered list
sr(1), . . . , r(n) = π−1(1), . . . π−1(n).

The bijection builds a tree with n+ 1 vertices labeled by [n] ∪ {0}.
The root is labeled with 0.

If π(i) = `, so that i = r`, then the vertex labeled i is the child of the
vertex labeled max{rk : 1 ≤ k < `, rk < r`}, where the maximum of the
empty set is 0.

It is clear that r (equivalently, π) can be reconstructed from the tree and
its vertex labels.
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Random recursive tree

As before, construct random permutations Πn and random orderings Rn
given a sequence {Un}∞n=1 of i.i.d. uniform r.v.

Obtain random labeled rooted trees Ln and the corresponding random
unlabeled rooted trees Tn.

Both {Ln}∞n=1 and {Tn}∞n=1 are Markov chains.

Exercise: Show that given Tn we pick one of its n+ 1 vertices uniformly at
random and connect a new vertex to it to form Tn+1.

The chain {Tn}n∈N is the simplest random recursive tree process.
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Chinese restaurant connection

Suppose that the root has k offspring in the tree Tn.

Write n1, . . . , nk denote the number of vertices in the subtrees rooted at
each of these offspring, so that n1 + · · ·nk = n.

In constructing Tn+1 from Tn, either a new vertex is attached to the jth

subtree with probability nj/(n+ 1) or it is attached to the root and begins
a new subtree with probability 1/(n+ 1).

The manner in which the number and sizes of subtrees rooted at offspring
of the root evolve is given by the number and sizes of tables in the
simplest Chinese restaurant process: the nth customer to enter the
restaurant finds k tables in use with respective numbers of occupants
n1, . . . , nk and the the customer either sits at the jth table with
probability nj/(n+ 1) or starts a new table with probability 1/(n+ 1).

The random recursive tree process is an infinite hierarchical system of such
Chinese restaurant processes.
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Directed acyclic graphs

Let I be a countable directed acyclic graph.

Write u→ v if (u, v) is a directed edge in I.

Suppose there is a unique vertex 0̂ such that for any other vertex u there is
at least one finite directed path 0̂ = v0 → v1 → . . .→ vn = u from 0̂ to u.

Define a partial order on I by declaring that u ≤ v if u = v or there is a
finite directed path u = w0 → w1 → . . .→ wn = v.

Suppose that the number of directed paths between any two vertices is
finite.

Steven N. Evans Probability at Warwick Young Researchers Workshop



Parents and children

For each vertex u ∈ I, set

α(u) := {v ∈ I : v → u}
= {immediate predecessors of u}

and

β(u) := {v ∈ I : u→ v}
= {immediate successors of u}.

Suppose that β(u) is non-empty for all u ∈ I.
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Admissible onward direction tallies

Suppose for each u ∈ I that we have a countable set Su ⊆ (N0)β(u).

A point s = (sv)v∈β(u) ∈ Su with
∑
v∈β(u) s

v = n records how many of
the first n particles to trickle down through u have been addressed
onwards to the various children of u.
We assume:

For each n ∈ N0, there exists at least one s = (sv)v∈β(u) ∈ Su such that∑
v∈β(u) s

v = n. In particular, (0, 0, . . .) ∈ Su.
If t = (tv)v∈β(u) ∈ Su \ {(0, 0, . . .)}, then there exists at least one
s = (sv)v∈β(u) ∈ Su such that t = s+ ev for some v ∈ β(u), where ev is
the vector with 1 in the vth coordinate and 0 elsewhere.
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Routing instructions

Let Σu ⊆ (Su)N0 be a set of sequences (σn)n∈N0 with the properties:
σ0 = (0, 0, . . .),
for each n ≥ 1, σn = σn−1 + evn for some vn ∈ β(u),
each s = (sv)v∈β(u) ∈ Su is of the form σn for some σ ∈ Σu, where
n =

∑
v∈β(u) s

v .

The interpretation of (σn)n∈N0 is that the nth particle to trickle down to u
and find it already occupied is routed onwards to the child vn.

Steven N. Evans Probability at Warwick Young Researchers Workshop



Put Σ :=
∏
u∈I Σu.

Write a generic element of Σ as

((σun)n∈N0)u∈I

or
((σu(n))n∈N0)u∈I.

Recall that σun = σu(n) is an element of (N0)β(u), and so it has
coordinates

(σun)w = (σu(n))w, w ∈ β(u).
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Clocks

Fix σ ∈ Σ.

Each vertex u of I has an associated clock (aun(σ))n∈N0 — aun(σ) counts
the number of particles that have passed through u by time n and been
routed onwards to some vertex in β(u).

The family an : Σ→ (N0)I is defined inductively as follows:
(a) a0(σ) = (0, 0, . . .) for all σ ∈ Σ,
(b) a0̂

n(σ) = n for all σ ∈ Σ and n ∈ N0,
(c) aun(σ) = (

∑
v∈α(u)(σ

v(avn(σ)))u − 1)+, u 6= 0̂.

The equation in (c) says that the number of particles that have been
routed onwards from the vertex u by time n is equal to the number of
particles that have passed through vertices v with v → u and have been
routed in the direction of u, excluding the first particle that reached the
vertex u and occupied it.
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Admissible states

Let S denote the subset of
∏
u∈I S

u consisting of points x = (xu)u∈I that
can be constructed as xu = σu(aum(σ)) for some m ∈ N0 and sequence
σ = ((σvn)n∈N0)v∈I ∈ Σ.

Exercise: Check that (xu)u∈I ∈
∏
u∈I S

u belongs to S if and only if ∑
v∈α(u)

(xv)u − 1


+

=
∑

w∈β(u)

(xu)w. (20)
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Partial order

Given x, y ∈ S, say that x � y if for some m,n ∈ N0 with m ≤ n and
some σ = ((σuk )k∈N0)u∈I ∈ Σ we have xu = σu(aum(σ)) and
yu = σu(aun(σ)) for all u ∈ I.

Exercise: Show that x � y if and only if (xu)v ≤ (yu)v for all u ∈ I and
v ∈ β(u).
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Example

Suppose that I is a tree.

Take Su = (N0)β(u) for all u ∈ I.
There is a bijection between S and finite subtrees of I that contain the
root 0̂.

An element x ∈ S is associated with the subtree t given by

t = {0̂} ∪ {v ∈ I \ {0̂} : (xu)v > 0 for some u ∈ α(v)}.

Conversely, if t is a finite subtree of I that contains 0̂, then the
corresponding element of S is

x =
(

(#{w ∈ t : v ≤ w})v∈β(u)

)
u∈I

.

The partial order � on S is equivalent to containment of the associated
subtrees.

The sequences (xn)n∈N0 in S constructed by setting xun = σu(aun(σ)) for
some σ ∈ Σ correspond bijectively to sequences of growing subtrees that
begin with the trivial tree {0̂} and successively add a single vertex that is
connected by a directed edge to a vertex present in the current subtree.
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Trickle-down chains

Assume for each u ∈ I that there is a transition matrix Qu with rows and
columns indexed by Su such that σ = (σn)n∈N0 ∈ Σu if and only if
Qu(σn, σn+1) > 0 for all n ∈ N0.

Write (Y un )n∈N0 for the corresponding Su-valued Markov chain with its
associated collection of probability measures Qu,ξ, ξ ∈ Su. By
assumption, Y u has positive probability under Qu,(0,0,...) of hitting any
given state in Su.

Set

An :=

{
an(Y ), if Y0 = (0, 0, . . .),

0, otherwise.

Define
Zun := Y uAun , u ∈ I, n ∈ N0.

By construction, Z := (Zn)n∈N0 = ((Zun)u∈I)n∈N0 is a Markov chain on
the countable state space S under the probability measure

⊗
u∈I Qu,0.

The paths of Z start from the state (0, 0, . . .) and increase strictly in the
natural partial order on S.

Steven N. Evans Probability at Warwick Young Researchers Workshop



By standard arguments, we can construct a measurable space (Ω,F), a family
of probability measures (Px)x∈S and an S-valued stochastic process
X = (Xn)n∈N0 such that X under Px is a Markov chain with X0 = x and the
same transition mechanism as Z.
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Proposition 20

The Martin kernel of the Markov chain X with respect to the reference state 0̂
is given by

κ(x, y) =
∏
u∈I

κu(xu, yu),

where κu is the Martin kernel of the Markov chain Y u with respect to reference
state (0, 0, . . .) ∈ Su. The product is zero unless x � y (equivalently, xu ≤ yu
for all u ∈ I). Only finitely many terms in the product differ from 1, because
xu = (0, 0, . . .) for all but finitely many values of u ∈ I.

Exercise: Show this. Use it to re-compute the Martin kernel for the binary
search tree process.
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Martin compactification of the random binary search tree

Recall that we can identify S for the BST with the set of finite subtrees of
the complete binary tree {0, 1}? that contain the root ∅.
A sequence (tn)n∈N in S with #tn →∞ converges in the Martin
compactification of S if and only if #tn(u)/#tn converges for all
u ∈ {0, 1}?. Moreover, if the sequence converges, the limit can be
identified with the probability measure µ on {0, 1}∞ such that
µu = limn→∞#tn(u)/#tn for all u ∈ {0, 1}?.
The set of points adjoined to S in the Martin compactification is
homeomorphic to the set of probability measures on {0, 1}∞ equipped
with the weak topology corresponding to the usual product topology on
{0, 1}∞.

Given a probability measure µ on {0, 1}∞, write µu is the mass assigned
by µ to the set of infinite paths in the complete binary tree that begin at
the root and that pass through the vertex u. The extended Martin kernel
is given by

κ(s, µ) = (#s)!
∏
u∈s

µu, s ∈ S, µ ∈ ∂S. (21)
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h-transforms

The transition matrix of the BST is

P (s, t) =

{
1

#s+1
, if s ⊂ t and #(t \ s) = 1,

0, otherwise,

Set hµ := K(·, µ). The corresponding Doob h-transform process has
transition matrix

P (hµ)(s, t) =

{
µu, if t = s t {u},
0, otherwise.

Exercise: Verify that the h-transformed process results from the general
trickle-down construction where the routing chains are suitable space-time
coin-tossing processes.
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Trickle-up construction of the h-transform process

Suppose on some probability space that there is a sequence of independent
identically distributed {0, 1}∞-valued random variables (V n)n∈N with
common distribution µ.

For an initial finite rooted subtree w,define a sequence (Wn)n∈N0 of
random finite subsets of {0, 1}? inductively by setting W0 := w and

Wn+1 := Wn ∪ {V n+1
1 . . . V n+1

H(n+1)}, n ≥ 0,

where
H(n+ 1) := max{h ∈ N : V n+1

1 . . . V n+1
h ∈Wn}

with the convention max ∅ = 0.

That is, at each point in time we start a particle at a “leaf” of the
complete binary tree {0, 1}? picked according to µ and then let that
particle trickle up the tree until it can go no further because its path is
blocked by previous particles that have come to rest.

Exercise: Show that (Wn)n∈N0 is a Markov chain with transition matrix
P (hµ).
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Digital search tree

Consider the special case of the h-transform construction when the
boundary point µ is the “uniform” or “fair coin-tossing” measure on
{0, 1}∞; that is, µ is the infinite product of copies of the measure on
{0, 1} that assigns mass 1

2
to each of the subsets {0} and {1}.

In this case, the transition matrix of the h-transformed process is

P (hµ)(s, t) =

{
2−|u|, if t = s t {u},
0, otherwise,

where we write |u| for the length of the word u; that is, |u| = k when
u = u1 . . . uk.

This transition mechanism is that of the digital search tree process.
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Exercise

Analyze the Martin compactification of the random recursive tree process.
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