Questions from the Lévy processes reading group 3

In all the following questions, you may assume that $X = (X_t)_{t \ge 0}$ is a Lévy process in \mathbb{R}^d with characteristic exponent Ψ .

- 1. Make sure you understand the proof of the fact that: Ψ bounded $\Rightarrow \Pi(\mathbb{R}^d) < \infty$.
- 2. (Markov property) Show that

$$\mathbf{E}\left(f(X_{t+s})|\mathcal{F}_t\right) = \mathbf{E}\left(f(X_{t+s})|\sigma(X_t)\right)$$

for any bounded measurable function $f : \mathbb{R}^d \to \mathbb{R}$.

- 3. Fix $t \ge 0$. Check that $X' = (X'_s)_{s \ge 0}$, where $X'_s := X_{t+s} X_t$, is independent of \mathcal{F}_t and has the same distribution as X.
- 4. Let T be a stopping time. Check that

$$\mathcal{F}_T := \{ A \in \mathcal{F} : A \cap \{ T \le t \} \in \mathcal{F}_t \text{ for all } t \ge 0 \}$$

defines a σ -algebra.

5. Let T be a stopping time such that $\mathbf{P}(T < \infty) > 0$. On $\{T < \infty\}$, define $X' = (X'_s)_{s \ge 0}$ by setting $X'_s := X_{T+s} - X_T$. Check that, for $0 \le u \le v \le s \le t$, $\lambda_1, \lambda_2 \in \mathbb{R}$,

$$\mathbf{E}\left(e^{i\langle\lambda_1,X'_t-X'_s\rangle+i\langle\lambda_2,X'_v-X'_u\rangle}\mathbf{1}_{A\cap\{T<\infty\}}\right)=e^{i(t-s)\Psi(\lambda_1)+i(v-u)\Psi(\lambda_2)}\mathbf{P}\left(A\cap\{T<\infty\}\right).$$

- 6. In the setting of the previous question, explain why the following statements hold (interpret the final three as holding conditionally on $\{T < \infty\}$):
 - (a) X' is independent of \mathcal{F}_T ,
 - (b) $X'_t X'_s$ is independent of $X'_v X'_u$,
 - (c) $X'_t X'_s \sim X'_{t-s}$,
 - (d) the characteristic exponent of X' is Ψ .
- 7. Use the previous results to establish the Strong Markov property: If T is a stopping time such that $\mathbf{P}(T < \infty) > 0$, then conditionally on $\{T < \infty\}, X' = (X'_s)_{s \ge 0}$, where $X'_s := X_{T+s} X_T$, is independent of \mathcal{F}_T and has the same distribution as X.