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Abstract

In this paper, we study the implications for hedging Bermudan swaptions of the choice
of the instantaneous volatility for the driving Markov process of the one-dimensional swap
Markov-functional model. We find that there is a strong evidence in favour of what we term
“parametrization by time” as opposed to “parametrization by expiry”. We further propose a
new parametrization by time for the driving process which takes as inputs into the model the
market correlations of relevant swap rates. We show that the new driving process enables a
very effective vega-delta hedge with a much more stable gamma profile for the hedging portfolio
compared with the existing ones.
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correlation, hedging, vega, gamma, parametrization by time and by expiry.

Contents

1 Introduction 2

2 Notations and preliminaries 3

3 Pricing Bermudan swaptions under the one-dimensional swap Markov-functional
model 4
3.1 The one-dimensional swap Markov-functional model . . . . . . . . . . . . . . . . . . 4
3.2 Parametrizations by time and by expiry . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 An alternative parametrization of time . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 One step covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.2 Weighted covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Vegas 13
4.1 The vega computation under the swap Markov-functional model . . . . . . . . . . . 13
4.2 The Bermudan swaption’s vegas under the HW and MR models . . . . . . . . . . . . 15
4.3 The Bermudan swaption’s vegas under the one step and weighted covariance models 18
4.4 The net market vegas for different parameterizations . . . . . . . . . . . . . . . . . . 20

1



5 A hedging result 25
5.1 A hedging portfolio for the HW and MR models . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Vega hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Delta hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 The gammas of the HW and MR hedging portfolios . . . . . . . . . . . . . . 28

5.2 A hedging portfolio for the one step and weighted covariance models . . . . . . . . . 32
5.2.1 Vega hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Delta hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.3 The gammas of the one step and weighted covariance hedging portfolios . . . 34

6 Conclusions 37

References 38

A Estimating the market implied covariance/correlation structure 38
A.1 Approximating the terminal correlations, a global fit approach . . . . . . . . . . . . 38
A.2 Approximating the covariances, a local fit approach . . . . . . . . . . . . . . . . . . . 41

1 Introduction

The problem of pricing and hedging a Bermudan swaption has been of great practical concern in the
fixed income quantitative research. The product itself is among the most common exotic interest
rate derivatives. However, opinions differ as to what constitutes an effective modeling framework
for pricing and hedging Bermudan swaptions. One of the biggest debates is whether it is necessary
to use a multi-factor model. A good summary of the current literature on this topic is given in
(Pietersz & Pelsser, 2010). In (Pietersz & Pelsser, 2010), the authors carry out a comparison of the
hedging performance of a single factor Markov-functional model and multi-factor market models
in relation to Bermudan swaptions and their findings support the claim that if a single factor
Markov-functional model is appropriately calibrated to “terminal correlations” of swap rates that
are relevant to the Bermudan swaption then the hedging performance of both the multi-factor and
single factor models are comparable.

In this paper, we restrict attention to the pricing and hedging of Bermudan swaptions within the
context of a one factor Markov-functional model driven by a Gaussian process. The contribution
we make here is to study the implications for hedging of the choice of the instantaneous volatility
for the driving Markov process. This is a topic which seems to have received little attention in the
literature for one factor Markov-functional models or equivalently for one factor separable market
models (see (Bennett & Kennedy, 2005) and (Pietersz, Pelsser, & Regenmortel, 2004)). One popular
choice is to take a Gaussian process with exponential instantaneous volatility, referred to as the
mean reversion process (MR), as is done in (Pietersz & Pelsser, 2010). We begin our investigation
by comparing this candidate with one based on the Hull-White short-rate model, referred to as the
Hull-White process (HW) which was first introduced in (Bennett & Kennedy, 2005).

For these two candidate processes the vega profiles of a Bermudan swaption under the swap
Markov-functional model turn out to have some key differences (see also (Pertursson, 2008) for
a comparison of their vega profiles under different market scenarios). These differences can be
linked back to the difference in nature of the two parametrizations for the driving process. The
mean reversion process (MR) is an example of what we term “parametrization by expiry”. Here
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the auto-correlations of the driving process are chosen at the outset and controlled by parameters
which are user inputs. As such the changes in the correlations of swap rates at their setting dates
relevant to the pricing of a Bermudan are not hedged. In contrast, the Hull-White process (HW)
is an example of “parametrization by time”. In this type of parametrization, the auto-correlations
of the driving process are linked explicitly to market implied volatilities and it is this feature which
allows the possibility of hedging against moves in market correlations of relevant swap rates.

Based on the insight gained by our study of the MR and HW processes, we propose a new
parametrization by time for the driving process. This new parametrization takes as inputs into the
model the market correlations of relevant swap rates. These market correlations are estimated via
a full rank LIBOR market model using a two-step procedure involving a global and local fit to the
swaption matrix. This new parametrization has a vega response spread over the swaption matrix
but interestingly the total vega for each expiry (row of the swaption matrix) is approximately the
same as for the HW model. We give an explanation for why this is the case.

The different vega profiles of the parametrizations by expiry and by time have a direct conse-
quence for hedging. We find that when the driving process is parameterized by time the “total”
gamma (sum of all gammas) of a vega-delta neutral portfolio for a Bermudan swaption is stabilized.
In contrast, it is not possible to control the “total” gamma for this portfolio with the vega profile
associated with parametrization by expiry. We further find that the proposed parametrization by
time for the driving process with a vega response spread over the swaption matrix leads to a more
stable “parallel” gamma profile (sum of each row of the gamma matrix) than that of the HW
process.

The paper is organized as follows. In section 2, we review the preliminaries and set up the
notations. In section 3, we first describe the one-dimensional swap Markov-functional model and
analyze the difference between parametrizations by expiry and by time. After that, we construct
a new parametrization by time for the driving process. In section 4, we compute the vegas of a
Bermudan and analyze them theoretically. A hedging result with an emphasis on the gamma risks
will be addressed in section 5. Section 6 concludes the paper.

2 Notations and preliminaries

Consider a general tenor structure

0 = T0 < T1 < · · · < Tn+1,

where αi = Ti+1 − Ti are the accrual factors for i = 0, . . . , n.
Let DtT denote the time-t value of a zero-coupon discount bond that matures at time T . We

denote by Li the forward LIBOR that sets (expires) at Ti and settles (matures) at Ti+1. Forward
LIBORs and discount bonds can be linked via the relation

Lit =
DtTi −DtTi+1

αiDtTi+1

, t ≤ Ti, (1)

for i = 0, . . . , n. We denote by yi,j the forward swap rate of an interest rate swap with setting dates
Ti, Ti+1, . . . , Ti+j−1 and settlement dates Ti+1, Ti+2, . . . , Ti+j . Similar to forward LIBORs, forward
swap rates can also be written in terms of discount bonds

yi,jt =
DtTi −DtTi+j∑i+j−1
k=i αkDtTk+1

, t ≤ Ti, (2)
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for i = 0, . . . , n. It is clear that yi,1 coincides with Li. For each swap rate yi,j , we further introduce
the corresponding at the money (ATM) Black implied volatility σ̃i,j .

The type of Bermudan swaption we consider in this paper is the co-terminal version, as opposed
to other non-standard types of Bermudan swaption. The holder of a co-terminal Bermudan swaption
has the right, on any of the swap exercise dates to enter the remaining swap which ends at the
pre-determined terminal date Tn+1. The underlying swap at Ti consists of a number of coupons
that set at Tj and settle at Tj+1 for j = i, . . . , n. We further denote the notional amount by N and
the strike by K. Suppose that the Bermudan swaption is to be exercised at time Ti. In case of a pay
fixed type, the holder will then receive the corresponding coupons from the underlying swap, i.e. at
Tj+1 for each j = i, . . . , n he or she will receive the floating leg NαjL

j
Tj

and pay the fixed leg NαjK.
In case of a receive fixed type, the holder will receive the fixed legs in exchange for the floating legs.
Although the coupons depend on the values of the LIBORs at their setting dates, the exercise value
of the underlying swap at each exercise date Ti depends on the corresponding co-terminal swap
rate at its setting date yi,n+1−i

Ti
. For a pay fixed Bermudan, the holder will only exercise at time

Ti if yi,n+1−i
Ti

is above the strike level K. Nevertheless, even when the immediate exercise value is
positive, the holder can decide to hold on to the swaption in view of a more favourable co-terminal
swap rate yj,n+1−j

Ti
for j > i. It was noted in (Pietersz & Pelsser, 2010) that although the joint

distribution of the random variables {yj,n+1−j
Ti

; j = i, . . . , n; i = 1, . . . , n} fully determines the price
of a Bermudan swaption, the main contribution (up to first order approximation) actually comes
from the joint distribution of the co-terminal swap rates at their setting dates {yi,n+1−i

Ti
; i = 1, . . . , n}

(see also (Piterbarg, 2004)). This is why we are interested in their correlation structure.

3 Pricing Bermudan swaptions under the one-dimensional swap
Markov-functional model

The defining characteristic of the standard Markov-functional model (MF) is that discount bond
prices are assumed to be at any time functions of some low-dimensional (usually one or two) Markov
process x, which is Markovian in some specified martingale measure. The exact forms are only
determined at the exercise dates, i.e. DTiTj (xTi) for 0 ≤ i ≤ j ≤ n, since this is all that is typically
needed in practice. Depending on the application, the functional forms are derived numerically
from relevant market prices and the martingale property necessary to maintain the arbitrage-free
property of the model. Note that the functional forms of the discount bonds implicitly imply the
functional forms of all forward swap/LIBOR rates and vice versa. Given the functional forms, the
conditional expected value under the specified martingale measure of a payoff at any exercise date
Ti can be derived numerically. Hence, the value of an exotic product can be calculated by backward
induction on a grid.

Here, we restrict attention to the development of the one-dimensional swap Markov-functional
model (SMF) for the pricing and hedging of Bermudan swaptions. This section starts by reviewing
the one-dimensional SMF model and its current choices of driving Markov process. We then propose
an alternative choice which is more suitable for our current application.

3.1 The one-dimensional swap Markov-functional model

In the one-dimensional SMF model, the functional forms of the discount bonds are chosen so
that accurate calibration to the market prices of the co-terminal vanilla swaptions is achieved.
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We assume that these market prices are given by the Black’s formula with the corresponding co-
terminal implied volatilities {σ̃i,n+1−i}i=1,...,n. The freedom to specify the law of x allows the model
to capture well some features of the real market relevant to the exotic products. For a Bermudan
swaption, those features are the correlations of the co-terminal forward swap rates at their setting
dates as we discussed in section 2.

In our model, we choose to work with the terminal measure Sn+1 which takes the terminal
discount bond D·Tn+1 as the numeraire. Details of the implementation of the SMF model under
the terminal measure can be found in (Hunt, Kennedy, & Pelsser, 2000) and (Hunt & Kennedy,
2004). We assume the driving process x is a Gaussian process satisfying

xt :=

∫ t

0
σ(u)dWu,

where W denotes a standard Brownian motion under Sn+1 and σ(·) is a deterministic function of
time. For the implementation of the model, we only need to specify the law of x at each exercise
date Ti for i = 1, . . . , n.

An important result that was observed in (Bennett & Kennedy, 2005) is the approximate linear
relationship between the logarithms of the co-terminal forward swap rates and x

ln yi,n+1−i
t ≈ γi︸︷︷︸

constant

xt + ηit︸︷︷︸
deterministic

. (3)

Consequently, the joint distributions of the log of the co-terminal forward swap rates can be cap-
tured via our choice of x since correlation is invariant under the linear transformation

Corr(xTi , xTj ) =

√
ξmin(Ti,Tj)

ξmax(Ti,Tj)
≈ Corrmo(ln yi,n+1−i

Ti
, ln yj,n+1−j

Tj
),

where ξTi := Var(xTi) =
∫ Ti

0 σ2(t)dt and the superscript “mo” denotes model quantities.
We further note that by matching the model to the Black’s formula for the co-terminal vanilla

swaptions, we have the following approximation in the terminal measure (exact in the associated
swaption measure)

Varmo(ln yi,n+1−i
Ti

) ≈ σ̃2
i,n+1−iTi. (4)

Hence, once x is chosen the γi’s are implicitly determined and from (3) and (4) we have

γ2
i ξTi ≈ σ̃2

i,n+1−iTi. (5)

Note that each γi is matched specifically to the associated co-terminal swap rate yi,n+1−i and
once the model is calibrated it stays constant from today till expiry. In that sense, the γi’s are
expiry-dependent quantities.

We now present in the following two current candidates for x before exploring other choices in
the later sections.

Current candidates:

• MR: The first choice is referred to as the mean reversion (MR) driving process with σ(t) = eat,
where a > 0 is the mean reversion parameter. It follows that one can write the variance of x
at each exercise date Ti as

ξTi =

∫ Ti

0
e2atdt =

1

2a
(e2aTi − 1).

5



For this choice of parametrization, one can see that any changes in the market implied volatil-
ities will not influence x and its auto-correlations once we fix the parameter a. However, the
expiry-dependent quantities γi’s may change as we can see from (5). In that sense, the MR
process is an example of “parametrization by expiry”.

• HW: An alternative choice of x is motivated by considering the Hull-White short-rate model
which was first introduced in (Bennett & Kennedy, 2005). We refer to it as the Hull-White
(HW) process. For each i = 1, . . . , n, we have the following specification for the HW process

ξTi =

(
Tn+1 − Ti

(1 + αiy
i,n+1−i
0 )(ψTn+1 − ψTi)

)2

σ̃2
i,n+1−iTi, (6)

where ψTi = 1
a(1−e−aTi), a > 0. In contrast to the MR process, any changes in the market co-

terminal implied volatilities will have an immediate effect on x and its auto-correlations. From
the linear approximation in (3), we see that the instantaneous volatilities of the co-terminal
swap rates will be altered in certain time periods. On the other hand, the expiry-dependent
quantities γi’s will stay the same as we can see from substitution of the expression (6) into
(5). In that sense, the HW process is an example of “parametrization by time”.

For both the above model parametrizations, an increase in the implied volatility of one of the co-
terminal swap rates tends to increase the value of a Bermudan. This is not surprising as the value
of the associated vanilla swaption has increased. But the optionality of a Bermudan provides extra
value in addition to the value of the underlying vanilla options. This extra value is highly dependent
on the correlations between the co-terminal swap rates at their setting dates and for the above two
models these correlations behave very differently in response to changes in the co-terminal implied
volatilities. This leads to very different hedging profiles as we shall see in the later sections. In the
next section we investigate the essential difference in nature between the two parametrizations by
considering the underlying LIBORs.

3.2 Parametrizations by time and by expiry

In the previous subsection, we discussed the idea of parametrizations by expiry and by time in
terms of the responses of the instantaneous volatilities of the co-terminal swap rates to a shift in
the implied volatilities. Here we explore how this idea carries over to the LIBORs as they are the
basic building blocks of any interest rate model.

For all choices of x, the linear approximation in (3) implies that the instantaneous volatility of
the log of the co-terminal forward swap rate yi,n+1−i

t is approximately γiσ(t) under the terminal
measure. In order to gain insight into the effect of shifting the implied volatilities, we make
the simplifying assumption that each log-LIBOR lnLi has a positive and deterministic volatility
function σi(t), t ≤ Ti. Under this assumption, we can use the approximation described in appendix
A. In a one factor model instead of the multi-factor setting in appendix A, the instantaneous
volatility of the log of the co-terminal forward swap rate yi,n+1−i can be linked to the instantaneous
volatilities of the log-LIBORs by the following approximation

γiσ(t) ≈
n∑
k=i

ζi,n+1−i
k (0)σk(t), (7)
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where {ζi,n+1−i
k (0)}k=i,...,n are constant empirical weights that depend on the initial discount curve.

This can be seen from SDE (35) in appendix A.2.
Since the last LIBOR Ln = yn,1, we have that σn(t) ≈ γnσ(t). Using the derived form for σn(t),

we can deduce σn−1(t) by considering the approximation in (7) for γn−1σ(t)

σn−1(t) ≈ σn−1σ(t),

where we let

σn−1 :=
γn−1 − ζn−1,2

n (0)γn

ζn−1,2
n−1 (0)

.

We assume σn−1 > 0 so that σn−1(·) will also be positive as we assumed earlier. Inductively, assume
we have that σk(t) ≈ σkσ(t) where σk is a positive constant for each k = i+ 1, . . . , n. When k = n,
σn is the same as γn. We can then derive σi(t) by considering the approximation in (7) for γiσ(t).
We rewrite (7) in the following form

γiσ(t) ≈ ζi,n+1−i
i (0)σi(t) +

n∑
k=i+1

ζi,n+1−i
k (0)σkσ(t)

⇐⇒ σi(t) ≈

(
γi −

∑n
k=i+1 ζ

i,n+1−i
k (0)σk

ζi,n+1−i
i (0)

)
σ(t).

This again reduces σi(t) approximately to the form σiσ(t) where

σi :=
γi −

∑n
k=i+1 ζ

i,n+1−i
k (0)σk

ζi,n+1−i
i (0)

. (8)

This concludes that σi(t) ≈ σiσ(t) for all i = 1, . . . , n where each constant σi can be derived induc-
tively by (8) and is assumed to be positive. One can see that each σi depends on {γk}k=i,...,n and the

empirical weights {ζi,n+1−i
k (0)}k=i,...,n, {ζi+1,n−i

k (0)}k=i+1,...,n, . . . , {ζn−1,2
k (0)}k=n−1,n. Since these

empirical weights do not depend on the implied volatilities, we will safely ignore their involvements
in the next discussion.

We now analyze how shifting the implied volatilities affects the instantaneous volatility functions
{σi(·)}i=1,...,n of the log-LIBORs for each choice of x.

Parametrization by expiry: For the MR process, by the approximation in (5) we have that

γi ≈
σ̃i,n+1−i

√
Ti√

e2aTi−1
2a

i = 1, . . . , n. (9)

Suppose we want to bump the co-terminal implied volatility σ̃i,n+1−i and keep the rest the
same. It is clear that the instantaneous volatility σ(t) = eat of the MR process will not be
affected. We observe other effects and summarize them below:

• γj for j 6= i are unchanged as we can see from (9). This then follows from (8) that the
constants {σj}j=i+1,...,n and hence {σj(·)}j=i+1,...,n also remain unchanged.

• γi will increase directly as a result of (9). From (8), we see that σi and hence σi(·) will
increase as {σj}j=i+1,...,n are unchanged.
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• Since γi−1 and {σj}j=i+1,...,n stay the same but σi increases, again we can see from (8)
that σi−1 and hence σi−1(·) will decrease.

• The effects on {σk}k=1,...,i−2 and hence {σk(·)}k=1,...,i−2 will be quite small. This is
because the increase in σi and decrease in σi−1 tend to cancel each other out in the sum
in (8) when we consider σk for k < i− 1.

Note that all the above effects are (global) from today till expiry (illustrated in figure 3.1).
In that sense, the instantaneous volatilities of the log-LIBORs are clearly parameterized by
expiry.

-

6

σ1(·) · · ·
· · · · ··
· · · · · · · · ·

σi−1(·) −−−−−−−
σi(·) + + + + + + + + +

σn(·)

T1 Ti−1Ti Ti+1 Tn

Time

Instantaneous volatility

Parametrization

by expiry

Figure 3.1: Global effect of bumping σ̃i,n+1−i on the instantaneous volatility functions of the log-
LIBORs. The dots represent a very small effect.

Parametrization by time: For the HW process where ξTi is given by (6), it can be seen from
(5) that the γi’s are independent of the implied volatilities

γi ≈
(1 + αiy

i,n+1−i
0 )(ψTn+1 − ψTi)
Tn+1 − Ti

, ψTi =
1

a
(1− e−aTi), a > 0. (10)

Although the instantaneous volatility function σ(·) of x is not defined explicitly, we know it

exists such that
∫ Ti

0 σ2(t)dt = ξTi is given by (6).

We now bump the co-terminal implied volatility σ̃i,n+1−i and keep the rest unchanged. It is
clear from (10) that γj will stay the same for j = 1, . . . , n. Hence, it follows from (8) that
the constants σj will also remain unchanged for all j. The only effect of the bump is on the
function σ(·) (see (6)). One can see that the variance of x at Ti is shifted but those at the
other exercise dates remain unchanged. Consequently, we have that the only effect on x is
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the following

ξTi − ξTi−1 =

∫ Ti

Ti−1

σ2(t)dt increases, ξTi+1 − ξTi =

∫ Ti+1

Ti

σ2(t)dt decreases.

The above effect implies that on average the instantaneous volatility function σ(·) of x is
increased during the time period (Ti−1, Ti] but is decreased during the next one (Ti, Ti+1].
Since σj(t) ≈ σjσ(t) is only defined during the corresponding LIBOR’s life, i.e. t ∈ [0, Tj ],
the effect on σ(·) only carries over to {σj(·)}j=i,...,n. It is then clear that on average the
collection of instantaneous volatilities {σj(·)}j=i,...,n will increase and decrease during the two
consecutive time intervals (Ti−1, Ti] and (Ti, Ti+1] respectively (figure 3.2). For the last co-
terminal implied volatility σ̃n,1, the equivalent effect is that σn(·) will only increase during
the period (Tn−1, Tn]. Note that the above effects are local as the instantaneous volatilities of
the log-LIBORs are only shocked locally for some particular time periods in response to the
movement of the corresponding implied volatility. In that sense, the instantaneous volatilities
of the log-LIBORs are clearly parameterized by time.

-

6

σ1(·)

σi(·)
σi+1(·)

σn(·)

T1 Ti−1

+

+

+

+

+

+

Ti

−
−
−
−
−

Ti+1 Tn

Time

Instantaneous volatility

Parametrization

by time

Figure 3.2: Local effects of bumping the σ̃i,n+1−i on the instantaneous volatility functions of the
log-LIBORs.

The difference in parametrizations mentioned above has a fundamental effect on the hedging of a
Bermudan swaption. Specifically, the global and local effects of the parametrizations by expiry and
by time influence the correlations of the forward LIBORs and the co-terminal forward swap rates
in very different ways. This fact, in turn, leads to very different hedging behaviours of correlation-
dependent products like the Bermudan swaption. We will investigate further the difference in their
vega profiles in section 4.2. Since the “parametrization by time” outperforms the other type as we
explore later in section 5, we will next propose an alternative for this parametrization.
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3.3 An alternative parametrization of time

We recall that the correlation of the MR process is fixed from the outset while the HW specification
links the correlation structure of the model/co-terminal swap rates explicitly to the market implied
volatilities. However at each exercise date Ti, the HW process only takes into account the co-
terminal implied volatility σ̃i,n+1−i. In this section, we explore alternative ways to specify the x
process which link the model’s correlation structure to implied volatilities of different tenors (see
table 3.1).

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . σ̃1,10
2 . . . . . . . . . . . . . . . . . . . . . . . . σ̃2,9 . . .
3 . . . . . . . . . . . . . . . . . . . . . σ̃3,8 . . . . . .
4 . . . . . . . . . . . . . . . . . . σ̃4,7 . . . . . . . . .
5 . . . . . . . . . . . . . . . σ̃5,6 . . . . . . . . . . . .
6 . . . . . . . . . . . . σ̃6,5 . . . . . . . . . . . . . . .
7 . . . . . . . . . σ̃7,4 . . . . . . . . . . . . . . . . . .
8 . . . . . . σ̃8,3 . . . . . . . . . . . . . . . . . . . . .
9 . . . σ̃9,2 . . . . . . . . . . . . . . . . . . . . . . . .
10 σ̃10,1 . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 2 3 4 5 6 7 8 9 10

σ̃1,1 σ̃1,2 σ̃1,3 σ̃1,4 σ̃1,5 σ̃1,6 σ̃1,7 σ̃1,8 σ̃1,9 σ̃1,10
σ̃2,1 σ̃2,2 σ̃2,3 σ̃2,4 σ̃2,5 σ̃2,6 σ̃2,7 σ̃2,8 σ̃2,9 . . .
σ̃3,1 σ̃3,2 σ̃3,3 σ̃3,4 σ̃3,5 σ̃3,6 σ̃3,7 σ̃3,8 . . . . . .
σ̃4,1 σ̃4,2 σ̃4,3 σ̃4,4 σ̃4,5 σ̃4,6 σ̃4,7 . . . . . . . . .
σ̃5,1 σ̃5,2 σ̃5,3 σ̃5,4 σ̃5,5 σ̃5,6 . . . . . . . . . . . .
σ̃6,1 σ̃6,2 σ̃6,3 σ̃6,4 σ̃6,5 . . . . . . . . . . . . . . .
σ̃7,1 σ̃7,2 σ̃7,3 σ̃7,4 . . . . . . . . . . . . . . . . . .
σ̃8,1 σ̃8,2 σ̃8,3 . . . . . . . . . . . . . . . . . . . . .
σ̃9,1 σ̃9,2 . . . . . . . . . . . . . . . . . . . . . . . .
σ̃10,1 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.1: Market data from the swaption matrix to be incorporated into the driving process x for
a 11 years annual Bermudan swaption. HW’s approach (left), alternative approach (right).

3.3.1 One step covariance

One way to view a Bermudan swaption is as the right to choose between the associated European
swaptions. In setting up a model, one might choose to try to capture the correlations between the
co-terminal swap rates at their setting dates. These are the correlations that matter when pricing
a Bermudan swaption. In a one factor model, we cannot capture all these correlations. One choice
is to consider the one step correlations, i.e. the correlation of yi,n+1−i

Ti
with its nearest neighbour

yi+1,n−i
Ti+1

for each i. Note that we will work with the log of the swap rates because it allows for a
direct connection with the driving process x as we shall see in the model’s setup.

In the approach adopted here, we estimate the one step covariances Cov(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

)
for i = 1, . . . , n− 1 using the swaption matrix from the market. This is a two-step procedure. The
first step is to approximate the correlations of the log-LIBORs at each exercise date by a global
fit to the swaption matrix. The second step is to deduce the corresponding covariances of the
log-LIBORs by performing a local fit to each row of the swaption matrix and using the correlations
from the first step. We then use these covariances to derive the required one step covariances (see
equation (36)). In fact, we only need Cov(ln yi,n+1−i

Ti
, ln yi+1,n−i

Ti
) as

Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) ≈ Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

),

for i < j ≤ n (see appendix A.2). Details of the whole approximation procedure can be found in
appendix A. In what follows we will use the superscript ”ma” to denote quantities estimated from
the market.

Model’s setup: Once we have estimated the one step covariances from the market, we set up
the model as follows. Recall the linear approximation under the terminal measure in (Bennett &
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Kennedy, 2005), for i < n

γixt + ηit ≈ ln yi,n+1−i
t

⇒ Corr(xTi , xTi+1) ≈ Corrmo(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

)

⇐⇒

√
ξTi
ξTi+1

≈
Covmo(ln yi,n+1−i

Ti
, ln yi+1,n−i

Ti
)√

Varmo(ln yi,n+1−i
Ti

)Varmo(ln yi+1,n−i
Ti+1

)
. (11)

As for each i = 1, . . . , n Varmo(ln yi,n+1−i
Ti

) can be inferred from the corresponding Black implied
volatility σ̃i,n+1−i, we can now incorporate the one step covariances into the model as described
below.

• Without loss of generality, fix ξTn = σ̃2
n,1Tn.

• At Tn−1, by knowledge of Covma(ln yn−1,2
Tn−1

, ln yn,1Tn
) and hence Corrma(ln yn−1,2

Tn−1
, ln yn,1Tn

) =

Covma(ln yn−1,2
Tn−1

,ln yn,1Tn
)

σ̃n−1,2

√
Tn−1σ̃n,1

√
Tn

that we have estimated from the market, we can recover ξTn−1 by fix-

ing √
ξTn−1

ξTn
= Corrma(ln yn−1,2

Tn−1
, ln yn,1Tn

)

⇐⇒
√
ξTn−1 = Corrma(ln yn−1,2

Tn−1
, ln yn,1Tn

)
√
ξTn ,

where we use the relation in (11).

• Inductively, assume we are at Ti and have derived ξTj for j > i from the previous steps. By

the approximation for Corrma(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

) from the market and the knowledge of
ξTi+1 , we can fix ξTi √

ξTi = Corrma(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

)
√
ξTi+1 ,

where we again use (11).

• We have now fixed ξTi for i = 1, . . . , n and the SMF model can be implemented on the grid.

The above model is an example of parametrization by time and its overall vega profile (in terms of
a Bermudan swaption) has a close connection to that of the HW model as we shall see in section
4. As implied volatilities change, the implied correlations in the market change. The one step
covariance model attempts to hedge this risk but with the focus just on the one step covariance
with the next co-terminal swap rate. Clearly, we are ignoring some important market information.
This is exactly the motivation for our next proposed model.

3.3.2 Weighted covariance

We propose another alternative choice of x based on the following intuition. In order to make a
decision whether to exercise the option at Ti, the one step correlation Corr(ln yi,n+1−i

Ti
, ln yi+1,n−i

Ti+1
)

11



will be the most important as Ti+1 is immediately after Ti. The correlations with the later rates
are less significant since we can wait until later to decide.

For each i = 1, . . . , n − 1, in addition to the one step covariance we can choose to take into
account the significance of the covariances Cov(ln yi,n+1−i

Ti
, ln yj,n+1−j

Tj
) for all j > i but with dif-

ferent levels of impact on the Bermudan swaption’s price. Again, as there is only one factor
in the model we cannot capture everything. One way is to consider the weighted covariance
Cov(ln yi,n+1−i

Ti
,
∑n

j=i+1 p
Tj−Ti ln yj,n+1−j

Tj
) at each exercise date Ti where the weight is chosen to be

a monotonically decreasing function in Tj − Ti

pTj−Ti = exp[−α(Tj − Ti)], j > i,

for some α > 0. Note that the weighted covariance can be estimated in exactly the same way as we
estimate the one step covariance from the market (see appendix A). As we shall see in section 4.3,
the weighted covariance model spreads the vega responses over the swaption matrix while the one
step covariance model only assigns a significant contribution to the first column and the reverse
diagonal. It is this feature that gives the weighted covariance model a potential hedging advantage
over the one step covariance model.

Model’s setup: For i = 1, . . . , n− 1, we calibrate the model to the following market quantity

Covma(ln yi,n+1−i
Ti

,

n∑
j=i+1

pTj−Ti ln yj,n+1−j
Tj

) ≈
n∑

j=i+1

pTj−TiCovma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

). (12)

For ease of exposition, we denote this market quantity by Bi. One can incorporate the Bi’s into
the model as follows

• Without loss of generality, fix ξαTn = σ̃2
n,1Tn

∗.

• At Tn−1, we only need to estimate from the market the one step covariance Covma(ln yn−1,2
Tn−1

, ln yn,1Tn−1
)

for Bn−1 and consequently the one step correlation Corrma(ln yn−1,2
Tn−1

, ln yn,1Tn
). Since we want

to calibrate the model’s correlation structure to Bn−1, we then require that

p

√
ξαTn−1

ξαTn
σ̃n−1,2

√
Tn−1σ̃n,1

√
Tn = Bn−1

⇐⇒
√
ξαTn−1

= Corrma(ln yn−1,2
Tn−1

, ln yn,1Tn
)
√
ξαTn ,

where we use the relation in (11). Note that this step is the same as that in the one step
covariance model.

• Inductively, assume we are at Ti and have derived {ξαTj}j=i+1,...,n from the previous steps, ξαTi
will then be obtained by backward induction. Since we have estimated Bi from the market
and want to calibrate the model’s correlation structure to Bi, we require that

n∑
j=i+1

pTj−Ti

√
ξαTi
ξαTj

σ̃i,n+1−i
√
Tiσ̃j,n+1−j

√
Tj = Bi, (13)

∗The superscript α is added to emphasize the dependence.
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where we use Corrma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) for j > i instead of just j = i + 1 as in the one

step covariance case. Hence, from (13) we fix√
ξαTi =

Bi

σ̃i,n+1−i
√
Ti
∑n

j=i+1 p
Tj−Ti

√
1
ξαTj
σ̃j,n+1−j

√
Tj

. (14)

• We have now fixed ξαTi for i = 1, . . . , n and the SMF model can be implemented on the grid.

One can immediately see that the one step covariance process is a special case of the general weighted
covariance process when α is very large. The reason is the following. When α is sufficiently large,
pTj−Ti will decay exponentially fast and all the weights will then become insignificant compared
with pTi+1−Ti . Consequently, only the one step covariance matters in the market quantity Bi and
the weighted covariance process is reduced to the one step covariance one.

Remark 1 For both the one step and weighted covariance models, one can view the vectors of
Black implied volatilities (σ̃i,1, σ̃i,2, . . . , σ̃i,n+1−i) for i = 1, . . . , n as the model’s initial inputs (see
the global and local fits in appendix A). It follows from the constructions of both the one step and
weighted covariance processes that one can write

ξαTi = f i(ξαTi+1
, . . . , ξαTn ; {σ̃i,k}k=1,...,n+1−i; {σ̃j,n+1−j}j=i+1,...,n), (15)

where f i is some deterministic function (see appendix A.2 for more details). This cascade structure
of the model clearly has an important implication on the response of the Bermudan price to changes
in implied volatilities.

Although the one step and weighted covariance processes appear to be more complicated than the
HW process, it turns out that they are still quite similar in some context. In the next section, we
will explore further their connection through the Bermudan swaption’s vegas.

4 Vegas

In this section, we study the vegas of a Bermudan swaption produced by the different models.
While the deltas and the gammas do not vary so much from model to model as we shall see in
section 5, the vegas prove to be the most influential in the hedging of a Bermudan. In addition,
the underlying parametrization of the model has an important implication for the vegas. It is,
therefore, worthwhile to investigate the behaviour of the vegas from different perspectives to explore
the model’s structure. In subsection 4.1, we review analytically the vegas under different models.
We then study the vegas numerically and investigate further the link between them.

4.1 The vega computation under the swap Markov-functional model

In order to compute the price of a Bermudan swaption in a SMF model, we need two sets of initial
inputs and a covariance/correlation structure (captured through the process x). The first set of
inputs are the initial discount bonds which can be safely ignored in this discussion as we are only
concerned with the vegas here. The second set of inputs are the co-terminal implied volatilities
which are used to recover the prices of the underlying co-terminal vanilla swaptions and fix the
functional forms of the corresponding co-terminal forward swap rates at their setting dates. In the
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implementation of the SMF model, this is the calibration to the market marginals and it is done
for all different specifications of x. In general, one can view the value of a Bermudan V̂T0 as a price
function which maps (the square root of) the variances of x and the second set of inputs to a real
positive value:

V̂T0 : Rn × Rn → R+

V̂T0(ξ, σ) := v0, (16)

where ξ = (
√
ξT1 ,

√
ξT2 , . . . ,

√
ξTn) and σ = (σ̃1,n, σ̃2,n−1, . . . , σ̃n,1). For the weighted covariance

process, the equivalent input from x is ξ
α

= (
√
ξαT1 ,

√
ξαT2 , . . . ,

√
ξαTn). Note that the notation ξ

α

when α→∞ indicates the one step covariance case as we explained in section 3.3.2. For the data
we are working with, it is observed that the vectors ξ

α
are quite similar for all α and hence different

choices for α result in similar prices for the Bermudan.
Define the vega νi,k to be the total derivative of the Bermudan swaption’s price with respect to

σ̃i,k for each i = 1, . . . , n and k = 1, . . . , n+ 1− i:

νi,k :=
dV̂T0
dσ̃i,k

. (17)

We apply the finite difference/bumping-revaluation method to calculate these derivatives numeri-
cally.

We now consider the vegas on a particular ith row of the swaption matrix. In order to distinguish
the vegas produced by different models, we denote ναi,k for the weighted covariance process. Note
again that the notation ναi,k as α→∞ indicates the vegas for the one step covariance process. For

the HW and MR models, we denote the vegas by νhw
i,k and νmr

i,k respectively. Note that only the

co-terminal vegas νhw
i,n+1−i and νmr

i,n+1−i matter in the HW and MR models which follows directly
from their setups. The other vegas are all zero for these models.

1. k = 1, . . . , n − i (off reverse diagonal): For the one step and weighted covariance models,
as σ̃i,k is only involved in ξ

α
, by the chain rule and equation (15) we have that

ναi,k =
dV̂T0
dσ̃i,k

=
i∑

s=1

∂V̂T0
∂
√
ξαTs
×

d
√
ξαTs

dσ̃i,k
. (18)

The term
∂V̂T0
∂
√
ξαTs

should be interpreted as the partial derivative of the price function V̂T0 with

respect to the sth coordinate of the vector ξ
α
. For the total derivatives

d
√
ξαTs

dσ̃i,k
where 1 ≤ s < i,

by equation (15) it is clear that the dependence of
√
ξαTs on σ̃i,k is through {

√
ξαTj∗}j∗=s+1,...,i.

Note that the price of a Bermudan swaption is not sensitive to these implied volatility in-
puts under the HW and MR models. Hence, as noted above we have zero values for the
corresponding vegas in these models.

2. k = n + 1 − i (reverse diagonal): For the one step and weighted covariance models, as
σ̃i,n+1−i is involved in both ξ

α
and σ we have that

ναi,n+1−i =
∂V̂T0

∂σ̃i,n+1−i
+

i∑
s=1

∂V̂T0
∂
√
ξαTs
×

d
√
ξαTs

dσ̃i,n+1−i
. (19)
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Note that the first term on the right hand side of (19) is approximately the ith bucket vega
νmr
i,n+1−i of the MR process when the prices are comparable between models. This term only

reflects the change of the marginal distribution of yi,n+1−i
Ti

under its own swaption measure.
For the HW process, the equivalent vega is

νhw
i,n+1−i =

∂V̂T0
∂σ̃i,n+1−i

+
∂V̂T0
∂
√
ξTi
×

d
√
ξTi

dσ̃i,n+1−i
(20)

≈ νmr
i,n+1−i +

∂V̂T0
∂
√
ξTi
×

d
√
ξTi

dσ̃i,n+1−i
.

One can see that the above differences between νhw
i,n+1−i and ναi,n+1−i on one hand and νhw

i,n+1−i
and νmr

i,n+1−i on the other hand come from the differences in their correlation structures.
Since the HW and the one step and the weighted covariance models are different examples
of parametrization by time, their vegas are closely connected as we shall see in section 4.4.
For the MR and HW models which respond to the reverse diagonal only, the difference in
their correlation structures follow directly from the difference between the parameterizations
by expiry and by time. We will review this difference in the next section.

4.2 The Bermudan swaption’s vegas under the HW and MR models

The example we consider here is a 11 years annual Bermudan swaption with fixed rate K = 5%,
notional N = 100 million and the following initial data:

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 13.12 13.19 13.21 13.21 13.22 13.00 12.78 12.58 12.39 12.17
2 13.16 13.16 13.09 13.04 12.92 12.72 12.51 12.31 12.12 . . .
3 13.06 12.97 12.91 12.82 12.66 12.42 12.20 12.03 . . . . . .
4 12.95 12.82 12.72 12.51 12.32 12.14 11.93 . . . . . . . . .
5 12.76 12.57 12.43 12.24 12.03 11.87 . . . . . . . . . . . .
6 12.38 12.19 12.12 11.89 11.71 . . . . . . . . . . . . . . .
7 12.10 11.89 11.77 11.59 . . . . . . . . . . . . . . . . . .
8 11.69 11.56 11.46 . . . . . . . . . . . . . . . . . . . . .
9 11.48 11.31 . . . . . . . . . . . . . . . . . . . . . . . .
10 11.19 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.1: Black implied volatilities (%) of the ATM swaptions on October 17, 2007.

and
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 4.54 4.55 4.56 4.58 4.60 4.63 4.66 4.70 4.73 4.76
2 4.55 4.57 4.59 4.62 4.65 4.69 4.73 4.76 4.79 . . .
3 4.58 4.62 4.65 4.68 4.72 4.76 4.80 4.83 . . . . . .
4 4.65 4.68 4.72 4.76 4.80 4.84 4.87 . . . . . . . . .
5 4.71 4.75 4.80 4.84 4.88 4.92 . . . . . . . . . . . .
6 4.80 4.84 4.89 4.93 4.97 . . . . . . . . . . . . . . .
7 4.89 4.94 4.98 5.01 . . . . . . . . . . . . . . . . . .
8 4.99 5.03 5.06 . . . . . . . . . . . . . . . . . . . . .
9 5.06 5.09 . . . . . . . . . . . . . . . . . . . . . . . .
10 5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.2: Initial swap rates (%) on October 17, 2007.

Here we compare the vegas of the Bermudan swaption under the HW and MR models. The
mean reversion parameter a is fixed at 3% for both two driving processes so that the Bermudan
prices produced by the two models are close and also comparable to those that are produced by
the one step and weighted covariance models. We display the vegas in tables 4.3 and 4.4. The
position of each vega corresponds to the implied volatility in the swaption matrix. Recall that the
off reverse diagonal entries are all zero since the Bermudan swaption’s price is not sensitive to the
corresponding implied volatility inputs here.

Remark 2 In practice, traders usually quote vega as the change in price when implied volatility
increases by 100 basis points (bp) or 1% so we will scale the “true” vega by a factor of 0.01, i.e.
νi,k → 0.01νi,k. For example, the entry 4.09 in the first row and the last column of table 4.3 means
that when σ̃1,10 increases by 1% the Bermudan price (with notional 100 million) will increase by
40, 900.

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0 0 0 0 0 0 0 0 0 4.09
2 0 0 0 0 0 0 0 0 10.00 . . .
3 0 0 0 0 0 0 0 9.48 . . . . . .
4 0 0 0 0 0 0 7.76 . . . . . . . . .
5 0 0 0 0 0 6.23 . . . . . . . . . . . .
6 0 0 0 0 4.69 . . . . . . . . . . . . . . .
7 0 0 0 3.74 . . . . . . . . . . . . . . . . . .
8 0 0 2.94 . . . . . . . . . . . . . . . . . . . . .
9 0 2.16 . . . . . . . . . . . . . . . . . . . . . . . .
10 1.56 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.3: The Bermudan swaption’s scaled vegas (in 104) under the HW model.

16



Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0 0 0 0 0 0 0 0 0 6.28
2 0 0 0 0 0 0 0 0 14.54 . . .
3 0 0 0 0 0 0 0 12.12 . . . . . .
4 0 0 0 0 0 0 8.48 . . . . . . . . .
5 0 0 0 0 0 5.62 . . . . . . . . . . . .
6 0 0 0 0 3.37 . . . . . . . . . . . . . . .
7 0 0 0 1.86 . . . . . . . . . . . . . . . . . .
8 0 0 0.83 . . . . . . . . . . . . . . . . . . . . .
9 0 0.22 . . . . . . . . . . . . . . . . . . . . . . . .
10 -0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.4: The Bermudan swaption’s scaled vegas (in 104) under the MR model.

It is seen in figure 4.1 that the vegas for both models as a function of expiry display “humped”
shapes whose peaks are attained at the same exercise date. We also observe that the HW vegas
are lower than the MR vegas at the early exercise dates but higher at the later ones. Recall from
subsection 4.1 that this difference in vegas is actually caused by the difference in the correlation
structures. This is rather important for a strongly correlation-dependent product like the Bermudan
swaption. In the following, we will give a crude explanation on how a change in one of the co-
terminal implied volatilities can affect the correlations of the co-terminal swap rates under the two
models which will then clearly indicate their vegas.

Parametrization by expiry (MR): We recall that the MR process is unaltered by bumping
any co-terminal implied volatility. This then implies that the correlation structure of the
model/co-terminal forward swap rates is unaltered, i.e. Corrmo(ln yi,n+1−i

Ti
, ln yj,n+1−j

Tj
) which

are approximately

√
ξmin(Ti,Tj)

ξmax(Ti,Tj)
are unchanged for all i, j ≤ n.

Parametrization by time (HW): Bumping σ̃i,n+1−i has an immediate effect on the HW process
and hence the correlation structure of the model/co-terminal forward swap rates. Specifically,

Corrmo(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) ≈
√

ξmin(Ti,Tj)

ξmax(Ti,Tj)
will increase for j > i but decrease for j < i.

Heuristically, we have the following overall effect: on average the co-terminal forward swap
rates will tend to be more correlated if i is small and less correlated if i is large.

We employ the following heuristic argument for the correlation’s effects on the Bermudan price.
The optionality of a Bermudan implies that the lower the correlations of the co-terminal swap rates
get, the higher the price of the Bermudan swaption becomes. For more details of how correlations
affect the Bermudan price, see (Andersen & Piterbarg, 2010) and (Rebonato, 2004) for example for
reference. Hence, we draw the following conclusion on the vegas. If x is parameterized by time and i
is small (early exercise date), the co-terminal forward swap rates will tend to be more correlated on
average. This effect will cause the HW price to increase less than the MR price and make νhw

i,n+1−i
lower than νmr

i,n+1−i. On the other hand, if i is large (late exercise date), the co-terminal forward

swap rates will tend to be less correlated on average. This then causes νhw
i,n+1−i to be higher than

νmr
i,n+1−i. This fundamental difference is the key observation which leads to very different hedging

profiles as we shall see later.
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Remark 3 The MR vegas become very small or even negative at the end of the option which is
possible under some circumstances in practice. See appendix B in (Pietersz & Pelsser, 2004) for
an explanation of negative vega for a two stock Bermudan option example.

4.3 The Bermudan swaption’s vegas under the one step and weighted covari-
ance models

We test the one step and weighted covariance processes with different values of α and display their
vega matrices in tables 4.5, 4.6, 4.7 and 4.8.

We first look at the vegas for the one step covariance model in table 4.5. The first thing to notice
from this table is that the vega response starts shifting away from the reverse diagonal entries. We
obtain a vega profile which assigns a significant contribution to the first column of the swaption
matrix. The other vega entries are seen to be much smaller and very close to zero except for the
co-terminal ones. The vega behaviour of the first column can be seen from the local fit in appendix
A.2. In this local fit step, apart from the reverse diagonal entries we see that shifting the first
column has the most distinctive effect on the one step covariance terms that we estimate from the
market. The one step covariance model is set up such that it responds to the changes in the one
step covariances only (not the other covariances as considered in the weighted covariance model).
Thus it is a shift in the first column or a reverse diagonal entry of the swaption matrix that has the
largest vega response. Note that the swaptions corresponding to the first column are fairly illiquid
so it would be desirable to use more implied volatilities to moderate the response to any inaccurate
market signals. The results produced by the weighted covariance model indeed have this feature.

For the weighted covariance model, we observe different patterns for the vega response depending
on different values of α. For example, when α = 0.05 we observe a bigger response in the central
part of the table compared with that when we use a much higher value of α, for instance α = 5. For
some particular rows, it is seen that those central entries even dominate the reverse diagonal and
the first column. For larger values of α such as 0.3 in table 4.7, we observe a clearer trend in the
vega entries. They tend to increase in tenor for each expiry. When α gets much higher (table 4.8),
it is clear that the entries look very similar to the one step covariance case where the vegas from
the central part become much more insignificant and dominated by the reverse diagonal and the
first column. This is predictable as one step covariance is a special case of the weighted covariance
model when α is very large.

Remark 4 We get a few negative vega entries when α = 0.05. Note that those in the reverse
diagonal (the first two rows) are quite large in magnitude. One reason for this behaviour is the
following. When we shift the co-terminal implied volatility σ̃i,n+1−i, the approximations from the

market for the correlations Corrma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) tend to increase for j > i. For a very
low value of α, the model will take into account all these increases in correlations with high levels
of impact on the Bermudan price since the geometric weight pTj−Ti decays very slowly in Tj − Ti.
Therefore, when i is small the overall increase in correlations of the co-terminal swap rates could
be large which in turn leads to a decrease in price and hence negative vegas.
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.60
2 0.94 0.01 0.01 0.01 0.01 0.01 0.01 0.01 8.86 . . .
3 1.46 0.01 0.01 0.01 0.01 0.01 0.00 7.79 . . . . . .
4 1.82 0.01 0.01 0.01 0.01 0.01 5.71 . . . . . . . . .
5 2.01 0.02 0.02 0.02 0.01 4.02 . . . . . . . . . . . .
6 2.08 0.02 0.02 0.01 2.45 . . . . . . . . . . . . . . .
7 2.05 0.02 0.01 1.56 . . . . . . . . . . . . . . . . . .
8 1.89 0.02 1.00 . . . . . . . . . . . . . . . . . . . . .
9 1.68 0.43 . . . . . . . . . . . . . . . . . . . . . . . .
10 1.57 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.5: The Bermudan swaption’s scaled vegas (in 104) under the one step covariance model.

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0.08 0.05 0.16 0.30 0.16 0.62 0.70 0.57 2.48 −1.05
2 0.10 0.46 0.36 0.56 0.86 1.32 2.21 4.79 −1.06 . . .
3 0.10 0.22 0.36 0.58 0.93 1.70 3.70 1.42 . . . . . .
4 0.06 0.16 0.29 0.54 0.95 2.15 3.49 . . . . . . . . .
5 0.05 0.16 0.30 0.55 1.34 3.82 . . . . . . . . . . . .
6 0.02 0.10 0.16 0.46 3.89 . . . . . . . . . . . . . . .
7 0.03 0.01 0.08 3.67 . . . . . . . . . . . . . . . . . .
8 −0.07 −0.24 3.25 . . . . . . . . . . . . . . . . . . . . .
9 −0.18 2.25 . . . . . . . . . . . . . . . . . . . . . . . .
10 1.54 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.6: The Bermudan swaption’s scaled vegas (in 104) under the weighted covariance model
(α = 0.05).
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0.10 0.13 0.18 0.25 0.15 0.35 0.30 0.38 0.65 1.86
2 0.23 0.36 0.46 0.59 0.66 0.82 1.05 1.73 3.83 . . .
3 0.22 0.41 0.53 0.67 0.81 1.14 1.87 3.75 . . . . . .
4 0.23 0.38 0.51 0.69 0.95 1.67 3.45 . . . . . . . . .
5 0.18 0.35 0.53 0.81 1.48 3.00 . . . . . . . . . . . .
6 0.17 0.34 0.53 1.05 2.67 . . . . . . . . . . . . . . .
7 0.13 0.31 0.71 2.68 . . . . . . . . . . . . . . . . . .
8 0.08 0.26 2.62 . . . . . . . . . . . . . . . . . . . . .
9 0.08 2.03 . . . . . . . . . . . . . . . . . . . . . . . .
10 1.55 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.7: The Bermudan swaption’s scaled vegas (in 104) under the weighted covariance model
(α = 0.3).

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0.25 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 3.59
2 0.94 0.03 0.01 0.01 0.01 0.01 0.01 0.01 8.87 . . .
3 1.44 0.03 0.01 0.01 0.01 0.00 0.00 7.77 . . . . . .
4 1.78 0.05 0.00 0.00 0.00 0.01 5.69 . . . . . . . . .
5 1.98 0.05 0.00 0.00 0.00 4.03 . . . . . . . . . . . .
6 2.03 0.04 0.03 0.00 2.42 . . . . . . . . . . . . . . .
7 2.03 0.08 0.02 1.58 . . . . . . . . . . . . . . . . . .
8 1.82 0.08 0.99 . . . . . . . . . . . . . . . . . . . . .
9 1.66 0.46 . . . . . . . . . . . . . . . . . . . . . . . .
10 1.57 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.8: The Bermudan swaption’s scaled vegas (in 104) under the weighted covariance model
(α = 5).

4.4 The net market vegas for different parameterizations

We recall that the HW process is an example of parametrization by time and it has a certain vega
profile with the responses only on the reverse diagonal. The one step and weighted covariance
models move the vega response away from the reverse diagonal and this causes their hedging
behaviours to be quite different from that of the HW model. However, their vega profiles are still
very closely connected as they are different examples of parametrization by time. For the one
step and weighted covariance models, we plot the sum of the vegas for each row (expiry) of the
swaption matrix. With our initial data, we observe that each row sum is roughly a constant that is
independent of α and very close to the co-terminal vega on the same row of the HW model (figure
4.1).
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Figure 4.1: The (net) row sum of the scaled vegas (in 104) of a 11-years annual Bermudan swaption
for different models and parameters.

We state this observation as a result.

Result 1 For each i = 1, . . . , n and all α > 0, under the assumptions that implied volatilities of the
same expiry are not so variant with respect to tenor and the variances ξT1 , . . . , ξTn are comparable
between models the following relation holds true

n+1−i∑
k=1

ναi,k ≈ νhwi,n+1−i (21)

In order to prove this result, we need the following sub-result that works with the log-transformation
of the implied volatilities.

For k = 1, . . . , n + 1 − i, let Σi,k := ln σ̃i,k. We define the total derivative of the Bermudan
swaption’s price with respect to these log-implied volatilities as

ν̂i,k :=
dV̂T0
dΣi,k

.

Again, in order to distinguish different models we denote ν̂αi,k for the one step and weighted covari-

ance models. For the HW model, the equivalent co-terminal term is denoted by ν̂hw
i,n+1−i and note

that it is the only term that matters. We state the sub-result as a lemma.

Lemma 1 For each i = 1, . . . , n and all α > 0, under the second assumption in result 1 the
following relation holds true

n+1−i∑
k=1

ν̂αi,k ≈ ν̂hwi,n+1−i (22)
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Proof : We will first prove that for the one step and weighted covariance models the row sum∑n+1−i
k=1 ν̂αi,k is independent of α. Note that

∑n+1−i
k=1 ν̂αi,k roughly represents the effect of a parallel

additive shift of Σi,k for k = 1, . . . , n+ 1− i on the Bermudan price as we can see from the Taylor

expansion of the price function V̂T0 . This is equivalent to a parallel multiplicative shift of σ̃i,k for
k = 1, . . . , n+ 1− i since

Σi,k −→ Σi,k + ln ε ⇐⇒ σ̃i,k −→ εσ̃i,k.

One then can write

n+1−i∑
k=1

ν̂αi,k ≈ V̂T0(εσ̃i,1, . . . , εσ̃i,n+1−i)− V̂T0(σ̃i,1, . . . , σ̃i,n+1−i)

ln ε
,

where ε > 1 and sufficiently small. It remains to show that the effect of the parallel multiplicative
shift of the ith row of the swaption matrix on the Bermudan price is independent of α.

In the following we use the analysis obtained in appendix A. The main purpose is to assess the
effects of the above parallel multiplicative shift on each of the estimated covariances that feed into
the one step and weighted covariance models, i.e. Covma(ln yi,n+1−i

Ti
, ln yj,n+1−j

Ti
) for j = i+1, . . . , n.

This can be seen via the effects on the covariances of the log-LIBORs. From the local fit in appendix
A.2, we have the following approximation for the covariances of the log-LIBORs at each exercise
date Ti

σ̃2
i,kTi ≈

i+k−1∑
l=i

i+k−1∑
l∗=i

ζi,kl (0)ζi,kl∗ (0)Covma(lnLlTi , lnL
l∗
Ti), k = 1, . . . , n+ 1− i,

where {ζi,kl (0)}l=i,...,n are constants that only depend on the initial discount curve (see appendix
A). Therefore, under a parallel multiplicative shift of the ith row of the swaption matrix we have
that

Covma(lnLlTi , lnL
l∗
Ti) −→ ε2Covma(lnLlTi , lnL

l∗
Ti), l, l∗ = i, . . . , n.

Since the covariance of the log-swap rates can be approximated by summing up the covariances of
the corresponding spanning log-LIBORs (see appendix A.2), we have

Covma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

) ≈
n∑
k=i

n∑
l=j

ζi,n+1−i
k (0)ζj,n+1−j

l (0)Covma(lnLkTi , lnL
l
Ti)

⇒ Covma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

) −→ ε2Covma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

), j = i+ 1, . . . , n,

Recall the market quantity Bi =
∑n

j=i+1 p
Tj−TiCovma(ln yi,n+1−i

Ti
, ln yj,n+1−j

Ti
). For all values of α,

we then have that
Bi −→ ε2Bi.

We further recall the construction of
√
ξαTi in equation (14) where we have

√
ξαTi =

Bi

σ̃i,n+1−i
√
Ti
∑n

j=i+1 p
Tj−Ti

√
1
ξαTj
σ̃j,n+1−j

√
Tj

.
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Similar to the arguments in section 4.1, the cascade structure in equation (15) implies that {
√
ξαTj}j=i+1,...,n

are invariant under a parallel multiplicative shift of the ith row. It then follows from (14) that√
ξαTi −→ ε

√
ξαTi ,

and hence further
√

1
ξαTi
σ̃i,n+1−i

√
Ti is invariant. For 1 ≤ s < i, we have that

√
ξαTs =

Bs

σ̃s,n+1−s
√
Ts
∑n

j=s+1 p
Tj−Ts

√
1
ξαTj
σ̃j,n+1−j

√
Tj

.

When s = i − 1, it is clear that
√
ξαTs is also invariant because

√
1
ξαTi
σ̃i,n+1−i

√
Ti is invariant.

Inductively, we have that {
√
ξαTs}1≤s<i are all invariant. It is now clear that a parallel multiplicative

shift of the ith row will only shift
√
ξαTi −→ ε

√
ξαTi regardless of α.

Since Σi,k is just the log of σ̃i,k for each k = 1, . . . , n + 1 − i, one can write the analogous
formulae for ν̂αi,k following exactly the same arguments as in (18) and (19). Therefore, for the off
reverse diagonal entries: k = 1, . . . , n− i

ν̂αi,k =
i∑

s=1

∂V̂T0
∂
√
ξαTs
×

d
√
ξαTs

dΣi,k
,

and for the reverse diagonal entry k = n+ 1− i

ν̂αi,n+1−i =
∂V̂T0

∂Σi,n+1−i
+

i∑
s=1

∂V̂T0
∂
√
ξαTs
×

d
√
ξαTs

dΣi,n+1−i
.

Hence, we have the row sum

n+1−i∑
k=1

ν̂αi,k =
∂V̂T0

∂Σi,n+1−i
+
n+1−i∑
k=1

i∑
s=1

∂V̂T0
∂
√
ξαTs
×

d
√
ξαTs

dΣi,k

=
∂V̂T0

∂Σi,n+1−i
+

i∑
s=1

∂V̂T0
∂
√
ξαTs
×

(
n+1−i∑
k=1

d
√
ξαTs

dΣi,k

)
.

Similar to that we discussed earlier, the sum
∑n+1−i

k=1

d
√
ξαTs

dΣi,k
roughly represents the effect of a

parallel multiplicative shift of the ith row of the swaption matrix on
√
ξαTs by looking at the Taylor

expansion on
√
ξαTs . We previously concluded for the one step and weighted covariance models that

this shift will leave
√
ξαTj unchanged for j 6= i. It follows that

∑n+1−i
k=1

d
√
ξαTs

dΣi,k
≈ 0 for s < i. Hence

n+1−i∑
k=1

ν̂αi,k ≈
∂V̂T0

∂Σi,n+1−i
+

∂V̂T0

∂
√
ξαTi

×
n+1−i∑
k=1

d
√
ξαTi

dΣi,k
.
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Since the parallel multiplicative shift of the ith row will alter
√
ξαTi −→ ε

√
ξαTi , we then can write

that
n+1−i∑
k=1

ν̂αi,k ≈
∂V̂T0

∂Σi,n+1−i
+

∂V̂T0

∂
√
ξαTi

×
ε
√
ξαTi −

√
ξαTi

ln ε
. (23)

Because we assume the
√
ξαTi ’s are similar for all α under our initial data, we can now conclude

that
∑n+1−i

k=1 ν̂αi,k is independent of α.
We now prove the second part of the lemma that connects the weighted covariance process with

the HW process. For the HW process, we recall that

ξTi =

(
Tn+1 − Ti

(1 + αiy
i,n+1−i
0 )(ψTn+1 − ψTi)

)2

σ̃2
i,n+1−iTi,

where ψTi = 1
a(1− e−aTi), a > 0. We fixed a at 3% so that the ξTi ’s are similar to the ξαTi ’s of the

weighted covariance process. It is clear that shifting Σi,n+1−i −→ Σi,n+1−i + ln ε or equivalently
σ̃i,n+1−i −→ εσ̃i,n+1−i will only shift √

ξTi −→ ε
√
ξTi , (24)

and leave {
√
ξTj}j 6=i remain unchanged. This is exactly the same effect that a parallel multiplicative

shift of the ith row has on the weighted covariance process. We now write the analogous formula
for ν̂hw

i,n+1−i following the same argument as in (20)

ν̂hw
i,n+1−i =

∂V̂T0
∂Σi,n+1−i

+
∂V̂T0
∂
√
ξTi
×

d
√
ξTi

dΣi,n+1−i
.

This then follows immediately from (24) that

ν̂hw
i,n+1−i ≈

∂V̂T0
∂Σi,n+1−i

+
∂V̂T0
∂
√
ξTi
×
ε
√
ξTi −

√
ξTi

ln ε
,

which is approximately the same as (23) since ξTi and ξαTi are comparable. The proof is now
complete.

We are now able to prove result 1.
Proof of result 1: since Σi,k = ln σ̃i,k, one can write the following for the one step and weighted

covariance models

ναi,k = ν̂αi,k
dΣi,k

dσ̃i,k
= ν̂αi,k

1

σ̃i,k
.

Hence
n+1−i∑
k=1

ναi,k =
n+1−i∑
k=1

ν̂αi,k
1

σ̃i,k
.

For the HW model, the equivalent quantity is νhw
i,n+1−i = ν̂hw

i,n+1−i
1

σ̃i,n+1−i
. Observe that if the

implied volatility is not so variant in tenor k, we will be able to remove σ̃−1
i,k from the sum and
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replace them by a constant C. This assumption is also supported by the data we work with in this
paper (table 4.1). It then follows by lemma 1 that

n+1−i∑
k=1

ναi,k ≈ C
n+1−i∑
k=1

ν̂αi,k ≈ Cν̂hw
i,n+1−i ≈ νhw

i,n+1−i.

The proof is now complete.

5 A hedging result

In this section, we construct a vega-delta neutral portfolio for a Bermudan swaption under different
models. The portfolio will consist of vanilla swaptions and interest rate swaps. We then calculate
the gamma profile of the portfolio for each model and compare them accordingly. Here we employ
the same example of Bermudan swaption as we considered in section 4 with the data provided in
tables 4.1 and 4.2.

We first look at the gamma profiles of the HW and MR hedging portfolios in section 5.1. We
then continue our investigation with the one step and weighted covariance models in section 5.2.
In all cases, we want to stress that the vegas of the Bermudan are the main factor that affects the
gamma profile of the hedging portfolio. For the first two models, we observe a distinct difference
between them in terms of the total gamma of vega-delta neutral portfolio. These will be addressed
in detail in section 5.1.3. It is also seen in this section that the parallel gamma profiles of these
models are qualitatively similar and not ideal in practice. Due to the more realistic specification
of the later models, one can actually hope that the gamma profile of the hedging portfolio will be
improved. This is a potential advantage of the one step and weighted covariance models and we
will analyze it in detail in section 5.2.3.

5.1 A hedging portfolio for the HW and MR models

We now proceed to the construction of the vega-delta neutral portfolios for the HW and MR models.

5.1.1 Vega hedge

We first construct a vega neutral portfolio. Since the Bermudan prices under the HW and MR
models are only sensitive to the changes in the co-terminal implied volatilities, we will only need
to hedge those risks by trading suitable proportions of the co-terminal vanilla swaptions. At this
stage, the portfolio will consist of a Bermudan swaption with today’s value V̂T0 and an appropriate
proportion N sption

i of the corresponding ith co-terminal vanilla swaption with today’s value Ṽ i,n+1−i
T0

for each i = 1, . . . , n. We require the portfolio to be vega neutral, i.e. for each i = 1, . . . , n, N sption
i

is chosen such that

dV̂T0
dσ̃i,n+1−i

+N sption
i

dṼ i,n+1−i
T0

dσ̃i,n+1−i
= νi,n+1−i +N sption

i

dṼ i,n+1−i
T0

dσ̃i,n+1−i
= 0,

where the derivatives can be calculated numerically by the finite difference method and note that
νi,n+1−i indicates the ith bucket vega of the Bermudan for the HW and MR models. Hence, we
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have that

N sption
i = −νi,n+1−i/

(
dṼ i,n+1−i

T0

dσ̃i,n+1−i

)
.

We display the vegas of the Bermudan calculated for the HW and MR models together in table
5.1 and the co-terminal vanilla swaptions’ vegas (with notional being 1 million) in table 5.2. The
calculations of N sption

i then follow directly and we display the results in table 5.3.

i 1 2 3 4 5 6 7 8 9 10

HW 4.09 10.00 9.48 7.76 6.23 4.69 3.74 2.94 2.16 1.56
MR 6.28 14.54 12.12 8.48 5.62 3.37 1.86 0.83 0.22 -0.02

Table 5.1: The Bermudan swaption’s scaled vegas (in 104) for the HW and MR models.

i 1 2 3 4 5 6 7 8 9 10

Vanilla 0.27 0.35 0.38 0.38 0.36 0.32 0.27 0.21 0.15 0.08

Table 5.2: The co-terminal vanilla swaptions’ scaled vegas (in 104).

i 1 2 3 4 5 6 7 8 9 10

HW -15 -28 -25 -20 -17 -15 -14 -14 -15 -21
MR -23 -41 -32 -22 -16 -11 -7 -4 -1 0

Table 5.3: Vega hedging (N sption
i ) for the HW and MR models.

In table 5.3, one observes that N sption
i ’s of the MR model are about one and a half times as big

in magnitude as those of the HW model for small i. The gap between N sption
i ’s of the two models

gets smaller as i increases and after a certain i we observe the reverse situation, i.e. N sption
i ’s of the

MR model become much smaller in magnitude compared with those of the HW model. This is an
immediate result from the difference in their vegas which is a direct consequence of the difference
between the parameterizations by time and by expiry as we explored in sections 3.2 and 4.2.

5.1.2 Delta hedge

After the vega hedging step, the hedging portfolio is no longer exposed to the vega risks but still
exposed to the delta risks, i.e. the risks with respect to the movements of the underlyings. The
next step is, therefore, to neutralize the delta risks but still maintain the vega neutrality. We will
do so by using the co-initial swaps with today’s values V i

T0
for i = 1, . . . , n + 1 as the hedging

instruments. Note that the corresponding swap rates of the co-initial swaps are y0,i which start
today and mature at Ti for i = 1, . . . , n + 1. We will work with the co-initial swap rates as the
underlyings instead of the pure discount bonds as their prices are directly available in the market.
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We first define the deltas of a Bermudan to be

∆̂j :=
dV̂T0
dy0,j

,

for j = 1, . . . , n + 1. These derivatives can be calculated by the finite difference method. At this
stage, the current vega neutral portfolio has non-zero deltas.

Because the co-initial swaps are not sensitive to any changes in the implied volatilities, adding
them to the portfolio will not affect the vega neutrality. Denote the proportions of the co-initial
swaps that we wish to acquire by N swap

i for i = 1, . . . , n+ 1. We now have a new hedging portfolio
with today’s value V port

T0

V port
T0

= V̂T0 +
n∑
i=1

N sption
i Ṽ i,n+1−i

T0
+
n+1∑
i=1

N swap
i V i

T0 .

The proportions {N swap
i }i=1,...,n+1 need to be chosen so that the hedging portfolio becomes delta

neutral. The jth delta position of the portfolio is denoted by ∆j where

∆j :=
dV port

T0

dy0,j
,

for j = 1, . . . , n + 1. Therefore, in order to neutralize the delta risks we need to solve for vector
Nswap = (N swap

1 , . . . , N swap
n+1 ) so that ∆j = 0 for j = 1, . . . , n+ 1. This is a straightforward task and

it effectively requires a matrix multiplication to get the vector Nswap. The portfolios for the HW
and MR models are now vega-delta neutral.

We present the Bermudan’s deltas and N swap
i ’s in figure 5.1 and table 5.4 respectively. Note

that there is a large jump in the last delta of the Bermudan which is not straightforward at first
glance. The reason is that shifting the last co-initial swap rate will shift the last LIBOR and result
in a parallel shift of all the co-terminal swap rates. On the other hand, the equivalent effect of
shifting the other co-initial swap rates is that it will only decrease slightly one of the co-terminal
swap rates and leave the rest almost unchanged. As a result, the last delta is positive and large in
magnitude while the others are small and negative. These effects can be seen via the one to one
correspondence between the co-initial swap rates and the discount bonds.

Remark 5 In practice, delta is usually quoted as the change in price when the underlying rate
moves by 1 bp (0.0001) so we will scale the “true” delta as calculated above by a factor of 0.0001,
i.e. ∆̂j → 0.0001∆̂j. For example, a delta of around −3000 in figure 5.1 means that the Bermudan
price (with notional 100 million) will decrease by around 3000 if the corresponding co-initial swap
rate increases by 1 bp.
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Figure 5.1: The scaled deltas of the Bermudan under the HW and MR models.

i 1 2 3 4 5 6 7 8 9 10 11

HW -1.4 -2.0 -1.3 -0.9 -0.8 -1.2 -1.6 -2.6 -4.2 -8.2 21.8
MR -4.4 -7.6 -4.7 -2.0 -0.0 1.4 2.5 3.5 4.2 4.8 -0.9

Table 5.4: Delta hedging (N swap
i ) for the HW and MR models (correspond to swaps with notional

N = 1 million).

5.1.3 The gammas of the HW and MR hedging portfolios

Recall that each of the deltas is itself a function of the co-initial swap rates so they will move
whenever these rates move. This change of deltas requires us to re-balance the portfolio since the
previous portfolio is no longer delta-neutral. It is then important to consider the gammas of the
portfolio as a measure of the sensitivity of the deltas. As the re-balancing cost could sometimes be
high, it is desirable from a practical point of view that the gammas of the portfolio should have
as small magnitudes as possible which implies that there is very little need for re-balancing the
portfolio. For each i = 1, . . . , n + 1, we carry out a parallel shift of the co-initial swap rates with
ε = 1 bp (0.0001) and re-evaluate the delta to calculate the gamma. For the Bermudan, we then
end up with the gamma vector Γ̂ where each of the co-ordinates is

Γ̂i :=
∆̂i(y

0,1 + ε, . . . , y0,n+1 + ε)− ∆̂i(y
0,1, . . . , y0,n+1)

ε
, i = 1, . . . , n+ 1. (25)

For the vega-delta neutral portfolio, we have the corresponding gamma vector Γ = (Γ1, . . . ,Γn+1).
The quantity in (25) is referred to as the parallel gamma and tells the trader how much the delta
moves when the market moves. It is a proxy for the row sums of the full gamma matrix

Γ̂i ≈
n+1∑
j=1

d2V̂T0
dy0,idy0,j

.
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Remark 6 Again, we note that although the “true” gammas are the second order derivatives of
the price with respect to the underlyings, it is market convention to quote them as the change in the
scaled deltas (by a factor of 0.0001) when the underlying rate(s) increases by 1 bp. For example,
one will quote the parallel gamma Γ̂i as calculated in (25) as

0.0001∆̂i(y
0,1 + ε, . . . , y0,n+1 + ε)− 0.0001∆̂i(y

0,1, . . . , y0,n+1).

Therefore, the gammas we display later are the “true” gammas scaled by a factor of 10−8.

An aggregated gamma quantity of interest is the total gamma. This is the sum of all entries in the
gamma matrix Γ =

∑n+1
i=1 Γi and it measures the total gamma exposure of the vega-delta neutral

portfolio. We approximate this quantity by adding up all co-ordinates of the gamma vector since
each co-ordinate is a proxy for the row sum of the gamma matrix. In table 5.5, we display the
scaled total gamma for each component of the HW and MR portfolios. The result shows that
the magnitude of the total gamma of the MR portfolio is around twice as big as that of the HW
portfolio. This difference mainly comes from the big gap between the total gamma contributions
of the co-terminal swaptions of the two portfolios. On the other hand, the contributions from the
co-initial swaps are seen to be much smaller in magnitude so we will not discuss them in detail.

Bermudan vanilla swaptions co-initial swaps portfolio

HW 196 -286 2 -88
MR 192 -369 -7 -184

Table 5.5: Scaled total gammas of the HW and MR portfolios.

In order to understand the difference in the total gammas of the two portfolios, we plot the
total gamma contribution from each individual co-terminal swaption in figure 5.2. Note that the
total gamma contribution of the vanilla swaptions (-286 for HW and -369 for MR after scaling)
is basically

∑n
i=1N

sption
i

∑n+1
j=1 Γ̃i,n+1−i

j . The plot in figure 5.2 displays N sption
i

∑n+1
j=1 Γ̃i,n+1−i

j after

scaling for each i. The difference in the negative peaks is clearly caused by the difference in N sption
i ’s

as we observed in table 5.3. Recall that the difference in N sption
i ’s is a consequence of the difference

in the vegas of the Bermudan for the two models which is characterized by the difference between
the parametrizations by time and by expiry. From this analysis, one then concludes that the HW
portfolio has a better total gamma than the MR portfolio. It indicates that in a wider context a
parametrization by time process will potentially lead to a better total gamma profile of the hedging
portfolio than a parametrization by expiry process.
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Figure 5.2: Scaled total gamma contributions from the co-terminal vanilla swaptions.

We now look at the gamma vectors of the HW and MR portfolios. Figure 5.3 displays the scaled
gamma vectors of the portfolios before the hedge (just the Bermudan) and after the hedge (together
with the co-terminal swaptions and the co-initial swaps). The results show that the gamma vectors
of the Bermudan swaption for both models are very similar. After the hedge, the portfolios of the
two models still have qualitatively very similar gamma profiles. Note that the large jump in the
last gamma in the left plot is a direct consequence of the jump in the last delta in figure 5.1. From
the right plot in figure 5.3, we see that for both models as all co-initial swap rates increase the
deltas ∆i’s will increase for i < n+ 1 and decrease for i = n+ 1. We further observe that the rates
of the increase are much lower than the rate of the decrease. Clearly, we do not have a good hedge
of the last gamma for both the HW and MR models.
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Figure 5.3: Scaled gamma vectors of the HW and MR portfolios before and after the hedge.
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To gain more insight into the gamma behaviours, we will look at the gamma contribution
from each hedging component. We further denote the gamma vector of the co-terminal swaption
with today’s value Ṽ i,n+1−i

T0
by Γ̃i,n+1−i = (Γ̃i,n+1−i

1 , . . . , Γ̃i,n+1−i
n+1 ). Similarly, we denote the gamma

vector of the co-initial swap with today’s value V i
T0

by Γi = (Γi1, . . . ,Γ
i
n+1). Recall that the portfolio

consists of

V port
T0

= V̂T0 +
n∑
i=1

N sption
i Ṽ i,n+1−i

T0
+
n+1∑
i=1

N swap
i V i

T0 ,

and hence the portfolio’s parallel gamma can be written as

Γj = Γ̂j︸︷︷︸
Bermudan

+
n∑
i=1

N sption
i Γ̃i,n+1−i

j︸ ︷︷ ︸
Co-terminal swaptions

+
n+1∑
i=1

N swap
i Γij︸︷︷︸

Co-initial swaps

,

for j = 1, . . . , n+ 1. Figure 5.4 represents the scaled gamma contribution vector from each hedging
component of the portfolio. The left and right plots display

∑n
i=1N

sption
i Γ̃i,n+1−i

j and
∑n+1

i=1 N
swap
i Γij

after scaling respectively for each j = 1, . . . , n + 1. Note that the index i for both sums indicates
the corresponding co-terminal swaption and the co-initial swap. While the co-initial swaps do not
have very large gammas, the contribution from the co-terminal swaptions clearly determines the
gamma behaviour of the whole portfolio. We observe in the left plot of figure 5.4 that for both
models the last gamma contribution

∑n
i=1N

sption
i Γ̃i,n+1−i

n+1 is extremely negative and it pulls the last
gamma Γn+1 of the portfolio down to be also very negative. This seems to be a common problem
for both models. The reason is that both the HW and MR models assign the vega responses to only
the reverse diagonal of the swaption matrix. This results in large values in magnitude of N sption

i ’s

which then lead to very negative values of
∑n

i=1N
sption
i Γ̃i,n+1−i

n+1 . In section 5.2.3, we will examine
for the one step and weighted covariance models how moving the vega responses away from the
reverse diagonal and spreading them over the swaption matrix can influence (improve) the gamma
profile of the portfolio.
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Figure 5.4: Scaled gamma contribution vectors of the co-terminal swaptions and the co-initial swaps
for the HW and MR portfolios.
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5.2 A hedging portfolio for the one step and weighted covariance models

This section discusses the vega-delta neutral portfolios for the one step and weighted covariance
models. Similar to our treatment of the HW and MR models, we again use the vanilla swaptions
and the co-initial swaps to vega-delta hedge the Bermudan.

5.2.1 Vega hedge

In section 4.4, we discussed the vegas of a Bermudan computed for the one step and weighted
covariance models. Since Bermudan prices under these models respond to the changes of certain
implied volatilities in the swaption matrix, we will need to hedge those risks by trading suitable
proportions of the appropriate vanilla swaptions. At this stage, the portfolio will consist of a Bermu-
dan swaption with today’s value V̂T0 and an appropriate proportion N sption

i,j of the corresponding

vanilla swaption with today’s value Ṽ i,j
T0

(with notional being 1 million) for each i = 1, . . . , n and
j = 1, . . . , n + 1 − i. We require the portfolio to be vega neutral, i.e. for each i = 1, . . . , n and
j = 1, . . . , n+ 1− i, N sption

i,j is chosen such that

dV̂T0
dσ̃i,j

+N sption
i,j

dṼ i,j
T0

dσ̃i,j
= ναi,j +N sption

i,j

dṼ i,j
T0

dσ̃i,j
= 0,

where the derivatives can be calculated numerically by the finite difference method. The vegas of
vanilla swaptions are displayed in table 5.6. We recall that ναi,j is the (i, j) entry in the Bermudan’s
vega matrix of the one step and weighted covariance models. Hence, we have that

N sption
i,j = −ναi,j/

(
dṼ i,j

T0

dσ̃i,j

)
.

We now present the results from the vega-hedging step in the following tables.

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0.03 0.05 0.08 0.10 0.13 0.16 0.19 0.21 0.24 0.27
2 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.35 . . .
3 0.05 0.10 0.15 0.20 0.25 0.29 0.34 0.38 . . . . . .
4 0.06 0.12 0.17 0.23 0.28 0.33 0.38 . . . . . . . . .
5 0.06 0.13 0.19 0.25 0.30 0.36 . . . . . . . . . . . .
6 0.07 0.13 0.20 0.26 0.32 . . . . . . . . . . . . . . .
7 0.07 0.14 0.21 0.27 . . . . . . . . . . . . . . . . . .
8 0.07 0.14 0.21 . . . . . . . . . . . . . . . . . . . . .
9 0.07 0.15 . . . . . . . . . . . . . . . . . . . . . . . .
10 0.08 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5.6: The vanilla swaptions’ scaled vegas (in 104).
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 -10.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -13.4
2 -22.7 -0.1 -0.1 -0.1 -0.1 -0.0 -0.0 -0.0 -25.2 . . .
3 -28.6 -0.1 -0.1 -0.1 -0.1 -0.0 -0.0 -20.5 . . . . . .
4 -31.1 -0.1 -0.1 -0.1 -0.1 -0.0 -15.1 . . . . . . . . .
5 -31.5 -0.2 -0.1 -0.1 -0.0 -11.3 . . . . . . . . . . . .
6 -30.5 -0.2 -0.1 -0.0 -7.7 . . . . . . . . . . . . . . .
7 -28.7 -0.2 -0.1 -5.8 . . . . . . . . . . . . . . . . . .
8 -25.6 -0.1 -4.7 . . . . . . . . . . . . . . . . . . . . .
9 -22.4 -2.9 . . . . . . . . . . . . . . . . . . . . . . . .
10 -20.9 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5.7: Vega hedging (N sption
i,j ) for the one step covariance model.

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 -3.0 -1.0 -2.1 -2.8 -1.2 -3.9 -3.8 -2.7 -10.3 3.9
2 -2.4 -5.7 -3.0 -3.5 -4.3 -5.6 -8.0 -15.2 3.0 . . .
3 -1.9 -2.2 -2.4 -2.9 -3.8 -5.8 -11.0 -3.7 . . . . . .
4 -1.1 -1.4 -1.7 -2.4 -3.4 -6.5 -9.2 . . . . . . . . .
5 -0.8 -1.3 -1.6 -2.3 -4.4 -10.7 . . . . . . . . . . . .
6 -0.3 -0.8 -0.8 -1.8 -12.2 . . . . . . . . . . . . . . .
7 -0.4 -0.1 -0.4 -13.6 . . . . . . . . . . . . . . . . . .
8 0.9 1.7 -15.4 . . . . . . . . . . . . . . . . . . . . .
9 2.4 -15.4 . . . . . . . . . . . . . . . . . . . . . . . .
10 -20.4 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5.8: Vega hedging (N sption
i,j ) for the weighted covariance model (α = 0.05).

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 -3.8 -2.4 -2.3 -2.4 -1.2 -2.2 -1.6 -1.8 -2.7 -6.9
2 -5.6 -4.4 -3.8 -3.7 -3.3 -3.4 -3.8 -5.5 -10.9 . . .
3 -4.3 -4.1 -3.6 -3.4 -3.3 -3.9 -5.6 -9.9 . . . . . .
4 -4.0 -3.3 -3.0 -3.0 -3.4 -5.1 -9.1 . . . . . . . . .
5 -2.8 -2.8 -2.8 -3.3 -4.9 -8.4 . . . . . . . . . . . .
6 -2.5 -2.5 -2.7 -4.0 -8.4 . . . . . . . . . . . . . . .
7 -1.9 -2.2 -3.4 -9.9 . . . . . . . . . . . . . . . . . .
8 -1.1 -1.8 -12.3 . . . . . . . . . . . . . . . . . . . . .
9 -1.0 -13.9 . . . . . . . . . . . . . . . . . . . . . . . .
10 -20.5 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5.9: Vega hedging (N sption
i,j ) for the weighted covariance model (α = 0.3).
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 -9.2 -0.3 -0.2 -0.1 -0.1 -0.0 -0.0 -0.0 -0.0 -13.3
2 -22.9 -0.4 -0.1 -0.1 -0.0 -0.0 -0.0 -0.0 -25.2 . . .
3 -28.2 -0.3 -0.1 -0.1 -0.0 -0.0 -0.0 -20.4 . . . . . .
4 -30.4 -0.5 -0.0 -0.0 -0.0 -0.0 -15.0 . . . . . . . . .
5 -30.9 -0.4 -0.0 -0.0 -0.0 -11.3 . . . . . . . . . . . .
6 -29.7 -0.3 -0.2 0.0 -7.6 . . . . . . . . . . . . . . .
7 -28.4 -0.6 -0.1 -5.8 . . . . . . . . . . . . . . . . . .
8 -24.7 -0.6 -4.7 . . . . . . . . . . . . . . . . . . . . .
9 -22.1 -3.2 . . . . . . . . . . . . . . . . . . . . . . . .
10 -20.9 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5.10: Vega hedging (N sption
i,j ) for the weighted covariance model (α = 5).

5.2.2 Delta hedge

Similar to the HW and MR models, we use the co-initial swaps with today’s values V i
T0

for i =
1, . . . , n + 1 to delta hedge the vega neutral portfolio. To be specific, we construct the hedging
portfolio with today’s value V port

T0

V port
T0

= V̂T0 +
n∑
i=1

n+1−i∑
j=1

N sption
i,j Ṽ i,j

T0
+
n+1∑
i=1

N swap
i V i

T0 .

In order to neutralize the deltas, one then needs to solve for vector Nswap = (N swap
1 , . . . , N swap

n+1 ) so
that ∆j = 0 where each ∆j is the overall jth delta position of the portfolio for j = 1, . . . , n + 1.
This step again requires us to effectively do a matrix multiplication to obtain the vector Nswap.

Since the deltas of the Bermudan under the one step and weighted covariance models are very
similar to those under the HW and MR models, there is no extra interest in plotting them. We
display the vectors Nswap for the one step and weighted covariance models in table 5.11.

i 1 2 3 4 5 6 7 8 9 10 11

α = 0.05 -3.2 -6.3 -3.5 0.1 0.9 1.8 3.8 6.0 5.8 11.5 -19.1
α = 0.3 -4.0 -6.0 -3.6 -1.4 1.3 2.1 3.9 5.4 5.7 8.6 -13.8
α = 5 -3.6 -6.2 -2.3 -0.1 1.7 2.9 3.2 4.4 4.3 5.5 -8.3

One step cov -3.7 -5.9 -2.6 -0.3 1.6 2.6 3.6 4.3 4.6 5.4 -8.3

Table 5.11: Delta hedging (N swap
i ) for the one step and the weighted covariance models (correspond

to swaps with notional N = 1 million).

5.2.3 The gammas of the one step and weighted covariance hedging portfolios

In this section, we carry out a similar comparison as in section 5.1.3 but for the HW and the one step
and weighted covariance portfolios. We first report the total gamma of each portfolio produced
by the one step and weighted covariance models in table 5.12. Recall that the total gamma is
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approximated by summing up all co-ordinates of the parallel gamma vector. One can see that the
results are very similar and comparable between models. Furthermore, they slightly deviate from
that of the HW model and are still much smaller in magnitude compared with that of the MR
model (see table 5.5). This again supports our findings in section 5.1.3 that a parametrization by
time process potentially leads to a better vega-delta neutral portfolio than a parametrization by
expiry process in terms of the total gamma.

Note that the overall contributions from the vanilla swaptions in all four portfolios are quite
close to the overall contributions from the co-terminal swaptions in the HW case. In order to
calculate these contributions for the one step and weighted covariance models, one first calculates
the total gamma for each vanilla swaption involved in the vega hedge and then multiplies with the
corresponding proportion of holding N sption

i,j in the portfolio. We then sum these products up to
obtain the overall contribution. It turns out that as we sum them up for each row of the swaption
matrix, we effectively get the same plot as figure 5.2 of the HW model. This observation can be
linked back to the vega “row sum” observation in result 1. The Bermudan’s vega ναi,j of the one

step and weighted covariance models is directly connected to the proportion N sption
i,j in the vega

hedge. Intuitively, the similarity between the vega row sum
∑n+1−i

j=1 ναi,j and the HW’s ith bucket

vega νhw
i,n+1−i for each i = 1, . . . , n should also carry over to the row sum† of the total gamma to

some extent due to the direct connection of the proportions of vanilla swaptions in their portfolios,
i.e. {N sption

i,j }j=1,...,n+1−i of the one step and weighted covariance models and N sption
i of the HW

model.

Bermudan vanilla swaptions co-initial swaps portfolio

α = 0.05 199 -292 -8 -101
α = 0.3 196 -299 -7 -110
α = 5 195 -282 -6 -93

One step cov 196 -282 -6 -93

Table 5.12: Scaled total gammas of the one step and weighted covariance portfolios.

We now consider the gamma vectors which are calculated by the analogue of (25) for the relevant
instruments. The results are displayed in figure 5.5. Again, we observe that the Bermudan’s gamma
vectors are very close across models. The after-hedge gamma vectors, on the other hand, seem to
be quite variant. On average, Γi’s of the one step and weighted covariance portfolios are seen to
be lower in magnitude than those of the HW portfolio, especially the last gamma. This is a big
improvement of the one step and weighted covariance models over the HW model.

†The “row sum” in this discussion corresponds to the row of the swaption matrix, NOT the row of the gamma
matrix.
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Figure 5.5: Scaled gamma vectors of the HW and the one step and weighted covariance portfolios
before and after the hedge.

We again look at the gamma contribution vector from each hedging component of the portfolio
in figure 5.6. As expected for all models, the magnitude of each co-ordinate of the vanilla swaptions’
gamma vector dominates that of the co-initial swaps and clearly determines the gamma behaviour
of the whole portfolio. Hence, we will focus on the gamma behaviour of the vanilla swaptions
only. We observe that on average the contributions from the vanilla swaptions of the one step and
weighted covariance portfolios seem to be much lower in magnitude than those from the co-terminal
swaptions of the HW portfolio. Observe that as we move away from the reverse diagonal entries
and assign more weight to other entries of the swaption matrix, the magnitude of each co-ordinate
of the gamma vector can be significantly reduced.

We further observe a trend in the vanilla swaptions’ gamma contributions as the parameter α
of the weighted covariance model varies. When α = 0.05, the gamma contribution is seen to be
more evenly spread over all co-ordinates of the gamma vector compared with other values of α.
As α increases, there are less gamma contributions from the earlier co-ordinates (i < n + 1) but
the last gamma contribution gets bigger in magnitude (more negative). Note that the case α = 5
is very similar to the one step covariance case (almost coincide as we see in the plots). This is
because the two models have very similar vega profiles and N sption

ij ’s from the vega hedge. Finally,
an important point that we want to stress here is that with the one step and weighted covariance
models the swaption’s holder has the flexibility to control the gamma vector of the portfolio just
by simply tuning the geometric weight parameter α.
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Figure 5.6: Scaled gamma contribution vectors of the vanilla swaptions and the co-initial swaps for
the HW and the one step and weighted covariance portfolios.

6 Conclusions

This paper has developed a new framework for the choice of driving process for the one-dimensional
SMF model. Our approach is motivated by the problem of pricing and hedging Bermudan swap-
tions. We retain the computational benefit of a single-factor model but attempt to incorporate
the information from a multi-factor world. It turns out that the choice of driving process x has
a strong impact on the hedging behaviour of the model. In terms of the existing choices, when
we construct a vega-delta neutral portfolio for a Bermudan swaption the HW model gives a much
lower total gamma in magnitude compared with the MR model. The reason was found to be the
fundamental difference between their imposed parametrizations by time and by expiry which leads
to the difference in their vega profiles. We analyzed this issue in detail and concluded that the
former outperforms the later. The HW model, however, still lacks some flexibility in terms of the
control over the parallel gamma vector of the vega-delta neutral portfolio. The main reason for
this weakness was found to be the fact that the HW model only assigns the vega responses to the
reverse diagonal of the swaption matrix.

In this paper, we introduce the one step and weighted covariance models which are different
examples of parametrization by time. We observed that the new models give a very similar quality of
hedge to the HW model in terms of the total gamma of vega-delta neutral portfolio. Additionally,
they have an extra flexibility of the exponentially decaying weights that helps with the control
over response to changes in the swaption matrix. For a certain choice of weights, the weighted
covariance model spreads the vega responses over the swaption matrix and consequently reduces
the magnitudes of all co-ordinates of the parallel gamma vectors of the vega-delta neutral portfolio.
This is an advantage in practice.

We believe that the driving process x plays a fundamental role in evaluating any other product
and application. Furthermore, the underlying parametrization that x imposes should be one of the
first criteria to consider for practitioners. It is promising that a parametrization by time process
can be used in a wider context.
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A Estimating the market implied covariance/correlation struc-
ture

In this appendix, we show how we estimate the covariances of the log of the co-terminal forward
swap rates at their setting dates from the market. The estimation is carried out in two stages using
a full rank multi-factor LIBOR Market model (LMM). We first describe how to approximate the
correlations of the log-LIBORs at each exercise date by a global fit to the swaption matrix. With
the knowledge of these correlations, we deduce the corresponding covariances of the log-LIBORs by
performing a local fit to each row of the swaption matrix. The final stage of the approximation is
to use the covariances of the log-LIBORs at each exercise date to determine the target quantities,
Cov(ln yi,n+1−i

Ti
, ln yj,n+1−j

Tj
) for i = 1, . . . , n−1 and j > i. This can be done by using the relationship

between the swap rates and the LIBORs.

A.1 Approximating the terminal correlations, a global fit approach

We first introduce the n-factor LMM under the terminal measure Sn+1. Suppose we are given
n deterministic instantaneous volatility functions σi(t), t ≤ Ti for each i = 1, . . . , n. We further
introduce the instantaneous correlation ρi,j ∈ [−1, 1] for each pair of Brownian factors Wi and Wj ,

i.e. dW i
t dW

j
t = ρijdt. Under the terminal measure Sn+1, the n-factor LMM reads

1. i = n, t ≤ Tn:
dLnt = σn(t)Lnt dWn

t ,
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2. i < n, t ≤ Ti:

dLit = −

 n∑
j=i+1

αjL
j
t

1 + αjL
j
t

σi(t)σj(t)ρij

Litdt+ σi(t)L
i
tdW

i
t . (26)

The formal solution to the SDE (26) is

Lit = Li0 × exp

∫ t

0

n∑
j=i+1

αjL
j
s

1 + αjL
j
s

σi(s)σj(s)ρijds−
∫ t

0

σ2
i (s)

2
ds+

∫ t

0
σi(t)dW

i
t

 .

As the drift terms are stochastic, one usually seeks for a fast numerical scheme to approximate the
solution. In the current literature, by “freezing the drift” at time zero we obtain a very crude drift
approximation which could encourage quite a significant arbitrage

Lit ≈ Li0 × exp

 n∑
j=i+1

αjL
j
0

1 + αjL
j
0

∫ t

0
σi(s)σj(s)ρijds−

∫ t

0

σ2
i (s)

2
ds+

∫ t

0
σi(t)dW

i
t

 . (27)

However, it is particularly useful when calibrating the model to the “terminal correlation” because
it allows for an analytically closed form formula. Here, by “terminal correlation” we mean the
correlation between the log-LIBORs at the same setting date, e.g. Corr(lnLkTi , lnL

l
Ti

) for k, l ≥ i.
Similar versions for other setting dates hold as well, see for example (Brigo & Mercurio, 2001) or
(Rebonato, 2004). By (27), we get

Corr(lnLkTi , lnL
l
Ti) ≈

∫ Ti
0 σk(t)σl(t)ρkldt√∫ Ti

0 σ2
k(t)dt

√∫ Ti
0 σ2

l (t)dt
k, l ≥ i. (28)

The above quantities can only be approximated given the parameters for the instantaneous volatil-
ities and the instantaneous correlations.

Instantaneous correlation: we use the following simple and financially appealing form

ρij = ρij(β) = exp(−β|Ti − Tj |),

where β > 0. For more details of this choice, readers are referred to (Rebonato, 2002, 2004)
and (Brigo & Mercurio, 2001).

Instantaneous volatility: we choose the “humped shape” function, originally proposed by (Rebonato,
2002, 2004)

σi(t) = σi(t; a, b, c, d) = [a+ b(Ti − t)]e−c(Ti−t) + d,

where a, b, c, d ∈ R are the four parameters to be chosen appropriately.

A global fit: we now aim to recover all the parameters of the n-factor LMM model in order to
approximate the terminal correlations in (28). This can be done by performing a global fit to the
swaption matrix which contains implied volatilities of different expiries and tenors.
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Note that each swap rate can be written as

yi,jt =

i+j−1∑
k=i

wi,jk (t)Lkt ,

wi,jk (t) =
αkDtTk+1∑i+j−1

l=i αlDtTl+1

,

By Itô’s lemma, under the terminal measure we have that

dyi,jt = . . . dt+

(
i+j−1∑
k=i

ζi,jk (t)σk(t)dW
k
t

)
yi,jt , (29)

ζi,jk (t) =
w̃i,jk (t)Lkt

yi,jt
,

w̃i,jk (t) = wi,jk (t) +

i+j−1∑
l=i,l 6=k

∂wi,jl (t)

∂Lkt
Llt.

Hence, if the corresponding swaption is to be valued using the Black’s formula with implied volatility
σ̃i,j , we would want to get

σ̃2
i,jTi =

i+j−1∑
k=i

i+j−1∑
l=i

∫ Ti

0
ζi,jk (t)ζi,jl (t)σk(t)σl(t)ρkldt,

by ignoring the drift in 29 and assuming that the terms ζi,jk (t) are all deterministic. Empirically,
as shown in (Rebonato, 2002), (Rebonato, 2004) and (Brigo & Mercurio, 2001), one can actually
obtain that each ζi,jk (t) is approximately equal to its value today, i.e. ζi,jk (0). The above equation
now becomes of a much simpler form

σ̃2
i,jTi ≈

i+j−1∑
k=i

i+j−1∑
l=i

ζi,jk (0)ζi,jl (0)

∫ Ti

0
σk(t)σl(t)ρkldt. (30)

This allows us to a carry a fast yet accurate enough approximation scheme for both the global and
the local fits as we shall see later.

We can now use a least squares fit method to do a global fit to the swaption matrix. For a
particular choice of parameters {β, a, b, c, d}, we define the model volatilities {σi,j(β; a, b, c, d)} to
satisfy

σ2
i,j(β; a, b, c, d)Ti :=

i+j−1∑
k=i

i+j−1∑
l=i

ζi,jk (0)ζi,jl (0)

∫ Ti

0
σk(t; a, b, c, d)σl(t; a, b, c, d)ρkl(β)dt.

One then defines

χ2 :=

n∑
i=1

n+1−i∑
j=1

[σi,j(β; a, b, c, d)− σ̃i,j ]2 ,

and looks for the optimal set of parameters {β, a, b, c, d} that minimizes χ2. At the end of this stage,
we will have recovered all the parameters of the n-factor LMM and hence the terminal correlations
in (28) can be estimated.
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Remark 7 Note that in this step, we do not take the value
∫ Ti

0 σk(t; a, b, c, d)σl(t; a, b, c, d)ρkl(β)dt
as an approximation for Cov(lnLkTi , lnL

l
Ti

) (the global approach does not reflect enough accuracy).
The local step presented next will give a better approximation for these covariances.

We assume the correlations between the log-LIBORs obtained from the global fit are not affected
by any changes in the market data. This is because the changes in these correlations are recorded
to be small and do not have a big impact on the approximations from the local fit in A.2. In our
check, we find that the effect is numerically insignificant and this suggests that historical data can
be used for the global fit. Hence, we keep the parameters of the instantaneous volatility and the
instantaneous correlation functions the same at all time.

A.2 Approximating the covariances, a local fit approach

Recall that from the global fit we can approximate the correlations Corr(lnLkTi , lnL
l
Ti

) for k, l ≥ i
at any exercise date Ti. In order to deduce the corresponding covariances of the log-LIBORs at Ti,
we use the implied volatilities on the ith row of the swaption matrix. We employ the approximation
in (30) but use Cov(lnLkTi , lnL

l
Ti

) instead of
∫ Ti

0 σk(t)σl(t)ρkldt, i.e.

σ̃2
i,jTi ≈

i+j−1∑
k=i

i+j−1∑
l=i

ζi,jk (0)ζi,jl (0)Cov(lnLkTi , lnL
l
Ti). (31)

The following approximation steps are described to solve for Var(lnLjTi) where j runs from i to
n. Since we keep all the correlations fixed, solving for the variances automatically implies the
covariances. Note that we ignore the effect of changing the measure as it is small and irrelevant for
the discussion.

• Step 1: we start from σ̃i,1 of the ith caplet. Black’s formula implies that σ̃2
i,1Ti ≈ Var(ln Li

Ti
).

• Step 2: next, we consider σ̃i,2. Also, by Black’s formula and the approximation in (31)

σ̃2
i,2Ti ≈ (ζi,2i (0))2Var(lnLiTi)

+(ζi,2i+1(0))2Var(ln Li+1
Ti

) + 2ζi,2i (0)ζi,2i+1(0)Cov(lnLiTi , lnL
i+1
Ti

)

= (ζi,2i (0))2Var(lnLiTi) + (ζi,2i+1(0))2Var(ln Li+1
Ti

) (32)

+2ζi,2i (0)ζi,2i+1(0)Corr(lnLiTi , lnL
i+1
Ti

)
√

Var(lnLiTi)
√

Var(ln Li+1
Ti

)

It is straightforward to solve this equation for the unknown Var(ln Li+1
Ti

). Hence, Cov(lnLiTi , lnL
i+1
Ti

)
can be recovered.

• Step j+1-i: notice that each time we move from σ̃i,j−i to σ̃i,j+1−i, there is one more unknown

to solve, i.e. Var(ln Lj
Ti

). With the knowledge of the terminal correlation, we can recover
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Cov(lnLkTi , lnL
j
Ti

) for k = 1, . . . , j − 1. This is clear by the following relation

σ̃2
i,j+1−iTi ≈

j∑
k=i

j∑
l=i

ζi,j+1−i
k (0)ζi,j+1−i

l (0)Cov(lnLkTi , lnL
l
Ti)

= · · ·+ (ζi,j+1−i
j (0))2Var(ln Lj

Ti
) (33)

+2

j−1∑
k=i

ζi,j+1−i
k (0)ζi,j+1−i

j (0)Cov(lnLkTi , lnL
j
Ti

)

= · · ·+ (ζi,j+1−i
j (0))2Var(ln Lj

Ti
) (34)

+2

j−1∑
k=i

ζi,j+1−i
k (0)ζi,j+1−i

j (0)Corr(lnLkTi , lnL
j
Ti

)
√

Var(lnLkTi)
√

Var(ln Lj
Ti

)

where the . . . terms and Var(lnLkTi), for k = 1, . . . , j are known from the previous steps.

• Step n+1-i: At the end of this step, we will have recovered the variances and covariances of
all the alive log-LIBORs at Ti.

For j > i, by using the approximation ζi,jk (t) ≈ ζi,jk (0) in (29) we have that

d ln yi,jt ≈ . . . dt+

(
i+j−1∑
k=i

ζi,jk (0)σk(t)dW
k
t

)
. (35)

Hence, our target market quantity can be written as

Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) ≈ Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

), j > i

which follows from the independence of increment in (35). Again, since we use Cov(lnLkTi , lnL
l
Ti

)

instead of
∫ Ti

0 σk(t)σl(t)ρkldt, it follows from (35) that

Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

) ≈
n∑
k=i

n∑
l=j

ζi,n+1−i
k (0)ζj,n+1−j

l (0)Cov(lnLkTi , lnL
l
Ti). (36)

When setting the various models, we will denote the covariances of the log of the swap rates
estimated from the market by this two step procedure as Covma(ln yi,n+1−i

Ti
, ln yj,n+1−j

Tj
).
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