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ON A FLUCTUATION IDENTITY FOR RANDOM WALKS
AND LÉVY PROCESSES

L. ALILI, L. CHAUMONT and R. A. DONEY

Abstract

In this paper, some identities in laws involving ladder processes for random walks and Lévy
processes are extended and unified.

1. Fluctuation theory for random walks

An essential component of fluctuation theory in discrete time is the study of the
bivariate renewal process formed by the coordinates of the successive maxima of
a random walk S and the corresponding times. This process is called the strictly
or weakly ascending ladder process, depending on whether or not we count the
times where the maximum is reached with the same value; the descending ladder
processes are the ascending ladder processes of the dual random walk, −S. In
the classical era, a breakthrough was achieved by Spitzer, Baxter and others, who
introduced Wiener–Hopf techniques and established several fundamental identities
that relate the distributions of the ascending and descending ladder processes to
that of the underlying random walk. These results were originally formulated in
a generating function guise, but since then alternative, probabilistic versions have
been established, and these have led to a refined understanding of the underlying
identities. In particular, a reformulation of one of these identities by Alili and Doney
[2] has led to new results for random walks in [3], [9], [12] and [13], and for Lévy
processes in [1] and [6]. In this paper, we establish a further refinement of Alili
and Doney’s identity, for both random walks and Lévy processes, and give some
applications; in particular, we extend the uniform law given in [13].

The formal mathematical setting is fixed as follows. Let S = {Sn : n � 0} be
a given random walk. That is, S0 = 0 and Sn =

∑n
i=1 Xi, where {Xi : i � 0} is

a sequence of independent and identically distributed random variables. The strict
ascending ladder process (T,H) = {(Tk,Hk) : k � 0} is defined as follows:

T0 = 0, Tk = inf{n > Tk−1 : Sn > STk−1}, k � 1, (1.1)

and the heights are given by:

Hk = STk
, k � 0. (1.2)

The coordinates of this process are the record heights of the random walk, coupled
with the corresponding indices. It is clear from the Markov property that this
is a bivariate renewal process. The fact that the law of the random walk S is
determined by the law of the processes (T,H) and (T ∗,H∗), where (T ∗,H∗) is
the weak descending ladder process of the dual walk S∗ = −S, is expressed by
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the well-known Wiener–Hopf factorization. This is in turn implicit in the following
identities, originally due to Sparre-Andersen [14]:

(
1 − E

[
rT1e−µH1

])−1 = exp

( ∞∑
m=1

rm

m
E

[
e−µSm I{Sm >0}

])
(1.3)

and (
1 − E

[
rT∗

1 e−µH∗
1
])−1 = exp

( ∞∑
m=1

rm

m
E

[
e−µS∗

m I{S∗
m �0}

])
, (1.4)

which hold for any pair (r, µ) of positive reals. These are the so-called Wiener–Hopf
factors. Spitzer [15] and Baxter [4] showed later that relations (1.3) and (1.4) are
consequences of a combinatorial lemma. The aim of the next paragraph is to gather
together the different reformulations of the above identities that have appeared in
the literature.

1.1. Variations of Wiener–Hopf factorization

A probabilistic statement that is equivalent to (1.3) is implicit in [10, p. 424,
equation 9.3] of Feller. It states that for any n � 1 and x > 0, we have

1
n

P (Sn ∈ dx) =
n∑

k=1

1
k

P (Tk = n, Hk ∈ dx). (1.5)

In [2], it was shown that for k, n � 1 and x > 0, we have

1
n

P (Hk−1 < Sn � Hk, Sn ∈ dx) =
1
k

P (Tk = n, Hk ∈ dx), (1.6)

which is a refinement of relation (1.5). Amongst the results that have been derived
from this is a generalized uniform law, discovered by Marchal and given in [13],
which we will now recall. We write Gn for the first hitting time of the overall
maximum by the random walk S up to time n; that is,

Gn = inf
{

k : Sk = sup
0�j�n

Sj

}
, n � 1.

The special case k = 1 of (1.6) states that

P (H1 � Sn ∈ dx) = nP (T1 = n, H1 ∈ dx), x > 0,

and Marchal’s result disintegrates this by showing that for any i = 1, . . . , n and
x > 0,

P (H1 � Sn ∈ dx, Gn = i) = P (T1 = n, H1 ∈ dx)

=
1
n

P (H1 � Sn ∈ dx).
(1.7)

This says that under the probability P ( · | Sn = x, 0 < Sn � H1), x > 0, the time
Gn of the maximum is uniformly distributed over {1, . . . , n}.

It is natural to ask whether a more general uniform law can be obtained when
identity (1.6) is considered for any integer k. More generally, can we unify the
identities (1.5), (1.6) and (1.7)? The answer to this question is provided in the
following section; see Theorems 1 and 2.
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1.2. On Feller’s combinatorial lemma

We start this section by establishing a refinement of Feller’s well-known com-
binatorial lemma; see [10, p. 412], and also [7] for the skip-free case. Fix n � 1 and
let the sequence s = {si : 0 � i � n} be any deterministic chain such that s0 = 0
and sn > 0. The associated ladder process (T,H) is defined as in (1.1) and (1.2).
We define the local time at the maximum Ln to be

Ln = sup{k : Tk � n}. (1.8)

By definition, the cyclic rearrangements θ1(s), . . . , θn−1(s) of s are the shifted chains
defined for j = 0, 1, . . . , n − 1 by

θj(s)i =

{
si+j − sj , if i � n − j,

sj+i−n + sn − sj , if n − j � i � n,
i = 0, 1, . . . , n.

Lemma 1. There is a unique integer k in {1, . . . , Ln} such that

HLn −k � HLn
− sn < HLn −k+1. (1.9)

Moreover, k satisfies the following properties.
(i) The number of cyclical rearrangements of (si) such that n is a ladder time,

is k.
(ii) The number k is preserved by any cyclical rearrangement of (si).

Proof. First, observe that because sn > 0 we have 0 � HLn
− sn < HLn

. Since
k �→ HLn −k decreases, there exists a unique k ∈ {1, . . . , Ln} satisfying relation
(1.9). Now, we may draw a picture in order to see easily that the only cyclical
rearrangements of (si) such that n is a ladder time are those that are obtained by
splitting the chain (si) at a ladder time that is greater than the first passage time
above sup0�i�n si−sn and less than or equal to the first hitting time of sup0�i�n si.
Note that sup0�i�n si = HLn

. From the definition of k, there are exactly k such
ladder times. Statement (ii) is a straightforward consequence of (i).

Now let S = {Sn : n � 0}, S0 = 0, be a real-valued random walk. As before,
let νk be a random variable that is independent of S and uniformly distributed on
{0, 1, . . . , k − 1}. Set

Gk
n = TLn −νk

; (1.10)

then here is our main result.

Theorem 1. For all k and n such that 1 � k � n, and for all i = 1, . . . , n, we
have

P (HLn −k � HLn
− Sn < HLn −k+1, Sn ∈ dx,Gk

n = i) =
1
k

P (Tk = n,Hk ∈ dx).
(1.11)

Proof. Fix a path S such that HLn −k � HLn
− Sn < HLn −k+1. According

to Lemma 1(ii), each of the n cyclical rearrangements of S satisfies the same
inequalities. Next, according to Lemma 1(i), to each of the n cyclical rearrangements
of S, say S′, there correspond exactly k cyclical rearrangements such that n is
a ladder time; these cyclical rearrangements are θTL n −j

(S′), j = 0, . . . , k − 1.
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Conversely, the n cyclical rearrangements of each path θTL n −j
(S′) (where j =

0, . . . , k − 1 are fixed) are the same as those of the initial chain S. Finally,
observe that the value Sn is preserved by any cyclical rearrangement, and that
{Hk ∈ dx} = {Sn ∈ dx} on the set {Tk = n}.

Remark. In fact, Theorem 1 is a consequence of the following path
transformation, which may also be proved via Lemma 1. Let un be a random
variable that is independent of S and is uniformly distributed on {0, 1, . . . , n − 1}.
Conditionally on {Tk = n}, the chain θun

(S) has the same law as the chain S
conditionally on {HLn −k � HLn

− Sn < HLn −k+1}. Conversely, conditionally on
{HLn −k � HLn

−Sn < HLn −k+1}, the chain θGk
n
(S) has the same law as the chain

S, conditionally on {Tk = n}.

The following time-reversal property of the ladder process will enable us to state
Theorem 1 in another way; see Theorem 2.

Lemma 2. For any integer n � 1, the identity in the law stating that

{(Tk,Hk) : k � Ln}
(d)
= {(TLn

− TLn −k,HLn
− HLn −k) : k � Ln}

holds conditionally on Sn.

Proof. First we introduce the past maximum process of S: S̄j = supi�j Si, then
for k = 0, 1, . . . , Ln, we call e(k) the kth excursion of the reflected process S̄ − S:

e
(k)
i = (S̄ − S)Tk +i, 0 � i < Tk+1 − Tk,

and we denote by ẽ
(Ln )
i the excursion that is in progress at time n:

ẽ
(Ln )
i = (S̄ − S)TL n +i, 0 � i � n − TLn

.

By construction, the reflected process {(S̄ − S)k : 0 � k � n} is the concatenation
of e(0), e(1), . . . , e(Ln −1) and ẽ(Ln ). Let us denote it by

{(S̄ − S)k : 0 � k � n} = e(0) ◦ e(1) ◦ . . . ◦ e(Ln −1) ◦ ẽ(Ln ).

Now, recall that S̄−S is a Markov process. It follows from the Markov property that
if σ is a geometrically distributed random variable that is independent of S, then
conditionally on Lσ, the excursions e(0), e(1), . . . , e(Lσ −1) are i.i.d. and independent
of ẽ(Lσ ). Hence the process

e(0) ◦ e(1) ◦ . . . ◦ e(Lσ −1) ◦ ẽ(Lσ ),

has the same law as the process

e(Lσ −1) ◦ e(Lσ −2) ◦ . . . ◦ e(0) ◦ ẽ(Lσ ),

and, conditioning on σ = n, we obtain:

e(0) ◦ e(1) ◦ . . . ◦ e(Ln −1) ◦ ẽ(Ln ) (d)
= e(Ln −1) ◦ e(Ln −2) ◦ . . . ◦ e(0) ◦ ẽ(Ln ).

Then our lemma is a consequence of the above identity.

As a consequence, Theorem 1 may be reformulated in the following way.
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Theorem 2. For any integers 1 � k � n and for all i = 1, . . . , n, we have

P (Hk−1 < Sn � Hk, Sn ∈ dx, TLn
− Tνk

= i) =
1
k

P (Tk = n,Hk ∈ dx). (1.12)

Remarks.

1. Note that all the results of both this section and the next one are also valid
for any chain S whose increments are cyclically exchangeable (that is, θj(S) is
distributed as S for each j = 0, 1, . . . , n − 1).

2. By summing (1.12) in i, we obtain the Alili–Doney identity (1.6), and
Marchal’s identity (1.7) is a consequence of (1.12) for k = 1.

1.3. Some consequences

In the following result, the two first assertions are consequences of Theorem 1,
whereas the last statement follows from Theorem 2.

Corollary 1. For any integers 1 � k � n, the following statements hold.

(i) Conditionally on the event {HLn −k � Sn < HLn −k+1, Sn = x}, the random
variable Gk

n (defined in (1.10)) is uniformly distributed on {1, . . . , n}.
(ii) Summing (1.11) over i yields

kP (HLn −k � HLn
− Sn < HLn −k+1, Sn ∈ dx) = nP (Tk = n,Hk ∈ dx).

(iii) Conditionally on {Hk−1 < Sn � Hk, Sn ∈ dx}, the random variable
TLn

− Tνk
is uniformly distributed on {1, . . . , n}.

Next, we will establish a different generalization of Marchal’s uniform law (1.7).
In order to simplify the formulas in what follows, let us introduce the time Ny =
inf{j � 0,Hj � y}, for y > 0. Then observe that {NSn

= k} = {Hk−1 < Sn � Hk},
for any k. Since T0 ≡ 0, we see that (1.7) says that, conditional on NSn

= 1, Gn is
uniformly distributed over {T0+1, . . . , n}, and it is natural to ask whether a similar
result holds over {Tk−1 + 1, . . . , n} conditional on NSn

= k, for any 1 � k � n. For
this, we need the following consequence of (1.7).

Lemma 3. For any fixed integer 0 < k � n − 1, and for all pairs of integers
i ∈ {k − 1, k, . . . , n − 1} and j ∈ {1, . . . , n} such that i + j � n, we have

P (Tk = n, Hk ∈ dx, Tk−1 = i) = P (NSn
= k, Sn ∈ dx, Gn = j + i, Tk−1 = i).

(1.13)

Proof. It is enough to apply the strong Markov property at the stopping time
Tk−1 in the right-hand side of (1.13), and then to use Marchal’s identity (1.7) and
the fact that (T,H) is a renewal process.

Remark. We can also prove the above result by a path transform. Indeed,
for a fixed pair (i, j) fulfilling the above condition, we can establish a one-to-one
correspondence between paths satisfying {Tk = n, Hk = x, Tk−1 = i} and those
satisfying {NSn

= k, Sn = x, Gn = j + i, Tk−1 = i}. The path transform consists
in leaving unchanged the section of the paths from 0 to i, and applying Marchal’s
path transform to the remaining parts of the paths.
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The required uniform law follows immediately.

Proposition 1. Conditionally on {Sn = x, NSn
= k}, the time Gn is uniformly

distributed on {Tk−1+1, Tk−1+2, . . . , n}. That is, for a fixed i ∈ {k−1, k, . . . , n−1},
we have

P (Gn = j | NSn
= k, Sn = x, Tk−1 = i) =

1
n − i

(1.14)

for i < j < n.

We also point out that specializing (1.13) to the case j = n − i gives

P (Tk−1 = i | NSn
= k, Sn = x) = (n − i)

k

n
P (Tk−1 = i | Tk = n,Hk = x),

and hence

E

[
1

n − Tk−1
| NSn

= k, Sn = x

]
=

k

n
. (1.15)

This makes an interesting contrast to

E
[
n − Tk−1 | Tk = n,Hk = x

]
=

n

k
, (1.16)

which can also be proved by elementary methods.

2. Fluctuation identities for Lévy processes

Let (Xt, t � 0), be a real Lévy process started at 0. We assume that 0 is regular
for (0,∞); that is, P (inf{t : Xt > 0} = 0) = 1. As a consequence, 0 is a regular
state (regular for itself) for the strong Markov process Yt = sups�t Xs −Xt, called
the reflected process at the maximum; that is, P (inf{t > 0 : Yt = 0} = 0) = 1.
Then the process Y admits a local time L at 0, which is defined in the sense of
Markov processes as in [5, Chapter IV]. Let τ be the right continuous inverse of L:
τt = inf{s : Ls > t}, and set Γt = X(τt). Then the process (τ,Γ) is the continuous-
time analogue of the discrete ladder process (T,H). More precisely, it is a bivariate
subordinator whose law is characterized as follows. For any couple (α, β) of positive
reals, we have

E
(
e−ατ1−βΓ1

)
= e−κ(α,β),

where the characteristic exponent κ of (τ,Γ) is given by

κ(α, β) = k exp

(∫∞

0

∫
[0,∞)

(e−t − e−αt−βx)t−1P (Xt ∈ dx)

)
. (2.1)

The analogue of (1.5) for Lévy processes was discovered by Bertoin and Doney, and
is described in [6]. Now, define the first passage-time process of X by

σx = inf{t : Xt > x}, x � 0.

In [1], the identity between measures on (0,∞)3,

t−1P (Lσx
∈ du, Xt ∈ dx) dt = u−1P (τu ∈ dt, Γu ∈ dx) du, (2.2)

was proved in the same way that, in discrete time, (1.6) was deduced from (1.3); see
[2]. It is then natural to adapt our identities (1.11) and (1.12) to Lévy processes.
In this case, the proof has to be different. Indeed, under our regularity assumption,
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the process X has infinitely many ladder times, so that there is no analogue for the
combinatorial Lemma 1. Let us first state the following continuous-time equivalent
to Lemma 2.

Lemma 4. For any t � 0, the identity in the law stating that

{(τu,Γu) : u � Lt}
(d)
= {(τLt

− τLt−u,ΓLt
− ΓLt−u) : u � Lt}

holds conditionally on Xt.

The proof of this lemma uses classical arguments of excursion theory, and follows
the same scheme as in Lemma 2, so we omit it here.

Then the idea of the proof of our result in continuous time is to discretize the
process X on the time interval [0, 1], in order to obtain a sequence of random walks
that converges almost surely towards X, and such that the corresponding sequence
of ladder processes converges almost surely towards (τ,Γ). Set Mt = supv�t Xv.

Theorem 3. Let νu be a uniformly distributed random variable on [0, u] that
is independent of X. Then we have the following identity between measures, with
(s, t, u, x) ∈ [0, t] × (0,∞)3:

P (Lt − LσM t −x
∈ du, Xt ∈ dx, τLt−νu

∈ ds) dt = u−1P (τu ∈ dt, Γu ∈ dx) du ds
(2.3)and

P (Lσx
∈ du, Xt ∈ dx, τLt

− τνu
∈ ds) dt = u−1P (τu ∈ dt, Γu ∈ dx) du ds (2.4)

Proof. We first give the idea of the proof of (2.4). Note that from the proof of
[5, p. 175, Theorem VI.19], x �→ L(σx) is the right continuous inverse of the process
Γ; that is

Lσx
= inf{t : Γt > x}, x � 0.

Now, for n � 1, consider the random walk X
(n)
k

(def)= Xk/n, k � 0, and define its
ladder process (T (n),H(n)) as in (1.1) and (1.2), and the ‘local time’ L(n) as in (1.8).
Identity (2.4) is then a consequence of Theorem 2 combined with the convergence,
as n → ∞, of the sequence of three-dimensional processes{(

X
(n)
[nt], n

−1T
(n)
[nt],H

(n)
[nt]

)
: t � 0

}
towards (X, τ,Γ), in the sense of finite-dimensional distributions. Then, identity
(2.3) follows from identity (2.4) and Lemma 2.

The resulting uniform laws are then the same as in Corollary 1 for random walks.

Corollary 2. For any fixed t, u, x > 0, the following statements hold.
(i) Conditionally on Lt − LσM t −x

= u and Xt = x, the random variable τLt−νu

is uniformly distributed on [0, t].
(ii) Conditionally on Lσx

= u and Xt = x, the random variable τLt
− τνu

is
uniformly distributed on [0, t].

Remarks.

1. Note that τLt
is the unique time at which X reaches its overall maximum on

[0, t]; that is, τLt
= inf{v � t : Xv = sup0�l�t Xl}. In the above statement, if x = 0,
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then necessarily u = 0 and Corollary 2 is reduced to the well-known uniform law
giving the time of the maximum for (cyclically) exchangeable bridges from 0 to 0;
see [11] and [8].

2. When X is Brownian motion, the uniform laws of Corollary 2 are con-
sequences of the path transformation stated in [7, Theorem 7].
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