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SOME REMARKS ON FIRST PASSAGE OF LEVY PROCESSES,
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By L. Alili and A. E. Kyprianou

University of Warwick and Utrecht University

The purpose of this article is to provide, with the help of a fluc-
tuation identity, a generic link between a number of known iden-
tities for the first passage time and overshoot above/below a fixed
level of a Lévy process and the solution of Gerber and Shiu [Astin

Bull. 24 (1994) 195–220], Boyarchenko and Levendorskǐi [Working
paper series EERS 98/02 (1998), Unpublished manuscript (1999),
SIAM J. Control Optim. 40 (2002) 1663–1696], Chan [Original un-
published manuscript (2000)], Avram, Chan and Usabel [Stochastic

Process. Appl. 100 (2002) 75–107], Mordecki [Finance Stoch. 6 (2002)
473–493], Asmussen, Avram and Pistorius [Stochastic Process. Appl.

109 (2004) 79–111] and Chesney and Jeanblanc [Appl. Math. Fin.

11 (2004) 207–225] to the American perpetual put optimal stopping
problem. Furthermore, we make folklore precise and give necessary
and sufficient conditions for smooth pasting to occur in the consid-
ered problem.

1. Introduction. Let X = {Xt : t≥ 0} be a Lévy process defined on fil-
tered probability space (Ω,F ,{Ft},P) satisfying the usual conditions. For
x ∈ R, denote by Px(·) the law of X when it is started at x and write
simply P0 = P. We denote its Lévy–Khintchine exponent by Ψ, that is,
E[eiθX1 ] = exp{−Ψ(θ)}, θ ∈ R. Now, consider the following optimal stop-
ping problem:

v(x) = sup
τ∈T0,∞

Ex[e
−rτ (K − eXτ )+],(1)

where K > 0, r ≥ 0 and T0,∞ is the family of optimal stopping times with
respect to {Ft : t≥ 0}. Establishing the optimal value and optimal stopping
time in (1) is closely related to finding the value pricing and exercise strategy

Received February 2004; revised August 2004.
AMS 2000 subject classifications. Primary 60G40; secondary 60J75, 91B70, 60G51.
Key words and phrases. Optimal stopping, American options, principle of smooth past-

ing, principle of continuous pasting, Lévy processes.
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of an American put option in an incomplete Black–Scholes-type markets
driven by Lévy processes (see [13, 35] or [18]). For this reason, we refer
to (1) as the American put optimal stopping problem.

In a number of numerical simulations and theoretical calculations for spe-
cific choices of Lévy processes, various authors have found that the American
put optimal stopping problem is solved in the same way as for the case that
X is a scaled Brownian motion with drift (the Black–Scholes market). In
other words, it is solved by a strategy of the form

τ∗ = inf{t≥ 0 :Xt < x∗}

for a specific value x∗ < logK so that

v(x) =KEx[e−rτ∗

]−Ex[e−rτ∗+Xτ∗ ],

thus, linking the American perpetual put optimal stopping problem to the
first passage problem of a Lévy process. See Gerber and Shiu [21], Chan [15,
16], Boyarchenko and Levendorskǐi [10, 11, 12, 13, 14], Mordecki [27, 28],
Avram, Chan and Usabel [5], Asmussen, Avram and Pistorius [4], Chesney
and Jeanblanc [17], Hirsa and Madan [23], Matache, Nitsche and Schwab
[26], Almendral and Oosterlee [2] and Almendral [1]. Notably, Mordecki [28]
handles the case when X is a general Lévy process.

In addition, these authors have observed that the function v is contin-
uous, equals K − ex for x ≤ x∗ and is bounded below by (K − ex)+ for
x > x∗. Recall that v is said to exhibit smooth pasting when v pastes onto
the lower bounding curve (K − ex)+ at x∗ in such a way that the left and
right derivative there agree. Among the aforementioned list of articles, some
authors have also observed that, unlike the case when X is purely Gaus-
sian, the optimal value function v does not necessarily respect the so-called
principle of smooth pasting. Boyarchenko and Levendorskǐi [10, 11, 12, 13]
supplied sufficient conditions for a class of Lévy processes with exponential
moments and “stable” like characteristic exponent (RLPE processes) un-
der which continuous or smooth pasting appears. For their class of process,
they show that there is smooth pasting if X has bounded variation with a
nonpositive drift term or if X has unbounded variation. Their method also
offers identities for the value function and optimal exercise barrier for a more
general claim structure and for Lévy processes which possess absolutely con-
tinuous resolvents; see [12, 14]. Chan [15, 16] also observed for the case of
spectrally negative processes that there was no smooth pasting if and only
if the process is of bounded variation.

In related work Peskir and Shiryaev [32, 33] (see also [31]) and Gapeev [20]
studied a number of optimal stopping problems for special classes of Markov
process of bounded variation with jumps such that the inter-arrival times
of the jumps are independent and exponentially distributed. The optimal
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strategies in these problems consist of stopping when the underlying Markov
process crosses specified thresholds. Further, one sees in these papers that
the principle of smooth pasting could also not be taken for granted at the
optimal stopping thresholds. However, as in the case of the American put
option, continuity was still observed when there was no smooth pasting. In
their papers, Peskir and Shiryaev give an intuitive explanation as to precisely
when and why smooth pasting does not hold for their models and argue for
a principle of continuous pasting instead.

The aim of this paper is to comprehensively link a variety of identities
for first passage problems of different Lévy processes and their connection
to the American put optimal stopping problem which have appeared in
recent literature and to explain precisely when smooth pasting is absent.
We shall do this with the help of a fluctuation identity. Mordecki [28] gave
a closed form for the solution to (1) for a general Lévy process in terms of
the distribution of the infimum of X at an independent exponential time.
The fluctuation identity will also allow us to give another proof of this form
of the solution to (1), avoiding the need for a random walk approximation
(as was the case in Mordecki’s original proof ) and giving insight into the
importance of the role played by the regularity of the paths of X in the
solution. Further, we give necessary and sufficient conditions for the solution
to exhibit smooth pasting. It turns out that the principle of smooth pasting
boils down to, quite simply, the regularity of the point 0 for (−∞,0) for X .

The paper closes with a conjecture. We believe this can, in principle, be
used as a rule of thumb to predict for Markovian optimal stopping problems
whether the principle of smooth pasting holds.

2. A fluctuation identity for overshoots. An important tool in the study
of the fluctuations of Lévy processes is the Wiener–Hopf factorization which
we now review for convenience. For a more detailed account, the reader is
referred to [22] or [7].

Assume that r > 0. We have that Xer
and Xer

−Xer
are independent

where Xt = sup0≤s≤tXt and er is an independent exponentially distributed
random variable with parameter r. As a consequence, for θ ∈ R,

r

r+ Ψ(θ)
= Ψ+

r (iθ) ·Ψ−
r (iθ)

with

Ψ+
r (iθ) = E[eiθXer ](2)

and

Ψ−
r (iθ) = E[e−iθ(Xer−Xer )] = E[eiθX

er ],(3)

where X t = inf0≤s≤tXs. The second equality in (3) follows by duality, that
is, when X is time reversed over a fixed time interval, it has the same law



4 L. ALILI AND A. E. KYPRIANOU

as −X . Note that Ψ+ can be analytically extended to {z ∈ C :ℜz ≤ 0} and
Ψ− can be analytically extended to {z ∈ C :ℜz ≥ 0}.

We present a fluctuation identity which looks, at a first sight, trivial. How-
ever, with the help of the Wiener–Hopf factorization, the Pecherskii–Rogozin
identity follows from it in a very straightforward way. As indicated in the
Introduction, the identity also gives clarification to a number of other exist-
ing identities and their role played in the solution to the optimal stopping
problem (1). Essentially, this identity is not new, as it appears implicitly in a
number of texts dating back to at least the seventies. See, for example, [19],
page 1368, where one sees the same identity for random walks embedded in
the proof of another result.

To a fixed level x ∈ R we associate the first strict passage time τ+
x (resp.

τ−x ) above (resp. below) x, that is,

τ+
x = inf{t≥ 0 :Xt > x} and τ−x = inf{t≥ 0 :Xt < x}.

Now, we are ready to state the identity.

Lemma 1. For all α > 0, β ≥ 0 and x≥ 0, we have

E[e
−ατ+

x −βX
τ
+
x 1(τ+

x <∞)] =
E[e−βXeα1(Xeα>x)]

E[e−βXeα ]
.(4)

For the case that α = 0, the left-hand side has a limit and, hence, so does

the right-hand side. If we additionally assume that X∞ <∞, then we may

identify the limit as follows:

E[e
−βX

τ
+
x 1(τ+

x <∞)] =
E[e−βX∞1(X∞>x)]

E[e−βX∞ ]
.

Proof. First, assume that α, β, x > 0 and note that

E[e−βXeα1(Xeα>x)] = E[e−βXeα1(τ+
x <eα)]

= E[1(τ+
x <eα)e

−βX
τ
+
x E[e

−β(Xeα−X
τ
+
x

)
|Fτ+

x
]].

Now, conditionally on Fτ+
x

and on the event τ+
x < eα, the random variables

Xeα
−Xτ+

x
and Xeα

have the same distribution, thanks to the lack of mem-
ory property of eα and the strong Markov property. Hence, we have the
factorization

E[e−βXeα1(Xeα>x)] = E[e
−ατ+

x −βX
τ
+
x ]E[e−βXeα ].

The case that α, β or x are equal to zero can be achieved by taking limits
on both sides of the above equality. �
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By replacing X by −X in the previous lemma, we get the following result.

Corollary 2. For all α,β ≥ 0 and x≥ 0, we have

E[e
−ατ−

−x
+βX

τ
−
−x1(τ−

−x
<∞)] =

E[eβX
eα1(−X

eα
>x)]

E[eβX
eα ]

.(5)

3. First passage. In this section we shall use (1), together with the
Wiener–Hopf factorization, to recover the Pecherskii–Rogozin identity (some-
times called the second factorization identity). Further, we shall cross refer-
ence (4) and (5) against the collection of explicitly or semi-explicitly known
first passage identities.

3.1. The Pecherskii–Rogozin identity. By taking Laplace transforms of
both sides of (4) and using Fubini’s theorem, we can write, for q > 0,

∫ ∞

0
e−qx

E[e
−ατ+

x −β(X
τ
+
x
−x)

]dx

=
1

E[e−βXer ]

∫ ∞

0
e−qx

E[e−β(Xer−x)
1(Xeα>x)]dx

=
1

E[e−βXeα ]

∫ ∞

0
e−qx

∫ ∞

0
1(y>x)e

−β(y−x)
P(Xeα

∈ dy)dx

=
1

E[e−βXeα ]

∫ ∞

0
e−βy

∫ ∞

0
1(y>x)e

−qx+βx dxP(Xeα
∈ dy)

=
1

(q − β)E[e−βXeα ]

∫ ∞

0
(e−βy − e−qy)P(Xeα

∈ dy)

=
E[e−βXeα ]−E[e−qXeα ]

(q − β)E[e−βXeα ]
.

IfX is an ascending subordinator with Laplace exponent φ(q) :=− log E(e−qX1),
q ≥ 0, then we see that

∫ ∞

0
e−qx

E[e
−ατ+

x −β(X
τ
+
x
−x)

]dx=
φ(q)− φ(β)

(q − β)(α+ φ(q))
,

which was also established in [37]. Otherwise, if X is not a descending sub-
ordinator, with the help of (2), we come to rest at the Pecherskii–Rogozin
identity

∫ ∞

0
e−qx

E[e
−ατ+

x −β(X
τ
+
x
−x)

]dx=
1

q − β

(
1−

Ψ+
α (−q)

Ψ+
α (−β)

)

for any q > 0. See [30] and [34] for a comparison with existing proofs.
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3.2. Spectrally one-sided processes. Suppose that X is spectrally nega-
tive, but not a negative subordinator, with Laplace exponent ψ : [0,∞) →R

given by E[exp{λXt}] = exp{ψ(λ)t} so that ψ(z) = −Ψ(−iz) for ℜz ≥ 0.
Denote by Φ(α) the largest root of the equation ψ(λ)−α= 0, where α≥ 0.
The Wiener–Hopf factors are now given by

Ψ+
α (iθ) =

Φ(α)

Φ(α)− iθ
and Ψ−

α (iθ) =
α

Φ(α)

Φ(α)− iθ

α−ψ(iθ)
.

When working with Laplace transforms in (2) and (3), we have that

∫

[0,∞)
e−βx

P(Xeα
∈ dx) =

Φ(α)

Φ(α) + β

and
∫

[0,∞)
e−βx

P(−X eα
∈ dx) =

α

Φ(α)

β −Φ(α)

ψ(β)−α
.

Therefore, we see the known distributional identities (cf. [7, 9]),

P(Xeα
∈ dx) = Φ(α)e−Φ(α)x dx(6)

and

P(−X eα
∈ dx) =

α

Φ(α)
dW (α)(x)− αW (α)(x)dx,(7)

whereW (α) : [0,∞) → [0,∞) is the scale function (cf. [9]) and is characterized
on (0,∞) by

∫ ∞

0
e−λxW (α)(x)dx=

1

ψ(λ)− α
for λ >Φ(α).

Plugging (6) and (7) into (4) and (5), respectively, we arrive at the well-
known expression

E[e
−ατ+

x −βX
τ
+
x 1(τ+

x <∞)] = e−(Φ(α)+β)x.

After some algebra, we also get the accompanying one

E[e
−ατ−

−x
+βX

τ
−
−x1(τ−

−x
<∞)] = (ψ(β)−α)

∫ ∞

x
e−βyW (α)(y)dy

−
α−ψ(β)

Φ(α)− β
e−βxW (α)(x)

for all α,β,x≥ 0.
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3.3. Subordinators. Take X to be a subordinator and denote by φ its
Laplace–Lévy exponent satisfying E[e−λXt ] = e−tφ(λ) for λ≥ 0. We also in-
troduce the α-resolvent U (α) defined via

1

α+ φ(λ)
=

∫ ∞

0
e−αt

E[e−λXt ]dt=

∫ ∞

0
e−λyU (α)(dy).

Because Xeα
=Xeα

, identity (4) simply reads

E[e
−ατx−βX

τ
+
x ] = (α+ φ(β))

∫

[x,∞)
e−βzU (α)(dz)(8)

for all α,β,x≥ 0.

3.4. A general phase-type process. Here we borrow an example which
appeared in [29] and then with a different proof in [4]. The Lévy process X
is taken to be the independent sum of a spectrally positive process with a
compound Poisson process having negative phase-type jumps.

Recall that a distribution F on (0,∞) is phase-type if it is the distribution
of the absorption time in a finite state continuous time Markov process
{Jt : t ≥ 0} with one state ∆ absorbing and the remaining ones 1, . . . ,m
transient. The parameters of this system are m, the restriction T of the
full intensity matrix to the m transient states and the initial probability
(row) vector a = (a1, . . . , am), where ai = P(J0 = i). For any i = 1, . . . ,m,
let ti be the intensity of the transition i→ ∆ and write t for the column
vector of intensities. It follows that F has a density given by f(x) = aeTx

t

and Laplace transform given by F̂ (s) =
∫ ∞
0 e−sxf(x)dx= a(sI−T)−1

t for
s > 0. The latter can be extended to the complex plane except at a finite
number of poles (the eigenvalues of T). For full details, we refer the reader
to [3]. The process X enjoys the representation

Xt =X
(+)
t −

N(t)∑

j=1

Uj, t≥ 0,

where {X
(+)
t : t ≥ 0} is a spectrally positive Lévy process, {Nt : t ≥ 0} is a

Poisson process with rate λ and {Uj : j ≥ 1} are i.i.d. random variables with
a common distribution F ; all of the aforementioned objects being mutually
independent.

The corresponding Lévy–Khintchine exponent, Ψ, can be analytically ex-
tended to {z ∈ C :ℜz ≤ 0} with the exception of a finite number of poles
(the eigenvalues of T). Define, for each α > 0, the finite set of roots with
negative real part

Iα = {ρi :Ψ(ρi) +α= 0,ℜρi < 0},
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where multiple roots are counted individually. Next, define, for each α> 0,
a second set of roots with negative real part

Jα =

{
ηi :

1

Ψ(ηi) + α
= 0,ℜηi < 0

}
,

again taking multiplicity into account. Mordecki [29] and Asmussen, Avram
and Pistorius [4] show that

Ψ−
α (s) =

∏
i∈Iα

(−ρi)∏
i∈Jα

(−ηi)

∏
i∈Iα

(s− ηi)∏
i∈Jα

(s− ρi)
,

which can be analytically extended to the whole of C except for the poles
at {ρj ∈ Iα}. Further, they show that

P(−X eα
∈ dx) =

n∑

j=1

m(j)∑

k=1

Aj,k

(−ρjx)
k−1

(k− 1)!
eρjx dx,

where m(j) is the multiplicity of root ρj , n is the number of distinct roots
and

Aj,k =
1

(m− k)!

dm−k

dsm−k

(
Ψ−

α (s)(s− ρj)
m

(−ρj)k

)∣∣∣∣
s=ρj

.

According to (5), we now have

E[e
−ατ−

−x
+βX

τ
−
−x1(τ−

−x
<∞)]

=
n∑

j=1

m(j)∑

k=1

Aj,k(−ρj)
k−1e(ρj−β)x

k−1∑

i=0

1

(k− 1− i)!

xk−1−i

(β − ρj)i+1
.

When none of the roots ρj are multiple, we may simply write Aj in place
of Aj,1 and the previous formula is exactly the same as the one given in
equation (24), Proposition 2 of [4].

4. American put. The following result was established for special, but
nonetheless, rich classes of Lévy processes in [10, 11, 12, 13, 15, 16] and for
a general Lévy process by Mordecki [28]. We give the version as it appears
in [28].

Theorem 3. Assume that either r > 0 or r= 0 and

P

(
lim
t↑∞

Xt = ∞

)
= 1.

Then

v(x) =
E[(KE[eX er ]− ex+X

er )+]

E[eX er ]
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and the optimal stopping time is given by

τ∗ = inf{t≥ 0 :Xt <x∗},

where

x∗ = logKE[eX er ].

In the sequel we shall work with the definition that er =∞ almost surely
when r= 0.

Mordecki’s proof consisted of first solving the analogue of (1) in the ran-
dom walk setting. This was done in the spirit of reasoning found in [19]
for a closely related optimal stopping problem for random walks based on
the gain function (ex −K)+. Having obtained the result for random walks,
Mordecki established the result for Lévy processes by checking that the re-
sult for random walks “converges” to the required identity for Lévy processes
when passing to a limit.

Remark 4. Note that the above theorem would appear to be incom-
plete. Since Lévy processes either drift to plus or minus infinity or oscillate,
the case that r = 0 and lim inft↑∞Xt =−∞ is missing. However, this case is
not interesting for the current discussion, as it is easy to show that it is not
optimal to stop in a finite time.

Remark 5. Since for each positive a, b the function y 7→ (a − by)+ is
convex, it follows that the optimal value function v is convex in the variable
y = ex and, hence, v is continuous and has left and right derivatives in x.
See, for example, the discussion in [25].

In Section 6 we show how the identity given in Corollary 2 can be used
to give a proof of Theorem 3 which avoids the necessity of a random walk
approximation. Embedded in the proof is a clearer indication of the role
played by the relevant pasting conditions at the optimal value x∗. In ad-
dition, the following theorem establishes necessary and sufficient conditions
under which smooth pasting occurs.

Theorem 6. If either r > 0 or r = 0 and P(limt↑∞Xt = ∞) = 1, then

the right derivative at the optimal stopping boundary is given by v′(x∗+) =
−ex

∗
+KP(X er

= 0). Thus, the optimal stopping problem (1) exhibits smooth

pasting at x∗ if and only if 0 is regular for (−∞,0).

The proofs of Theorems 3 and 6 are given in Section 6.

5. Consistency with existing literature.
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5.1. The optimal value function. Using the examples given in Sections
3.2 and 3.4, together with the fact that Corollary 2 implies that

v(x) =KP(−X er
≥ x− x∗)−Kex−x∗

E[eX er 1(−X
er

≥x−x∗)]
(9)

=KE[e
−rτ−

(x∗−x) ]− exE[e
−rτ−

(x∗−x)
+X

τ
−

(x∗−x) ],

it is quite straightforward to verify that the expression for v is consistent
with that given in [4, 5, 15, 16, 21].

The class of regular Lévy processes of exponential type was introduced
by Boyarchenko and Levendorskǐi [12]. This class includes, for example, nor-
mal inverse Gaussian processes, hyperbolic processes and tempered stable
processes, but not Variance Gamma processes. Boyarchenko and Leven-
dorskǐi [12] established an expression for the Fourier transform of the value
function in (1) which involves one of the Wiener–Hopf factors. This is used
to extract a sufficient condition for the case when there is no smooth pasting.
We shall show below that, with straightforward calculations, one can derive
the same expression for the Laplace transform of v, but not for a general
Lévy process.

Using analytic extension, (2) and the Pecherskii–Rogozin identity, we can
easily check that, for any λ ∈ R,

∫ ∞

x∗
e(iλ+β)(x−x∗)

E[eβX
er 1(−X

er
>x−x∗)]dx

(10)

= −
1

iλ+ β
(Ψ−

r (β)−Ψ−
r (−iλ)).

Note when r = 0, this identity still makes sense, providing we keep to the
assumption that limt↑∞Xt = ∞. Now perform an elementary calculation to
deduce that, for λ ∈ R,

∫ x∗

−∞
eiλx(K − ex)+ dx=

(
K

iλ
−

ex
∗

iλ+ 1

)
eiλx∗

.(11)

Observe that v(x) = (K − ex)+ for x ≤ x∗, which combined with (9), (10)
and (11), gives

∫

R

eiλxv(x)dx= −K
1

iλ
(1−Ψ−

r (−iλ))eiλx∗

+K
1

iλ+ 1
(Ψ−

r (1)−Ψ−
r (−iλ))eiλx∗

+
K

iλ
eiλx∗

−
e(iλ+1)x∗

iλ+ 1
.
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Finally, noting that ex
∗

=KΨ−
r (1) in Theorem 3, we come to rest at the

expression given in Section 4.2 of [12],

∫

R

eiλxv(x)dx=K
eiλx∗

iλ(iλ+ 1)
Ψ−

r (−iλ)

for λ ∈ R.

5.2. Pasting condition. To assist with the forthcoming analysis, let us
recount some facts about the regularity of 0 for (−∞,0) for Lévy processes.
First, recall that 0 is regular for (−∞,0) if and only if P(τ−0 = 0) = 1. Thanks
to Blumenthal’s zero–one law, the latter probability equals 0 or 1. It is not
difficult to construct an example of a Lévy process for which the P(τ−0 =
0) = 0 (see Proposition 7 below). From the definition of regularity, one also
readily sees that, under the assumptions of Theorem 3, when r ≥ 0, X er

has an atom at zero if and only if 0 is irregular for (−∞,0); that is, to say
P(X er

= 0)> 0.
Let us now proceed to the description of the regularity of 0 for (−∞,0)

in terms of the underlying characteristics of X . The process X has bounded
variation if and only if

∫

R\{0}
(1∧ |x|)Π(dx)<∞,

where Π is the characteristic Lévy measure, in which case we may write its
Lévy–Khintchine exponent in the form

Ψ(θ) = −idθ+

∫

R\{0}
(1− eiθx)Π(dx).(12)

The following proposition is a summary of what is known from the literature.

Proposition 7. The point 0 is regular for (−∞,0) if and only if one

of the following three conditions hold:

(i) X has bounded variation and d< 0.
(ii) X has bounded variation, d = 0 and

∫ 0−

−1

|x|Π(dx)
∫ |x|
0 Π(y,∞)dy

= ∞.

(iii) X has unbounded variation.

Case (ii) was recently added to the class of processes exhibiting regularity
of 0 for the lower half line in [8] and, for the other cases, we refer to the
discussion at the beginning of [7], Section VI.3.
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In [12] a sufficient condition for smooth pasting and a sufficient condition
for continuous pasting alone were established for a class of Lévy processes
possessing exponential moments and having Lévy–Khintchine exponent re-
sembling that of a stable process. In terms of the notation given here, they
show that there is smooth pasting if X has bounded variation and d ≤ 0 or
if X has unbounded variation. This suggests that the integral test in Propo-
sition 7(ii) is automatically satisfied for bounded variation and d = 0 within
the RLPE class. Taking, for example, the case of a CGMY- or KoBoL-type
Lévy process, which is included in their class of Lévy processes, it is easy to
confirm that the integral test is indeed automatically satisfied when X has
bounded variation and d = 0; see also the calculations in [24]. For a general
RLPE Lévy process, however, to see why the integral test in Proposition 7 is
satisfied, one may reason intuitively as follows. The small jump structure of
an RLPE process is essentially the same as that of a symmetric stable pro-
cess; this being due to a polynomial singularity in the Lévy measure close to
zero. For the latter class of Lévy processes, the integral test, which concerns
small jumps, is satisfied; hence, it is satisfied for the RLPE.

For the class of spectrally one sided models, Gerber and Shiu [21], who
work with spectrally positive Lévy processes, derive an expression for v

from which one sees clearly that there is always smooth pasting. This is
consistent with Theorem 6 since spectrally positive processes always have
the required regularity property (cf. Corollary VII.5 of [7]). In [15, 16] it
was shown for the case of spectrally negative Lévy processes (but not a
negative subordinator) that there is smooth pasting if and only if X has
unbounded variation. This would seem to slightly differ from Theorem 6.
However, we note that spectrally negative Lévy process of bounded variation
(which are not negative subordinators) necessarily have a Lévy–Khintchine
exponent in the form (12) with d > 0. Hence, according to Proposition 7,
regularity for the lower half line coincides with unbounded variation. Note
that similar conclusions for spectrally negative Lévy processes were also
drawn for another optimal stopping problem related to the pricing of Russian
options in [6].

Finally, within the class of compound Poisson models, Mordecki [27, 28]
derives explicit formulae for the case of drifting Brownian motion, plus
(mixed) exponential jumps which always has smooth pasting. Clearly, such
processes always have unbounded variation on account of the presence of the
Gaussian component. Hence, Theorem 6 exhibits consistency with Mordecki’s
findings.

6. Proofs of Theorems 3 and 6. The optimal stopping problem (1) has an
infinite horizon and a Markovian claim structure. Based on many examples of
optimal stopping problems with these characteristics, the proof of Theorem 3
works on the intuition that the optimal stopping problem is solved by a first
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passage time. Specifically, it appeals to the classical method of checking
the following well-known sufficient conditions, which confirm that a bounded

function V and first passage time τ−y (for some y ∈ R) characterize the value
function and optimal stopping time of (1):

(i) {e−r(t∧τ−
y )V (Xt∧τ−

y
) : t≥ 0} is a Px-martingale for all x ∈ R,

(ii) {e−rtV (Xt) : t≥ 0} is a Px-supermartingale for all x ∈ R,
(iii) V (x) = (K − ex)+ for all x≤ y,
(iv) V (x) ≥ (K − ex)+ for all x ∈ R.

To see why these are sufficient conditions, note that

V (x)
(ii)

≥ sup
τ∈T0,∞

Ex[e−rτV (Xτ )]

(iv)

≥ sup
τ∈T0,∞

Ex[e−rτ (K − eXτ )+]

≥ Ex[e−rτ−
y (K − e

X
τ
−
y )+]

(iii)
= Ex[e−rτ−

y V (Xτ−
y

)]

(i)
= V (x),

showing that all inequalities are equalities. It follows that

V (x) = sup
τ∈T0,∞

Ex[e
−rτ (K − eXτ )+] = Ex[e−rτ−

y (K − e
X

τ
−
y )+].

The identity in Corollary 2 will play an instrumental role in finding the
right pair (V, τ−y ).

Remark 8. To some extent, the conditions (i)–(iv) may be seen as a
stochastic analogue of a free boundary value problem which one often sees as
a way of characterizing the solution to an optimal stopping problem; see [36].
In this case it is also possible to write down a free boundary value problem
(cf. [12]), although one must be a little careful about the sense in which the
associated integro-differential operator is understood. Also, one must have
a sense of the role played by the pasting condition in such a free boundary
value problem; something we are currently investigating in this paper.

Proof of Theorem 3. For each y ∈ R, let us define the bounded func-

tions vy(x) = Ex[e
−rτ−

y (K− e
X

τ
−
y )+]. We shall reason our way to finding the

right choice of y for which vy satisfies (i)–(iv) above. By using Corollary 2,
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we see immediately that

vy(x) =
E[(KE[eX er ]− ex+X

er )1(−X
eα

>x−y)]

E[eX er ]
.(13)

Martingale property (i). Begin by defining, for all x ∈ R and α,β ≥ 0,
the function

hα,β(x) = Ex[e
−ατ−

0 +βX
τ
−
0 ] =

eβx
E[eβX

eα1(−X
eα

>x)]

E[eβX
eα ]

,

where the second equality is a result of Corollary 2. Note, in particular,
that, for x≤ 0, we have hα,β(x) = exp{βx}, which, in combination with the
strong Markov property, yields

Ex[e
−ατ−

0 +βX
τ
−
0 |Ft] = 1(t<τ−

0 )e
−αt

EXt
[e

−ατ−
0 +βX

τ
−
0 ]

+ 1(t≥τ−
0 )e

−ατ−
0 +βX

τ
−
0

= e−α(t∧τ−
0 )hα,β(X

t∧τ−
0

).

Thus, {e−(t∧τ−
0 )hα,β(Xt∧τ−

0
) : t≥ 0} is a Px-martingale. Now note from (13)

that vy is a linear combination of hr,0(x− y) and hr,1(x− y). It follows that

{e−(t∧τ−
0 )vy(Xt∧τ−

0
) : t≥ 0} is a Px−y-martingale. Hence, {e−(t∧τ−

y )vy(Xt∧τ−
y

) :

t≥ 0} is a Px-martingale.

Supermartingale property (ii). On the event {t < er}, the identity X er
=

X t ∧ (Xt + I) holds and, conditionally on Ft, I has the same distribution
as X er

. In particular, it follows that, on {t < er}, X er
≤Xt + I . If

ey ≤KE(eX er ),(14)

then, for x ∈ R,

vy(x) ≥
E[1(t<er)E[(KE[ex+X

er ]− eXt+I)1(−(Xt+I)>x−y)|Ft]]

E[eX er ]

≥ E[e−rtvy(x+Xt)]

= Ex[e
−rtvy(Xt)].

Using the stationary independent increments of X , the latter inequality is
sufficient to deduce that {e−rtvy(Xt) : t≥ 0} is a Px-supermartingale.
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Continuous pasting (iii). It is clear from (13) that, under (14), vy(x) ≥ 0
for all x∈ R. It is also a straightforward manipulation to show that

vy(x) = (K − ex) +
E[(ex+X

er −KE(eX er ))1(−X
er

≤x−y)]

E[eX er ]
.(15)

When x < y and (14) holds, we see that vy(x) = (K − ex) = (K − ex)+, as
required. When x= y, in order to satisfy condition (i), we require that

ey −KE[eX er ]

E[eX er ]
P(−X er

= 0) = 0.

If P(−X er
= 0) = 0, that is to say, if 0 is regular for (−∞,0), then continuous

pasting always holds. If, on the other hand, P(−X er
= 0)> 0, that is to say 0

is irregular for (−∞,0), then we are obliged to choose y = x∗; in other words,
ey =KE[eX er ].

Lower bound (iv). From (15), we see in the case that 0 is irregular for
(−∞,0), with the established choice y = x∗ for continuity, that automatically
vy(x) ≥ (K − ex). Hence, together with vy(x) ≥ 0, the lower bound (ii) is
satisfied.

When 0 is regular for (−∞,0), we know that if (14) holds, then vy(x) ≥ 0.
On the other hand, considering (15), we see that a sufficient condition that
vy(x)≥ (K − ex) is that

ey ≥KE[eX er ].(16)

Since vy(x) ≥ (K − ex)+ if and only if vy(x)≥ 0 and vy(x) ≥ (K − ex), then
it becomes clear from (14) and (16) that, to respect the inequality (ii), we
may choose y = x∗. There can be no other choice of y with this property,
for then we would be able to produce two distinct solutions to the optimal
stopping problem. �

Remark 9. In the above proof, by assuming from the outset that the
optimal threshold is equal to x∗, the proof takes the form of a direct verifi-
cation of Mordecki’s solution. However, in that case, one does not get a feel
for the role played by regularity in the solution.

Proof of Theorem 6. Since v(x) =K − ex for all x≤ x∗, and, hence,
v′(x∗−) = −ex

∗
, we are required to show that v′(x∗+) = −ex

∗
for smooth

pasting. Starting from (13) and recalling that ex
∗
=KE[eX er ], we have

v(x) = −KE[(ex−x∗+X
er − 1)1(−X

er
>x−x∗)]

= −K(ex−x∗

− 1)E[eX er 1(−X
er

>x−x∗)]

−KE[(eX er − 1)1(−X
er

>x−x∗)].
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From the last equality, we may then write

v(x)− (K − ex
∗
)

x− x∗
=
v(x) +K(E[eX er ]− 1)

x− x∗

= −K
(ex−x∗

− 1)

x− x∗
E[eX er 1(−X

er
>x−x∗)]

+K
E[(eX er − 1)1(−X

er
≤x−x∗)]

x− x∗
.

To simplify notation, let us call Ax and Bx the last two terms, respectively.
It is clear that

lim
x↓x∗

Ax = −KE[eX er 1(−X
er

>0)].(17)

On the other hand, we have that

Bx =K
E[(eX er − 1)1(0<−X

er
≤x−x∗)]

x− x∗

=K

∫ x−x∗

0+

e−z − 1

x− x∗
P(−X er

∈ dz)

=K
ex

∗−x − 1

x− x∗
P(0<−X er

≤ x− x∗)

+
K

x− x∗

∫ x−x∗

0+
e−z

P(0<−X er
≤ z)dz,

where in the first equality we have removed the possible atom at zero from
the expectation by noting that exp{X er

}− 1 = 0 on X er
= 0. This leads to

limx↓x∗Bx = 0. Using the expression for ex
∗
, we see that v′(x∗+) = −ex

∗
+

KP(−X er
= 0), which equals −ex

∗
if and only if P(−X er

= 0) = 0; in other
words, if and only if 0 is regular for (−∞,0). �

Remark 10. The intuition behind the role of regularity in the solution
to the optimal stopping problem is as follows.

For each y, the function vy provides us with a martingale up to stop-
ping at τ−y and, otherwise, a supermartingale providing y is no greater

than KE[eX er ]. We then appeal to the classical interpretation of the value
function of the optimal stopping problem as the least superharmonic majo-
rant of the gain.

If there is irregularity, then choosing a candidate y for the optimal level
which is strictly smaller than KE[eX er ] allows for the function vy to be
lower bounded by the gain, but introduces a discontinuity at y. The closer
to KE[eX er ] we bring y from above, the closer we bring vy pointwise to
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the gain function. Choosing the candidate level y below KE[eX er ] cannot
guarantee that vy will be bounded below by the gain and, hence, τ−y is not an
admissible strategy. Here we experience a principle of continuous pasting in
order to fulfill the traditional role of the gain function as being the smallest
superharmonic majorant of the gain.

If there is regularity, then all curves vy are continuous. For y less than

KE[eX er ] there is, in general, a discontinuity in the first derivative of vy at

the point y. As we move y closer to KE[eX er ] from above, the discrepancy
in the first derivative at y tends to zero and the function vy moves pointwise
closer to the gain function. The functions vy for which y is strictly greater

than KE[eX er ] do not bound the gain from above and, hence, again offer
inadmissible strategies. We therefore experience a principle of smooth past-
ing this time in order to fulfill the traditional role of the gain function as
being the smallest superharmonic majorant of the gain.

This explaination ties up to the remarks of Boyarchenko and Leven-
dorskǐi [12], who talk about the optimal value function being “more smooth”
than other potential candidates.

Remark 11. It is also interesting to note that, for the case that, 0 is
irregular for (−∞,0), the conditions (i)–(iii) suffice to solve the optimal
stopping problem. In this sense, the system (i)–(iv) is “closed” by the prin-
ciple of continuous pasting. In the regular case the extra condition (iv) is
genuinely required in order to “close” the system (i)–(iv) and establish the
unique solution to (1). Hence, in the regular case, smooth pasting is implic-
itly required for closure of the system (i)–(iv).

7. Conclusions and conjectures. We have emphasized a simple fluctua-
tion identity which binds together a number of other known identities for
general and special choices of Lévy processes. Our identity helps to ex-
plain the nature of known solutions to the American put optimal stopping
problem, giving the opportunity to explore the pasting principle in more de-
tail. Further, we have extracted the precise criterion for the phenomenon of
smooth pasting versus continuous pasting from Mordecki’s solution to (1).
We conjecture that this criterion remains unchanged when moving to the
same optimal stopping problem, but with finite horizon. In this case, sim-
ulations of Matache, Nitsche and Schwab [26], Hirsa and Madan [23], Al-
mendral and Oosterlee [2] and Almendral [1] show that the optimal strategy
consists of stopping when first crossing below a boundary which is nonin-
creasing in time. Therefore, since the boundary has only bounded variation,
and assuming it is also right continuous, the regularity of the boundary for
the stopping domain below it should correspond to the regularity of 0 for
(−∞,0) and the same necessary and sufficient conditions should dictate the
pasting condition.
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In general, it would seem that one can use regularity as a reasonable rule
of thumb for predicting when smooth pasting occurs. Roughly speaking,
suppose one has an optimal stopping problem for a Markov process X with
expectation operators {Ex} taking the form

u(x) = sup
τ∈T

Ex[G(Xτ )],

where the family of stopping times T and smooth function G are such that
u is well defined. Assume that the optimal strategy corresponds to the parti-
tioning of the domain of X into two regions, say, C and S = Cc, and stopping
as soon as X enters S . (Note that so far all of these assumptions conform to
most solutions which are known in explicit or semi-explicit form.) It would
then be reasonable to work with the assumption that there will be smooth
pasting at x ∈ ∂S if and only if x is regular for S ; otherwise continuous
pasting holds. Note that the exercise boundary may consist of disjoint re-
gions which may exhibit different pasting principles. At the very least, in
addition to the articles discussed in this paper concerning the American put
optimal stopping problem, pasting principles based on path regularity would
also seem to apply to the optimal stopping problems in [32, 33] and [20] in
the context of a sequential testing and Poisson disorder problems and again
in [4] and [6] for the case of pricing perpetual Russian options under Lévy
models.
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