Von Neumann’s Minimax theorem with proof

Von Neumann’s Minimax Theorem). Let A be a m xXn
payoff matriz, and let A, = {x : x> 0;> 2, =1}, Ay ={y:y >
0; > .y; =1}, then

max min x’ Ay = min max x’ Ay.
XEAL YEA, VEA, XEA,

This quantity is called the value of the two-person, zero-sum game with
payoff matriz A.

The proof is not examinable.




A result from convex analysis used in the proof:

Definition A set K C R? is convex if, for any two points a,b € K,
the line segment that connects them,

{ra+ (1 —-pb:pel0,1}},

also lies in K.

Theorem (The Separating Hyperplane Theorem). Suppose that
K C R? is closed and conver. If 0 & K, then there exists z € R? and ¢ € R

such that
0<c<zlv,

for all v € K.



Theorem (The Separating Hyperplane Theorem). Suppose that
K C RY is closed and conver. If 0 € K, then there exists z € R? and ¢ € R
such that

0<c<zlv,

for all v € K.

line

Interpretation of theorem: there is a hyperplane that separates 0 from K. In
particular, on any continuous path from 0 to K, there is some point that
lies on this hyperplane.

The separating hyperplane is given by {X cR?: zl'x = c}.



Lemma Let X andY be closed and bounded sets in R and let (x*,y™*) €
X XY. Let f : X XY — R be continuous in both coordinates. Then,

. < . .
I)?E%%( g/_nel}I/l f(X, y) ~ ;Ilglif/l I;?e%z'( f(X, Y)



Lemma Let X andY be closed and bounded sets in R and let (x*,y™*) €
X XY. Let f : X XY — R be continuous in both coordinates. Then,

. < . .
I:?E%}({ g/_nel}I/l f(X, y) ~ ;Ilglif/l I}?éﬁ,( f(X, Y)

Proof. Let (x*,y*) € XxY be given. Clearly we have f(x*,y*) < supycx f(x,¥)
and infycx f(x,y*) < f(x*,y"), which gives us

inf f(x*,y) < sup f(x,y7).
yeYy xEX

Because the inequality holds for any x* € X, it holds for sup,«cx of the
quantity on the left. Similarly, because the inequality holds for all y* € Y,
it must hold for the infy«cy of the quantity on the right. We have:

sup inf f(x,y) < inf sup f(x,y).
xeX YEY yeY xeXx



Von Neumann’s Minimax Theorem). Let A be a m Xn
payoff matriz, and let Ay, = {x :x > 0;) .o, =1}, Ay, ={y:y >
0;>..y; =1}, then

max min x’ Ay = min max x’ Ay.
XEAL YEA, yEA, XEAm,

This quantity is called the value of the two-person, zero-sum game with
payoff matriz A.

Proof. That

max min x! Ay < min max x’ Ay
XEAL, YEA, yEA, XEAm,
follows immediately from the lemma because f(x,y) = x! Ay is a con-
tinuous function in both variables and A,, C R™, A,, C R™ are closed and
bounded.
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Theorem’s statement: max min x’ Ay = min max x! Ay
XEAL YVEA, vEA, XEAM,

Proof (ct)

For the other inequality, suppose toward a contradiction that

max min x' Ay < A < min max x’ Ay.

XEA, YEA, yEA, XEA,
We can define a new game with payoftf matrix A given by a;; = a;; — A. For
this game, we have

max min XTfAly < 0 < min max XTfly. (*)
XEA, YEA, yEA, XEA,
Each mixed strategy y € A,, for player 11 yields a payoft vector fly c R™.
Let K denote the set of all vectors u for which there exists a payoft vector

fly such that u dominates fly. That is,

K:{u:fly—l—vzyEAn, VERm,VZO}.



K:{u:fly—l—vzyeAn, VERm,VZO}.

It is easy to see that K is convex and closed: this follows immediately
from the fact that A,,, the set of probability vectors corresponding to mixed
strategies y for player I1, is closed, bounded and convex. Also, K cannot
contain the 0 vector because if 0 were in K, there would be some mixed
strategy y € A,, such that Ay < 0, hence for any x € A,, we have
XTfly < 0, which would contradict the right-hand side of (7).

A

Recall: max min XTAy < 0 < min max XTAy (™)
XEAm YEA, VEA, XEA,



Thus, K satisfies the conditions of the separating hyperplane theorem

which gives us z € R™ and ¢ > 0 such that 0 < ¢ < z!w for all
w € K. That is,

zT(fly +v)>c>0forally € A,, v=>0. (**)

It must be the case that z; > 0 for all ¢ because if z; < 0, for some j we
could choose y € A,,, so that z! Ay + > Ziv; would be negative (let v; =0
for i # j and v; — 00), which would contradict (7).
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The same condition () gives us that not all of the z; can be zero. This
)T __

means that s = > ", z; is strictly positive, so that x = (1/s)(z1, ..., 2m
(1/5)z € A, with xI' Ay >c>0forally € A,.

In other words, x is a mixed strategy for player I that gives a positive
expected payoff against any mixed strategy of player I1. This contradicts
the left hand inequality of (**) , which says that player I can assure at best
a negative payoft.




