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3.2 Von Neumann’s Minimax Theorem 55

Because f is continuous and X and Y are closed and bounded, the minima
and maxima are achieved and we have proved the lemma.

We can now prove:

Theorem 3.2.2 (Von Neumann’s Minimax Theorem). Let A be a m£n
payoÆ matrix, and let ¢m = {x : x ∏ 0;

P

i xi = 1}, ¢n = {y : y ∏
0;

P

j yj = 1}, then

max
x2¢m

min
y2¢n

xT Ay = min
y2¢n

max
x2¢m

xT Ay.

This quantity is called the value of the two-person, zero-sum game with
payoÆ matrix A.

Proof. That

max
x2¢m

min
y2¢n

xT Ay ∑ min
y2¢n

max
x2¢m

xT Ay

follows immediately from the lemma because f(x,y) = xT Ay is a con-
tinuous function in both variables and ¢m Ω Rm, ¢n Ω Rn are closed and
bounded.

For the other inequality, suppose toward a contradiction that

max
x2¢m

min
y2¢n

xT Ay < ∏ < min
y2¢n

max
x2¢m

xT Ay.

We can define a new game with payoÆ matrix Â given by âij = aij ° ∏. For
this game, we have

max
x2¢m

min
y2¢n

xT Ây < 0 < min
y2¢n

max
x2¢m

xT Ây. (3.1)

Each mixed strategy y 2 ¢n for player II yields a payoÆ vector Ây 2 Rm.
Let K denote the set of all vectors u for which there exists a payoÆ vector
Ây such that u dominates Ây. That is,

K =
n

u = Ây + v : y 2 ¢n, v 2 Rm,v ∏ 0
o

.

It is easy to see that K is convex and closed: this follows immediately
from the fact that ¢n, the set of probability vectors corresponding to mixed
strategies y for player II, is closed, bounded and convex. Also, K cannot
contain the 0 vector because if 0 were in K, there would be some mixed
strategy y 2 ¢n such that Ây ∑ 0, whence for any x 2 ¢m we have
xT Ây ∑ 0, which would contradict the right-hand side of (3.1).

Thus, K satisfies the conditions of the separating hyperplane theorem

The proof is not examinable.



52 Two-person zero-sum games

If player I follows a mixed strategy x and player II, a mixed strategy y
the expected payoÆ to player I is

P

xiaijyj = xT Ay.
We refer to Ay as the payoÆ vector for player I corresponding to the

mixed strategy y for player II. The elements of this vector represent the
payoÆs to I corresponding to each of his pure strategies. Similarly, xT A
is the payoÆ vector for player II corresponding to the mixed strategy x
for player I. The elements of this vector represent the payouts for each of
player II’s pure strategies.

We say that a payoÆ vector w 2 Rd dominates another payoÆ vector
u 2 Rd if wi ∏ ui for all i = 1, . . . , d. We write w ∏ u.

Next we formally define what it means for a strategy to be optimal for
each player:

Definition 3.1.1. A strategy x̃ 2 ¢m is optimal for player I if

min
y2¢n

x̃T Ay = max
x2¢m

min
y2¢n

xT Ay.

Similarly, a strategy ỹ 2 ¢n is optimal for player II if

max
x2¢m

xT Aỹ = min
y2¢n

max
x2¢m

xT Ay.

3.2 Von Neumann’s Minimax Theorem
In this section, we will prove that every two-person, zero-sum game has a
value. That is, in any two-person zero-sum game, the expected payoÆ for
an optimal strategy for player I equals the expected payout for an optimal
strategy of player II. Our proof will rely on a basic theorem of convex
geometry.

Definition 3.2.1. A set K µ Rd is convex if, for any two points a,b 2 K,
the line segment that connects them,

{pa + (1° p)b : p 2 [0, 1]},

also lies in K.

Our proof will make use of the following result about convex sets:

Theorem 3.2.1 (The Separating Hyperplane Theorem). Suppose that
K µ Rd is closed and convex. If 0 62 K, then there exists z 2 Rd and c 2 R
such that

0 < c < zTv ,

for all v 2 K.
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3.2 Von Neumann’s Minimax Theorem 53

The theorem says that there is a hyperplane (a line in the plane, or,
more generally, a Rd°1 a±ne subspace in Rd) that separates 0 from K. In
particular, on any continuous path from 0 to K, there is some point that
lies on this hyperplane.

The separating hyperplane is given by
©

x 2 Rd : zTx = c
™

.

0

K

line

PSfrag replacements
{x : zT x = c}

K
0

Fig. 3.1.

Proof. First, note that because K is closed, there exists z 2 K for which

||z|| = inf
v2K

||v||.

This is because if we pick R so that the ball of radius R intersects K, the
function v 7! ||v||, considered as a map from K \ {x 2 Rd : ||x|| ∑ R} to
[0,1), is continuous, with a domain that is closed and bounded. Thus, the
map attains its infimum at some point z in K.

Now choose c = (1/2)||z||2 > 0. We will show that that c < zTv for each
v 2 K.

Consider v in K. Because K is convex, for any ≤ 2 (0, 1), ≤v+(1°≤)z 2 K.
Hence,

||z||2 ∑ ||≤v + (1° ≤)z||2 =
°

≤vT + (1° ≤)zT
¢°

≤v + (1° ≤)z
¢

,

the first inequality following from the fact that z has the minimum norm of
any point in K. We obtain

zTz ∑ ≤2vTv + (1° ≤)2zTz + 2≤(1° ≤)vTz.
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Interpretation of theorem:
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Multiplying out and canceling an ≤, we get:

≤(2vT z° vTv ° zT z) ∑ 2(vTz° zT z).

Letting ≤ approach 0, we find that

0 ∑ vTz° zTz,

which implies that

vTz ∏ ||z||2 = 2c > c,

as required.

We will also need the following simple lemma:

Lemma 3.2.1. Let X and Y be closed and bounded sets in R and let (x§,y§) 2
X £ Y . Let f : X £ Y ! R be continuous in both coordinates. Then,

max
x2X

min
y2Y

f(x,y) ∑ min
y2Y

max
x2X

f(x,y).

Proof. Let (x§,y§) 2 X£Y be given. Clearly we have f(x§,y§) ∑ sup
x2X f(x,y§)

and inf
x2X f(x,y§) ∑ f(x§,y§), which gives us

inf
y2Y

f(x§,y) ∑ sup
x2X

f(x,y§).

Because the inequality holds for any x§ 2 X, it holds for sup
x

§2X of the
quantity on the left. Similarly, because the inequality holds for all y§ 2 Y ,
it must hold for the inf

y

§2Y of the quantity on the right. We have:

sup
x2X

inf
y2Y

f(x,y) ∑ inf
y2Y

sup
x2X

f(x,y).
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Because f is continuous and X and Y are closed and bounded, the minima
and maxima are achieved and we have proved the lemma.

We can now prove:

Theorem 3.2.2 (Von Neumann’s Minimax Theorem). Let A be a m£n
payoÆ matrix, and let ¢m = {x : x ∏ 0;

P

i xi = 1}, ¢n = {y : y ∏
0;

P

j yj = 1}, then

max
x2¢m

min
y2¢n

xT Ay = min
y2¢n

max
x2¢m

xT Ay.

This quantity is called the value of the two-person, zero-sum game with
payoÆ matrix A.

Proof. That

max
x2¢m

min
y2¢n

xT Ay ∑ min
y2¢n

max
x2¢m

xT Ay

follows immediately from the lemma because f(x,y) = xT Ay is a con-
tinuous function in both variables and ¢m Ω Rm, ¢n Ω Rn are closed and
bounded.

For the other inequality, suppose toward a contradiction that

max
x2¢m

min
y2¢n

xT Ay < ∏ < min
y2¢n

max
x2¢m

xT Ay.

We can define a new game with payoÆ matrix Â given by âij = aij ° ∏. For
this game, we have

max
x2¢m

min
y2¢n

xT Ây < 0 < min
y2¢n

max
x2¢m

xT Ây. (3.1)

Each mixed strategy y 2 ¢n for player II yields a payoÆ vector Ây 2 Rm.
Let K denote the set of all vectors u for which there exists a payoÆ vector
Ây such that u dominates Ây. That is,

K =
n

u = Ây + v : y 2 ¢n, v 2 Rm,v ∏ 0
o

.

It is easy to see that K is convex and closed: this follows immediately
from the fact that ¢n, the set of probability vectors corresponding to mixed
strategies y for player II, is closed, bounded and convex. Also, K cannot
contain the 0 vector because if 0 were in K, there would be some mixed
strategy y 2 ¢n such that Ây ∑ 0, whence for any x 2 ¢m we have
xT Ây ∑ 0, which would contradict the right-hand side of (3.1).

Thus, K satisfies the conditions of the separating hyperplane theorem
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xT Ây ∑ 0, which would contradict the right-hand side of (3.1).

Thus, K satisfies the conditions of the separating hyperplane theorem



3.2 Von Neumann’s Minimax Theorem 55

Because f is continuous and X and Y are closed and bounded, the minima
and maxima are achieved and we have proved the lemma.

We can now prove:

Theorem 3.2.2 (Von Neumann’s Minimax Theorem). Let A be a m£n
payoÆ matrix, and let ¢m = {x : x ∏ 0;

P

i xi = 1}, ¢n = {y : y ∏
0;

P

j yj = 1}, then

max
x2¢m

min
y2¢n

xT Ay = min
y2¢n

max
x2¢m

xT Ay.

This quantity is called the value of the two-person, zero-sum game with
payoÆ matrix A.

Proof. That

max
x2¢m

min
y2¢n

xT Ay ∑ min
y2¢n

max
x2¢m

xT Ay

follows immediately from the lemma because f(x,y) = xT Ay is a con-
tinuous function in both variables and ¢m Ω Rm, ¢n Ω Rn are closed and
bounded.

For the other inequality, suppose toward a contradiction that

max
x2¢m

min
y2¢n

xT Ay < ∏ < min
y2¢n

max
x2¢m

xT Ay.

We can define a new game with payoÆ matrix Â given by âij = aij ° ∏. For
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Ây such that u dominates Ây. That is,
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xT Ây ∑ 0, which would contradict the right-hand side of (3.1).

Thus, K satisfies the conditions of the separating hyperplane theorem
(*)

Recall:

3.2 Von Neumann’s Minimax Theorem 55

Because f is continuous and X and Y are closed and bounded, the minima
and maxima are achieved and we have proved the lemma.

We can now prove:

Theorem 3.2.2 (Von Neumann’s Minimax Theorem). Let A be a m£n
payoÆ matrix, and let ¢m = {x : x ∏ 0;

P

i xi = 1}, ¢n = {y : y ∏
0;

P

j yj = 1}, then

max
x2¢m

min
y2¢n

xT Ay = min
y2¢n

max
x2¢m

xT Ay.

This quantity is called the value of the two-person, zero-sum game with
payoÆ matrix A.

Proof. That

max
x2¢m

min
y2¢n

xT Ay ∑ min
y2¢n

max
x2¢m

xT Ay

follows immediately from the lemma because f(x,y) = xT Ay is a con-
tinuous function in both variables and ¢m Ω Rm, ¢n Ω Rn are closed and
bounded.

For the other inequality, suppose toward a contradiction that

max
x2¢m

min
y2¢n

xT Ay < ∏ < min
y2¢n

max
x2¢m

xT Ay.

We can define a new game with payoÆ matrix Â given by âij = aij ° ∏. For
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strategy y 2 ¢n such that Ây ∑ 0, whence for any x 2 ¢m we have
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(3.2.1), which gives us z 2 Rm and c > 0 such that 0 < c < zTw for all
w 2 K. That is,

zT (Ây + v) > c > 0 for all y 2 ¢n, v ∏ 0. (3.2)

It must be the case that zi ∏ 0 for all i because if zj < 0, for some j we
could choose y 2 ¢n, so that zT Ay +

P

i zivi would be negative (let vi = 0
for i 6= j and vj !1), which would contradict (3.2).

The same condition (3.2) gives us that not all of the zi can be zero. This
means that s =

Pm
i=1

zi is strictly positive, so that x = (1/s)(z
1

, . . . , zm)T =
(1/s)z 2 ¢m, with xT Ay > c > 0 for all y 2 ¢n.

In other words, x is a mixed strategy for player I that gives a positive
expected payoÆ against any mixed strategy of player II. This contradicts
the left hand inequality of (3.1), which says that player I can assure at best
a negative payoÆ.

Note that the above proof merely shows that the minimax value always
exists; it doesn’t give a way of finding it. Finding the value of a zero sum
game involves solving a linear program, which typically requires a computer
for all but the simplest of payoÆ matrices. In many cases, however, the
payoÆ matrix of a game can be simplified enough to solve it ”by hand.” In
the next two sections of the chapter, we will look at some techniques for
simplifying a payoÆ matrix.

3.3 The Technique of Domination

Domination is a technique for reducing the size of a game’s payoÆ matrix,
enabling it to be more easily analyzed. Consider the following example.

Example 3.3 (Plus One). Each player chooses a number from {1, 2, . . . , n}
and writes it down on a piece of paper; then the players compare the two
numbers. If the numbers diÆer by one, the player with the higher number
wins $1 from the other player. If the players’ choices diÆer by two or more,
the player with the higher number pays $2 to the other player. In the event
of a tie, no money changes hands.

The payoÆ matrix for the game is:

(**)

(**)
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xT Ây. (3.1)

Each mixed strategy y 2 ¢n for player II yields a payoÆ vector Ây 2 Rm.
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K =
n
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