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“The instrument that mediates between theory and 
practice, between thought and observation, is mathematics; 
it builds the connecting bridge and makes it stronger and 
stronger.  Thus it happens that our entire present-day 
culture, insofar as it rests on intellectual insight into and 
harnessing of nature, is founded on mathematics.”
                                                          David Hilbert

In Königsberg on 8 September 1930, David Hilbert addressed the yearly meeting of the Society of 
German Natural Scientists and Physicians (Gesellschaft der Deutschen Naturforscher und Ärzte). 
Generally regarded as the world’s leading mathematician at the time, Hilbert was born and educated 
in Königsberg and spent the early years of his career there. 
Full text of the speech in English and German at url below, including audio file:

Modelling: 
Mathematics as bridge between theory & application

http://math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.pdf


Which of the following options do you prefer?
   __    25% chance to win $30  
   __    20% chance to win $45 

Which of the following options do you prefer?
     __   a sure win of $30 
     __   80% chance to win $45 

In the first stage, there is a 75% chance to end the game without 
winning anything, and a 25% chance to move into the second stage. If 
you reach the second stage you have a choice:
     __   a sure win of $30 
     __   80% chance to win $45 
Your choice must be made before the game starts.



Problem 7 [N = 81]: Which of the following options do you prefer?
E.   25% chance to win $30  [42 percent] 
P.   20% chance to win $45  [58 percent]

Heuristics & biases: Framing of contingencies

Build mathematical models describing and predicting the observed 
behaviour of humans with respect to lotteries.

Paper TK’1981:
Amos Tversky; Daniel Kahneman, The Framing of Decisions and the 
Psychology of Choice,
Science, New Series, Vol. 211, No. 4481. (Jan. 30, 1981), pp. 453-458.



Problem 7 [N = 81]: Which of the following options do you prefer?
E.   25% chance to win $30  [42 percent] 
P.   20% chance to win $45  [58 percent]

Amos Tversky; Daniel Kahneman, The Framing of Decisions and the Psychology of Choice,
Science, New Series, Vol. 211, No. 4481. (Jan. 30, 1981), pp. 453-458.

Problem 5 [N = 77]: Which of the following options do you prefer?
A.   a sure win of $30  [78 percent] 
B.   80% chance to win $45  [22 percent]

Preferences reversed. 

Explanation: Certainty effect

[Expectation: $7.5]

[Expectation: $9.0]

[Expectation: $30]

[Expectation: $36]



Question 11

You are being offered to play a game. Which of the following options do you prefer?

A.  25% chance to win £30     
B.  20% chance to win £45     

Your choice must be made before the game starts, i.e., before the outcome of the first 
stage is known. Please indicate the option you prefer.

Game A          Game B          No preference     

Add a “no preference” option for half of the group

What about Warwick ST222 students?



> Numa<-sum(a)-1 
> Numb<-sum(b)-2 
>  
> sum(D[a,n]=="a", na.rm=T)/Numa 
[1] 0.36 
> sum(D[a,n]=="b", na.rm=T)/Numa 
[1] 0.64 
> sum(D[a,n]=="n", na.rm=T)/Numa 
[1] 0 
>  
> sum(D[b,n]=="a", na.rm=T)/Numb 
[1] 0.2553191 
> sum(D[b,n]=="b", na.rm=T)/Numb 
[1] 0.6808511 
> sum(D[b,n]=="n", na.rm=T)/Numb 
[1] 0.06382979

ST222’14@Warwick:

36% prefer Option A 
64% prefer Option B

Original question

 Modified question (incl. “no pref.”)
26% prefer Option A 
68% prefer Option B
 6% had no preference

In this example the “no preference” option 
turns out to be not very relevant.

Confirming original study (initial study: 42%, 58%), 
preferences even more pronounced.



Problem 7 [N = 81]: Which of the following options do you prefer?
E.   25% chance to win $30  [42 percent] 
P.   20% chance to win $45  [58 percent]

Problem 5 [N = 77]: Which of the following options do you prefer?
A.   a sure win of $30  [78 percent] 
B.   80% chance to win $45  [22 percent]

Problem 6 [N = 85]: In the first stage, there is a 75% chance to end 
the game without winning anything, and a 25% chance to move into 
the second stage. If you reach the second stage you have a choice:
C. a sure win of $30 
D. 80% chance to win $45 
Your choice must be made before the game starts.

[Expectation: $7.5]

[Expectation: $9.0]

[Expectation: $7.5]

[Expectation: $9.0]

[Expectation: $30]

[Expectation: $36]

???
???



Problem 7 [N = 81]: Which of the following options do you prefer?
E.   25% chance to win $30  [42 percent] 
P.   20% chance to win $45  [58 percent]

Problem 5 [N = 77]: Which of the following options do you prefer?
A.   a sure win of $30  [78 percent] 
B.   80% chance to win $45  [22 percent]

Problem 6 [N = 85]: In the first stage, there is a 75% chance to end 
the game without winning anything, and a 25% chance to move into 
the second stage. If you reach the second stage you have a choice:
C. a sure win of $30  [74 percent]
D. 80% chance to win $45  [26 percent]
Your choice must be made before the game starts.

[Expectation: $7.5]

[Expectation: $9.0]

[Expectation: $7.5]

[Expectation: $9.0]

[Expectation: $30]

[Expectation: $36]

Interpretation 
P5: Majority subject to certainty effect.  
P6: While certainty is removed in compound bet, most people maintain same preferences.  
P7: For the majority, preferences are reversed and now follow EUT.

Data from 

TK’1981



Problem 7 [N = 81]: Which of the following options do you prefer?
E.   25% chance to win $30  [42 percent] 
P.   20% chance to win $45  [58 percent]

Problem 5 [N = 77]: Which of the following options do you prefer?
A.   a sure win of $30  [78 percent] 
B.   80% chance to win $45  [22 percent]

Problem 6 [N = 85]: In the first stage, there is a 75% chance to end 
the game without winning anything, and a 25% chance to move into 
the second stage. If you reach the second stage you have a choice:
C. a sure win of $30  [74 percent]
D. 80% chance to win $45  [26 percent]
Your choice must be made before the game starts.

[Expectation: $7.5]

[Expectation: $9.0]

[Expectation: $7.5]

[Expectation: $9.0]

[Expectation: $30]

[Expectation: $36]

ST222’15@W:

23.7%
76.3%

59.5%
40.5%

60.0%

40.0%

Interpretation:   
ST222’15@Warwick has about the same preferences in P6 as in P5, and different from P7, 
all consistent with the preferences expressed by TK’1981 subjects.
In all problems, ST222’15@Warwick are more likely than TK’1981 to choose the option with 
the higher expectation, suggesting more of them are following EUT.



Discussion: Rationality concepts in K&T’s work

• The work of Kahneman and Tversky (1960s to present) is largely based on the 
understanding that people would apply EUT.

• Alternative theories (e.g. regret theory, maximin etc) lead to other answers. 
People who apply them can still do so for rational reasons. They just have 
different priorities (e.g. in problem 5 ensuring to win at least something is 
more important than maximising the gain).

• However, K & T did not equate rationality with the application of EUT. 

• The point they are making in e.g. TK’1981 is that people’s behaviour is 
inconsistent with the respect to the question of application of EUT:            
While Problems 6 and 7 are mathematically equivalent, the subjects behaved 
differently. In Problem 7 a majority applied EUT, but in Problem 6 a majority did 
not do so. Instead, they answer as if this had been Problem 5, where behaviour 
is governed by the certainty effect.  This is remarkable, because there is actually 
no certainty in Problem 6 if the compound bet is see as such. Instead, subjects 
seem to focus on just the second step of Problem 6 accepting that the first 
step is out of their control.



Prospect theory: Probability weighting

Four-fold pattern of risk attitudes



PROBABILITY WEIGHTING FUNCTION 137

FIG. 3. (Left) Two weighting functions that differ primarily in curvature—w1 is relatively
linear and w2 is almost a step function. (Right) Two weighting functions that differ primarily
in elevation—w1 overweights relative to w2.

Kahneman (1992) using certainty equivalence data, by Wu and Gonzalez
(1996) using series of gambles constructed to examine the curvature of the
weighting function, and by Abdellaoui (1998) using a nonparametric
estimation task. A weaker condition, bounded subadditivity, was also sup-
ported by Tversky and Fox (1995). For a counterexample see Birnbaum and
McIntosh (1996).
Diminishing sensitivity is related to the concept of discriminability in the

psychophysics literature in the sense that the sensitivity to a unit difference
in probability changes along the probability scale. Discriminability may be
characterized as follows: weighting function w1 is said to exhibit greater
discriminability, or sensitivity, than weighting function w2 within interval
[q1, q2] whenever w1(p ! ")# w1(p)$ w2(p ! ")# w2(p) for all p bounded
away from 0 and 1, " $ 0, and p, p ! " ∈ [q1, q2]. That is, changes (first-
order differences) within an interval along w1 are more pronounced than
changes along w2. The boundary conditions are needed because w(0) % 0
and w(1) % 1 by definition, and for any continuous weighting function the
following property holds: ∫10 w'(p)dp % 1.
Discriminability can be illustrated by considering two extreme cases: a

function that approaches a step function and a function that is almost linear
(see the left panel of Fig. 3). The step function shows less sensitivity to
changes in probability than the linear function, except near 0 and 1. A step
function corresponds to the case in which an individual detects ‘‘certainly
will’’ and ‘‘certainly will not,’’ but all other probability levels are treated
equally (such as the generic ‘‘maybe’’). Piaget and Inhelder (1975) observed
that a 4-year-old child’s understanding of chance corresponds to this type



Ali al-Nowaihi, Sanjit Dhami,  A simple derivation of Prelec’s probability weighting function, June 2005

Definition: probability weighting function

Definition 1 : (l) O0 is the set of simple lotteries, defined above.
(ll) Let On+1 = On ^ {{(|1> D1) > (|2> D2) > ===> (|p> Dp)} : |l 5 Ln and is conditional on Dl

and {Dl}
p
l=1is any partition of V}=

(lll) O = ^"n=0On. O is the set of compound lotteries or, more simply, lotteries.

Often, it su!ces to give the probability of each outcome, rather than fully specify the
probability space on which a lottery is defined. For example, if s (Dl) = tl, it is often su!-
cient to indicate the lottery {({1> D1) > ({2> D2) > ===> ({p> Dp)} by {({1> t1) > ({2> t2) > ===> ({p> tp)} =
We shall also use the following standard short-hand notation. ({) is the lottery {({> 1)} that
pays 1 with certainty, ({> s) is the lottery {({> s) > (0> 1� s)} that pays { with probability s
but 0 otherwise and (({> s) > t) is the compound lottery {({({> s) > (0> 1� s)} > t) > (0> 1� t)}
that ’pays’ ({> s) with probability t but 0 otherwise. Our Definition 1 may appear more
formal than necessary. However, it does facilitate an extension of the concept of the value
of a simple lottery (Definition 5) to that of a compound lottery (Definition 6).

Definition 2 : By a value function we mean a strictly increasing function y : R �$ R

such that y (0) = 01.

Definition 3 : By a probability weighting function we mean a strictly increasing function
z : [0> 1]

rqwr�$ [0> 1] =

Note that a probability weighting function, z, has a unique inverse, z31 : [0> 1] rqwr�$
[0> 1] and that z31 is strictly increasing. Hence, z31 is also a probability weighting func-
tion. Furthermore, it follows that z and z31 are continuous and must satisfy z (0) =

z31 (0) = 0 and z (1) = z31 (1) = 1=

Definition 4 : (Prelec, 1998). By the Prelec function we mean the probability weighting
function z : [0> 1]

rqwr�$ [0> 1] given by

z (s) = h3�(3 ln s)
�

> � A 0> � A 0 (2.1)

Definition 5 : Let {({1> D1) > ({2> D2) > ===> ({p> Dp)} be a simple lottery, where {1 � {2 �
=== � {n ? 0 � {n+1 � === � {p= Let z3 be the probability weighting function associ-
ated with losses ({l ? 0) and z+ the probability weighting function associated with gains
({l � 0). We define the decision weights �1> �2> ===> �p as follows,
�1 = z3 (s (D1)) > if n � 1
�m = z3

¡
Pm
l=1s (Dl)

¢
� z3

¡
Pm31
l=1s (Dl)

¢
; m = 2> 3> ===> n; if n A 1

1The value function was introduced by Kahnemann and Tversky (1979). They interpret {l = }l � u,
where }l is the lwk outcome and u is some reference point for the individual. When }l = u, a natural
normalization is y(u � u) = y(0) = 0.

2



Plots: K&T’s probability weighting functions for range of gamma

gamma = 1, 1.25,  1.5, 2, 3, 5gamma = seq(0.1,1,0.1)  (<0.5 not used!)
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)4. Addressing stylized fact S1

Data from experimental and Öeld evidence typically suggest that decision makers exhibit

an inverse S-shaped probability weighting over outcomes (stylized fact S1). Tversky and

Kahneman (1992) propose the following probability weighting function, where the lower

bound on  comes from Rieger and Wang (2006).

DeÖnition 7 : The Tversky and Kahneman probability weighting function is given by

w (p) =
p

[p + (1 p)]
1


; 0:5   < 1; 0  p  1. (4.1)

A simple proof leads to the following proposition.

Proposition 2 : The Tversky and Kahneman (1992) probability weighting function (4.1)
inÖnitely overweights inÖnitesimal probabilities and inÖnitely underweights near-one prob-

abilities, i.e., lim
p!0

w(p)
p
=1 and lim

p!1

1w(p)
1p =1, respectively.

Remark 2 (Standard probability weighting functions): A large number of other proba-
bility weighting functions have been proposed, e.g., those by Gonzales and Wu (1999) and

Lattimore, Baker and Witte (1992). Like the Tversky and Kahneman (1992) function,

they all inÖnitely overweight inÖnitesimal probabilities and inÖnitely underweight near-

one probabilities. We shall call these as the standard probability weighting functions. All

these functions violate stylized fact S3.

We now consider the most satisfactory PWF that helps to address stylized fact S1.

This is the Prelec (1998) PWF, which is also a standard probability weighting function

in the sense of remark 2. The Prelec (1998) PWF has the following merits: parsimony,

consistency with much of the available empirical evidence (in the sense of stylized fact S1)

and an axiomatic foundation.

DeÖnition 8 (Prelec, 1998): By the Prelec function we mean the probability weighting
function w(p) : [0; 1]! [0; 1] given by

w (0) = 0, w (1) = 1; (4.2)

w (p) = e( ln p)


, 0 < p  1,  > 0,  > 0. (4.3)

The following Proposition is straightforward to check, so we omit the proof.

Proposition 3 : The Prelec function (DeÖnition 8) is a probability weighting function in
the sense of DeÖnition 2.

12
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Alternative probability weighting: Prelec function

Definition 1 : (l) O0 is the set of simple lotteries, defined above.
(ll) Let On+1 = On ^ {{(|1> D1) > (|2> D2) > ===> (|p> Dp)} : |l 5 Ln and is conditional on Dl

and {Dl}
p
l=1is any partition of V}=

(lll) O = ^"n=0On. O is the set of compound lotteries or, more simply, lotteries.

Often, it su!ces to give the probability of each outcome, rather than fully specify the
probability space on which a lottery is defined. For example, if s (Dl) = tl, it is often su!-
cient to indicate the lottery {({1> D1) > ({2> D2) > ===> ({p> Dp)} by {({1> t1) > ({2> t2) > ===> ({p> tp)} =
We shall also use the following standard short-hand notation. ({) is the lottery {({> 1)} that
pays 1 with certainty, ({> s) is the lottery {({> s) > (0> 1� s)} that pays { with probability s
but 0 otherwise and (({> s) > t) is the compound lottery {({({> s) > (0> 1� s)} > t) > (0> 1� t)}
that ’pays’ ({> s) with probability t but 0 otherwise. Our Definition 1 may appear more
formal than necessary. However, it does facilitate an extension of the concept of the value
of a simple lottery (Definition 5) to that of a compound lottery (Definition 6).

Definition 2 : By a value function we mean a strictly increasing function y : R �$ R

such that y (0) = 01.

Definition 3 : By a probability weighting function we mean a strictly increasing function
z : [0> 1]

rqwr�$ [0> 1] =

Note that a probability weighting function, z, has a unique inverse, z31 : [0> 1] rqwr�$
[0> 1] and that z31 is strictly increasing. Hence, z31 is also a probability weighting func-
tion. Furthermore, it follows that z and z31 are continuous and must satisfy z (0) =

z31 (0) = 0 and z (1) = z31 (1) = 1=

Definition 4 : (Prelec, 1998). By the Prelec function we mean the probability weighting
function z : [0> 1]

rqwr�$ [0> 1] given by

z (s) = h3�(3 ln s)
�

> � A 0> � A 0 (2.1)

Definition 5 : Let {({1> D1) > ({2> D2) > ===> ({p> Dp)} be a simple lottery, where {1 � {2 �
=== � {n ? 0 � {n+1 � === � {p= Let z3 be the probability weighting function associ-
ated with losses ({l ? 0) and z+ the probability weighting function associated with gains
({l � 0). We define the decision weights �1> �2> ===> �p as follows,
�1 = z3 (s (D1)) > if n � 1
�m = z3

¡
Pm
l=1s (Dl)

¢
� z3

¡
Pm31
l=1s (Dl)

¢
; m = 2> 3> ===> n; if n A 1

1The value function was introduced by Kahnemann and Tversky (1979). They interpret {l = }l � u,
where }l is the lwk outcome and u is some reference point for the individual. When }l = u, a natural
normalization is y(u � u) = y(0) = 0.
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Plots:  Prelec functions for various alphas (beta=1)
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alpha = 1, 1.25,  1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5)
alpha = seq(0.1,1,0.1)

Definition 1 : (l) O0 is the set of simple lotteries, defined above.
(ll) Let On+1 = On ^ {{(|1> D1) > (|2> D2) > ===> (|p> Dp)} : |l 5 Ln and is conditional on Dl

and {Dl}
p
l=1is any partition of V}=

(lll) O = ^"n=0On. O is the set of compound lotteries or, more simply, lotteries.

Often, it su!ces to give the probability of each outcome, rather than fully specify the
probability space on which a lottery is defined. For example, if s (Dl) = tl, it is often su!-
cient to indicate the lottery {({1> D1) > ({2> D2) > ===> ({p> Dp)} by {({1> t1) > ({2> t2) > ===> ({p> tp)} =
We shall also use the following standard short-hand notation. ({) is the lottery {({> 1)} that
pays 1 with certainty, ({> s) is the lottery {({> s) > (0> 1� s)} that pays { with probability s
but 0 otherwise and (({> s) > t) is the compound lottery {({({> s) > (0> 1� s)} > t) > (0> 1� t)}
that ’pays’ ({> s) with probability t but 0 otherwise. Our Definition 1 may appear more
formal than necessary. However, it does facilitate an extension of the concept of the value
of a simple lottery (Definition 5) to that of a compound lottery (Definition 6).

Definition 2 : By a value function we mean a strictly increasing function y : R �$ R

such that y (0) = 01.

Definition 3 : By a probability weighting function we mean a strictly increasing function
z : [0> 1]

rqwr�$ [0> 1] =

Note that a probability weighting function, z, has a unique inverse, z31 : [0> 1] rqwr�$
[0> 1] and that z31 is strictly increasing. Hence, z31 is also a probability weighting func-
tion. Furthermore, it follows that z and z31 are continuous and must satisfy z (0) =

z31 (0) = 0 and z (1) = z31 (1) = 1=

Definition 4 : (Prelec, 1998). By the Prelec function we mean the probability weighting
function z : [0> 1]

rqwr�$ [0> 1] given by

z (s) = h3�(3 ln s)
�

> � A 0> � A 0 (2.1)

Definition 5 : Let {({1> D1) > ({2> D2) > ===> ({p> Dp)} be a simple lottery, where {1 � {2 �
=== � {n ? 0 � {n+1 � === � {p= Let z3 be the probability weighting function associ-
ated with losses ({l ? 0) and z+ the probability weighting function associated with gains
({l � 0). We define the decision weights �1> �2> ===> �p as follows,
�1 = z3 (s (D1)) > if n � 1
�m = z3

¡
Pm
l=1s (Dl)

¢
� z3

¡
Pm31
l=1s (Dl)

¢
; m = 2> 3> ===> n; if n A 1

1The value function was introduced by Kahnemann and Tversky (1979). They interpret {l = }l � u,
where }l is the lwk outcome and u is some reference point for the individual. When }l = u, a natural
normalization is y(u � u) = y(0) = 0.
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Figure 4.1: A plot of the Prelec (1988) function, w (p) = e( ln p)
1
2
.

We plot the Prelec (1998) PWF in Figure 4.1 which is a plot of w (p) = e( ln p)
0:5
,
i.e.,

 = 1 and  = 0:5 (see (4.3)) and the probability p 2 [0; 1].

Remark 3 (Axiomatic foundations): Prelec (1998) gave an axiomatic derivation of (4.2)
and (4.3) based on ëcompound invarianceí, Luce (2001) provided a derivation based on

ëreduction invarianceí and al-Nowaihi and Dhami (2006) give a derivation based on ëpower

invarianceí. Since the Prelec function satisÖes all three, ëcompound invarianceí, ëreduc-

tion invarianceí and ëpower invarianceí are all equivalent. Note, in particular, that these

derivations do not put any restrictions on  and  other than  > 0 and  > 0.

1. (Role of ) The parameter  controls the convexity/concavity of the Prelec function.

If  < 1, then the Prelec function is strictly concave for low probabilities but strictly

convex for high probabilities, i.e., it is inverse S-shaped, as in w (p) = e( ln p)
1
2
( =

1
2
,  = 1), which is sketched in Figure 4.1, above. The converse holds if  > 1. The

Prelec function is then strictly convex for low probabilities but strictly concave for

high probabilities, i.e., it is S-shaped. An examples is the curve w (p) = e( ln p)
2

( =

2,  = 1), sketched in Figure 4.2 as the light, lower, curve (the straight line in Figure

4.2 is the 45o line).

2. (Role of ) Between the region of strict convexity (w00 > 0) and the region of strict

concavity (w00 < 0), for each of the cases in Figures 4.1 and 4.2, there is a point of

ináexion (w00 = 0). The parameter  in the Prelec function controls the location of

the ináexion point relative to the 450 line. Thus, for  = 1, the point of ináexion

is at p = e1 and lies on the 450 line, as in Figures 4.1 and 4.2 (light curve),

above. However, if  < 1, then the point of ináexion lies above the 450 line, as in

w (p) = e0:5( ln p)
2

( = 2;  = 0:5), sketched as the thicker, upper, curve in Figure

4.2. For this example, the Öxed point, w (p) = p, is at p ' 0:14 but the point of
ináexion, w00 (ep) = 0, is at ep ' 0:20.
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Figure 4.1: A plot of the Prelec (1988) function, w (p) = e( ln p)
1
2
.

We plot the Prelec (1998) PWF in Figure 4.1 which is a plot of w (p) = e( ln p)
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and (4.3) based on ëcompound invarianceí, Luce (2001) provided a derivation based on

ëreduction invarianceí and al-Nowaihi and Dhami (2006) give a derivation based on ëpower

invarianceí. Since the Prelec function satisÖes all three, ëcompound invarianceí, ëreduc-

tion invarianceí and ëpower invarianceí are all equivalent. Note, in particular, that these
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4.2 is the 45o line).
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concavity (w00 < 0), for each of the cases in Figures 4.1 and 4.2, there is a point of

ináexion (w00 = 0). The parameter  in the Prelec function controls the location of

the ináexion point relative to the 450 line. Thus, for  = 1, the point of ináexion

is at p = e1 and lies on the 450 line, as in Figures 4.1 and 4.2 (light curve),

above. However, if  < 1, then the point of ináexion lies above the 450 line, as in

w (p) = e0:5( ln p)
2

( = 2;  = 0:5), sketched as the thicker, upper, curve in Figure

4.2. For this example, the Öxed point, w (p) = p, is at p ' 0:14 but the point of
ináexion, w00 (ep) = 0, is at ep ' 0:20.
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elevation: inflection point at exp(-1) for beta=1



 < 1  = 1  > 1

 < 1
inverse S-shape
ep < w (ep)

inverse S-shape
ep = w (ep)

inverse S-shape
ep > w (ep)

 = 1
strictly concave
p < w (p)

w (p) = p
strictly convex
p > w (p)

 > 1
S-shape
ep < w (ep)

S-shape
w (ep) = ep

S-shape
ep > w (ep)

Table 2, below, gives representative graphs of the Prelec function, w (p) = e( ln p)


,
for each of the cases in Table 1.
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Table 2: Representative graphs of w (p) = e( ln p)


.

Corollary 1 : Suppose  6= 1. Then ep = p = e1 (i.e., the point of ináexion and the
Öxed point, coincide) if, and only if,  = 1. If  = 1, then:
(a) If  < 1, then w is strictly concave for p < e1 and strictly convex for p > e1 (inverse-
S shape, see Figure 4.1).
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Richard Gonzalez and George Wu, On the Shape of the Probability Weighting Function. Cognitive Psychology 38, 
129–166 (1999)

Empirical evidence: Probability weighting function

• overweigh small probabilities (if larger than 0) 

• underweigh large probabilities (if smaller than 1)

• nonparametric estimation procedure for assessing the probability 
weighting function and value function at the level of the individual subject

• interpretation: one parameter measures how the decision maker 
discriminates probabilities, and the other parameter measures how 
attractive the decision maker views gambling

Gonzalez & Wu establish both a rationale and evidence for the 
shape of w:
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FIG. 2. One-parameter weighting functions estimated by Camerer and Ho (1994), Tversky
and Kahneman (1992), and Wu and Gonzalez (1996) using w(p) ! (pβ/(pβ " (1 # p)β)1/β).
The parameter estimates were .56, .61, and .71, respectively.

Kahneman & Tversky, 1979). An individual may agree that the probability
of a fair coin landing on heads is .5, but in decision making distort that
probability by w(.5).
The weighting function shown in Fig. 1 cannot account for the pattern

discussed above because it is not concave for low probability. The introduc-
tory examples suggest that probability changes appear more dramatic near
the endpoints 0 and 1 than near the middle of the probability scale. General-
ized, this implies a probability weighting function that is inverse-S-shaped:
concave for low probability and convex for high probability. Weighting func-
tions consistent with the survey data are shown in Fig. 2; empirical support
for this shape appeared in three recent choice studies (Camerer & Ho, 1994;
Hartinger, 1998; Tversky & Kahneman, 1992; Wu & Gonzalez, 1996).
The general question studied in this paper is how the psychophysics of

probability influences decision making under risk. In turn, an understanding
of the probability weighting function will provide insights about the psychol-
ogy of risk. The outline of the paper is as follows: we first provide a sketch
of the relevant theoretical background, review relevant studies, and discuss
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FIG. 6. Estimates of v and w for each individual participant using the nonparametric,
alternating least squares algorithm. 165 gambles per subject. Error bars are ! 1 SE, estimated
from the inverse Hessian at Steps 2 and 3. Note that value plots are scaled to each participant’s
own v.

participants, the two-parameter, linear in log odds form cannot be rejected
for any of the 10 subjects.
We now turn to an interpersonal assessment of attractiveness and discrimi-

nability on the estimates of w( ) from the individual subject data. We per-
formed a sign test on all pairs of subjects to test for differences in elevation.
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FIG. 7. Same as Fig. 5 with best fitting power function for v and best fitting linear in log
odds w overlays.

Figures 7 and 8 show the best fitting power v and linear in log odds w
superimposed on the nonparametric estimates for the median data and indi-
vidual subject data. The data are fit quite well with a power value function,
i.e., v(X) ! θXα (9 of 10 participants) and the two-parameter linear in log
odds w parameter weighting function (all participants).
A runs test provides a formal test of how well a specific functional form

fits the nonparametric estimates. The logic behind this test is that a poor
fitting function would produce residuals that have more (or fewer) runs than
expected by a simple chance model where the signs of the residuals are
independent. To test the linear in log odds weighting function, first observe
that the left-most point in the right panel of Fig. 7 (i.e., the estimated w(.01)
for the median data) is above the curve. Moving left to right, the second,
third, and fourth points are also above the curve; the fifth point is below the
curve, etc., yielding a total of four runs, which fails to reject the null hypothe-
sis of the runs test (Siegel, 1956). In this runs test, the residuals are catego-
rized as being above or below the nonlinear regression curve and the pattern
is compared to a chance model. The null hypothesis for the runs test was
not rejected for the linear in log odds function for the median data or any
of the 10 individual subject weighting functions. The runs test yielded com-
parable results for the two-parameter Prelec function (Eq. (4)) on the individ-
ual data (except that data for Subject 7 was rejected by the runs test) and
the median data. Although it may appear that the runs test is not sufficiently
powerful, the one-parameter special case of the Prelec function (Eq. (4) with
δ ! 1) and the one-parameter function suggested by Tversky and Kahneman
(1992) were each rejected by the runs test for 6 of the 10 participants. The
runs test failed to reject either of the one-parameter functional forms for the
median data.
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FIG. 8. Same as Fig. 6 with best fitting power function for v and best fitting linear in log
odds w overlays. Note that value plots are scaled to each participant’s own v.

We next turn to a more standard method of assessing goodness of fit for
w. Recall that a feature of Eq. (3) is that it is linear in the log odds scale.
A standard measure of fit to linearity is the R2 from the linear regression.
We assessed the fit of Eq. (3) by regressing w in log odds units on probability
in log odds units. The R2 for the median data was .98 and the median R2

over the 10 subjects was .92. Subject 8 (the subject who exhibited the lowest



Concepts:  PT utility function (value function)

DeÖnition 17 (Lotteries in incremental form) Let xi = yi  y0; i = m;m + 1; :::; n

be the increment in wealth relative to y0 and xm < ::: < x0 = 0 < ::: < xn. Let the

restriction on probabilities be ni=mpi = 1, pi  0, i = m;m+1; :::; n. Then, a lottery
is presented in incremental form if it is represented as:

L = (xm; pm; :::;x1; p1;x0; p0;x1; p1; :::;xn; pn) . (5.6)

DeÖnition 18 (Lotteries and prospects): Lotteries that are represented in incremental
form are known as prospects.

DeÖnition 19 (Set of Lotteries): Denote by LP the set of all prospects of the form given
in (5.6) subject to the restrictions in deÖnition 17.

DeÖnition 20 (Domains of losses and gains): The decision maker is said to be in the
domain of gains if xi > 0 and in the domain of losses if xi < 0. x0 lies neither in the

domain of gains nor in the domain of losses.

5.2.1. The utility function in CP

DeÖnition 21 (Tversky and Kahneman, 1979). A utility function, v(x), is a continuous,
strictly increasing, mapping v : R! R that satisÖes:

1. v (0) = 0 (reference dependence).

2. v (x) is concave for x  0 (declining sensitivity for gains).
3. v (x) is convex for x  0 (declining sensitivity for losses).

4. v (x) > v (x) for x > 0 (loss aversion).

Tversky and Kahneman (1992) propose the following utility function:

v (x) =


x if x  0

 (x) if x < 0
(5.7)

where ; ;  are constants. The coe¢cients of the power function satisfy 0 <  < 1; 0 <

 < 1.  > 1 is known as the coe¢cient of loss aversion. Tversky and Kahneman (1992)
assert (but do not prove) that the axiom of preference homogeneity ((x; p)  y ) (kx; p) 
ky) generates this value function. al-Nowaihi et al. (2008) give a formal proof, as well

as some other results (e.g. that  is necessarily identical to ). Tversky and Kahneman

(1992) estimated that  '  ' 0:88 and  ' 2:25. The reader can visually check the

properties listed in deÖnition 21 for the utility function, (5.7), plotted in Ögure 5.1 for the

case: 
v(x) =

p
x if x  0

2:5
p
x if x < 0

(5.8)
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Figure 5.1: The utility function under CCP for the case in (5.8)

5.2.2. Construction of decision weights under CP

Let w(p) be a PWF, such as the Prelec PWF in DeÖnition 8. We could have di§erent

weighting functions for the domain of gains and losses, respectively, w+ (p) and w (p).

However, we make the empirically founded assumption that w+ (p) = w (p); see Prelec

(1998).

DeÖnition 22 (Tversky and Kahneman, 1992). For CP, the decision weights, i, are
deÖned as follows:

Domain of Gains Domain of Losses
n = w (pn) m = w (pm)
n1 = w (pn1 + pn) w (pn) ::: m+1 = w (pm + pm+1) w (pm) :::
i = w


nj=i pj


 w


nj=i+1 pj


::: j = w


ji=m pi


 w


j1i=m pi


:::

1 = w

nj=1 pj


 w


nj=2 pj


1 = w


1i=m pi


 w


2i=m pi



5.2.3. The objective function under prospect theory

As in EU, a decision maker using CP maximizes a well deÖned objective function, called

the value function, which we now deÖne.

DeÖnition 23 (The value function under CP) The value of the prospect, LP , to the deci-
sion maker is given by

V (LP ) = 
n
i=miv (xi) . (5.9)
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↵ > 0 : degree of risk aversion in gains

� > 0 : degree of risk seeking in losses

� > 0 : degree of loss aversion

v(x) =

(
x

↵
x � 0

��(�x)� x < 0

(*) Note: reference point depends on context, so may be changed

(*)



Plots: Utility function (PT value function) for various parameters

alpha = 
0.25, 0.5, 
1, 2, 4 
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