Modelling:

Mathematics as bridge between theory \& application

"The instrument that mediates between theory and practice, between thought and observation, is mathematics; it builds the connecting bridge and makes it stronger and stronger. Thus it happens that our entire present-day culture, insofar as it rests on intellectual insight into and harnessing of nature, is founded on mathematics."

David Hilbert

In Königsberg on 8 September 1930, David Hilbert addressed the yearly meeting of the Society of German Natural Scientists and Physicians (Gesellschaft der Deutschen Naturforscher und Ärzte). Generally regarded as the world's leading mathematician at the time, Hilbert was born and educated in Königsberg and spent the early years of his career there.
Full text of the speech in English and German at url below, including audio file:
http://math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.pdf

Which of the following options do you prefer?

- 25% chance to win $\$ 30$
- $\quad 20 \%$ chance to win $\$ 45$

Which of the following options do you prefer?
_ a sure win of $\$ 30$
_ 80% chance to win $\$ 45$

In the first stage, there is a 75% chance to end the game without winning anything, and a 25% chance to move into the second stage. If you reach the second stage you have a choice:
_ a sure win of $\$ 30$

- 80% chance to win $\$ 45$

Your choice must be made before the game starts.

Heuristics \& biases: Framing of contingencies

Build mathematical models describing and predicting the observed behaviour of humans with respect to lotteries.

Paper TK'I98I:
Amos Tversky; Daniel Kahneman, The Framing of Decisions and the Psychology of Choice, Science, New Series,Vol. 2 I I, No. 448I. (Jan. 30, I98I), pp. 453-458.

Problem $7[\mathrm{~N}=81]$: Which of the following options do you prefer?
E. 25% chance to win $\$ 30$ [42 percent]
P. 20% chance to win $\$ 45$ [58 percent]

Problem 7 [$\mathrm{N}=81$]: Which of the following options do you prefer?
E. 25% chance to win $\$ 30$ [42 percent]
[Expectation: \$7.5]
P. 20% chance to win $\$ 45$ [58 percent]

Problem 5 [$\mathrm{N}=77$]: Which of the following options do you prefer?
A. a sure win of $\$ 30$ [78 percent]
B. 80% chance to win $\$ 45$ [22 percent]
[Expectation: \$36]

Preferences reversed.

Explanation: Certainty effect

Amos Tversky; Daniel Kahneman, The Framing of Decisions and the Psychology of Choice, Science, New Series, Vol. 2 II, No. 448I. (Jan. 30, I98I), pp. 453-458.

What about Warwick ST222 students?

Add a "no preference" option for half of the group

Question 11

You are being offered to play a game. Which of the following options do you prefer?
A. 25% chance to win $£ 30$
B. 20% chance to win $£ 45$

Your choice must be made before the game starts, i.e., before the outcome of the first stage is known. Please indicate the option you prefer.

Game A Game B No preference

ST222’14@Warwick:
Original question
36\% prefer Option A
64\% prefer Option B
Modified question (incl. "no pref.") 26\% prefer Option A 68\% prefer Option B
6\% had no preference

```
> Numa<-sum(a)-1
> Numb<-sum(b)-2
>
> sum(D[a,n]=="a", na.rm=T)/Numa
[1] 0.36
> sum(D[a,n]=="b", na.rm=T)/Numa
[1] 0.64
> sum(D[a,n]=="n", na.rm=T)/Numa
[1] 0
>
> sum(D[b,n]=="a", na.rm=T)/Numb
[1] 0.2553191
> sum(D[b,n]=="b", na.rm=T)/Numb
[1] 0.6808511
> sum(D[b,n]=="n", na.rm=T)/Numb
[1] 0.06382979
```

Confirming original study (initial study: 42\%, 58\%), preferences even more pronounced.

In this example the "no preference" option turns out to be not very relevant.

Problem 7 [$\mathrm{N}=81$]: Which of the following options do you prefer?
E. 25% chance to win $\$ 30$ [42 percent]
[Expectation: \$7.5]
P. 20% chance to win $\$ 45$ [58 percent]
[Expectation: \$9.0]

Problem 5 [$\mathrm{N}=77$]: Which of the following options do you prefer?
A. a sure win of $\$ 30$ [78 percent]
[Expectation: \$30]
B. 80% chance to win $\$ 45$ [22 percent]
[Expectation: \$36]

Problem $6[\mathrm{~N}=85]$: In the first stage, there is a 75% chance to end the game without winning anything, and a 25% chance to move into the second stage. If you reach the second stage you have a choice:
C. a sure win of $\$ 30$
D. 80% chance to win $\$ 45$???
[Expectation: \$7.5]
[Expectation: \$9.0]
Your choice must be made before the game starts.

Problem $7[\mathrm{~N}=81]$: Which of the following options do you prefer?
E. 25% chance to win $\$ 30$ [42 percent]
[Expectation: \$7.5]
P. 20% chance to win $\$ 45$ [58 percent]
[Expectation: \$9.0]

Problem $5[\mathrm{~N}=77]$: Which of the following options do you prefer?
A. a sure win of $\$ 30$ [78 percent]
B. 80% chance to win $\$ 45$ [22 percent]
[Expectation: \$30]
[Expectation: \$36]

Problem $6[\mathrm{~N}=85]$: In the first stage, there is a 75% chance to end the game without winning anything, and a 25% chance to move into the second stage. If you reach the second stage you have a choice:
C. a sure win of $\$ 30$ [74 percent]
D. 80% chance to win $\$ 45$ [26 percent]
[Expectation: \$7.5]
[Expectation: \$9.0]

Your choice must be made before the game starts.

Interpretation

P5: Majority subject to certainty effect.
P6:While certainty is removed in compound bet, most people maintain same preferences.
P7: For the majority, preferences are reversed and now follow EUT.

Problem $7[\mathrm{~N}=81]$: Which of the following options do you prefer? E. 25% chance to win $\$ 30$ [42 percent] P. 20% chance to win $\$ 45$ [58 percent]

Problem $5[\mathrm{~N}=77]$: Which of the following options do you prefer? A. a sure win of $\$ 30$ [78 percent]
B. 80% chance to win $\$ 45$ [22 percent]

Problem $6[\mathrm{~N}=85]$: In the first stage, there is a 75% chance to end the game without winning anything, and a 25% chance to move into the second stage. If you reach the second stage you have a choice:
C. a sure win of $\$ 30$ [74 percent]
D. 80% chance to win $\$ 45$ [26 percent]

Your choice must be made before the game starts.
[Expectation: \$30]
[Expectation: \$36]

Interpretation:

ST222'15@Warwick has about the same preferences in P6 as in P5, and different from P7, all consistent with the preferences expressed by TK'I98I subjects.
In all problems, ST222'I5@Warwick are more likely than TK'I98I to choose the option with the higher expectation, suggesting more of them are following EUT.

Discussion: Rationality concepts in K\&T's work

- The work of Kahneman and Tversky (1960s to present) is largely based on the understanding that people would apply EUT.
- Alternative theories (e.g. regret theory, maximin etc) lead to other answers. People who apply them can still do so for rational reasons. They just have different priorities (e.g. in problem 5 ensuring to win at least something is more important than maximising the gain).
- However, K \& T did not equate rationality with the application of EUT.
- The point they are making in e.g.TK'I98I is that people's behaviour is inconsistent with the respect to the question of application of EUT: While Problems 6 and 7 are mathematically equivalent, the subjects behaved differently. In Problem 7 a majority applied EUT, but in Problem 6 a majority did not do so. Instead, they answer as if this had been Problem 5, where behaviour is governed by the certainty effect. This is remarkable, because there is actually no certainty in Problem 6 if the compound bet is see as such. Instead, subjects seem to focus on just the second step of Problem 6 accepting that the first step is out of their control.

Prospect theory: Probability weighting

Four-fold pattern of risk attitudes

regressive-intersecting the diagonal from above, asymmetric-with fixed point at about $1 / 3$, s-shaped-concave on an initial interval and convex beyond that, reflective-assigning equal weight to a given loss-probability as to a given gain-probability.

---- eq 3.5, gains data (T\&K, 1992)
---- eq 3.5, loss data (T\&K, 1992)
---.-- eq 3.6, (T\&F, 1994)
--- - eq 3.5, (W\&G, 1996)
__ compound invariance, eq. 3.1

The compound invariant form (solid line) and several empirical probability weighting functions. Estimates of the one-parameter equation (3.5) are taken from Tversky and Kahneman (1992) and Wu and Gonzalez (1996a); estimates of the two-parameter equation (3.6) are taken from Tversky and Fox (1994).

(Left) Two weighting functions that differ primarily in curvature $-w_{1}$ is relatively linear and w_{2} is almost a step function. (Right) Two weighting functions that differ primarily in elevation $-w_{1}$ overweights relative to w_{2}.

Definition: probability weighting function

Definition By a probability weighting function we mean a strictly increasing function $w:[0,1] \xrightarrow{\text { onto }}[0,1]$.

Note that a probability weighting function, w, has a unique inverse, $w^{-1}:[0,1] \xrightarrow{\text { onto }}$ $[0,1]$ and that w^{-1} is strictly increasing. Hence, w^{-1} is also a probability weighting function. Furthermore, it follows that w and w^{-1} are continuous and must satisfy $w(0)=$ $w^{-1}(0)=0$ and $w(1)=w^{-1}(1)=1$.

Plots: K\&T's probability weighting functions for range of gamma

gamma $=\operatorname{seq}(0.1,1,0.1) \quad(<0.5$ not used! $)$

gamma $=1,1.25,1.5,2,3,5$

$$
w(p)=\frac{p^{\gamma}}{\left[p^{\gamma}+(1-p)^{\gamma}\right]^{\frac{1}{\gamma}}}, 0.5 \leq \gamma<1,0 \leq p \leq 1
$$

Alternative probability weighting: Prelec function

Definition By a probability weighting function we mean a strictly increasing function $w:[0,1] \xrightarrow{\text { onto }}[0,1]$.

Note that a probability weighting function, w, has a unique inverse, $w^{-1}:[0,1] \xrightarrow{\text { onto }}$ $[0,1]$ and that w^{-1} is strictly increasing. Hence, w^{-1} is also a probability weighting function. Furthermore, it follows that w and w^{-1} are continuous and must satisfy $w(0)=$ $w^{-1}(0)=0$ and $w(1)=w^{-1}(1)=1$.

Definition
 By the Prelec function we mean the probability weighting

 function $w:[0,1] \xrightarrow{\text { onto }}[0,1]$ given by$$
w(p)=e^{-\beta(-\ln p)^{\alpha}}, \alpha>0, \beta>0
$$

Ali al-Nowaihi, Sanjit Dhami, A simple derivation of Prelec's probability weighting function, June 2005

Plots: Prelec functions for various alphas (beta=l)


```
\[
\text { alpha }=1,1.25,1.5,1.75,2,2.5,3,3.5,4,5)
\]
\(w(p)=e^{-\beta(-\ln p)^{\alpha}}, \alpha>0, \beta>0\)
\(\alpha\) curvature: convexity/concavity
\(\beta\) elevation: inflection point at \(\exp (-I)\) for beta=I
```

$$
\beta=1
$$

$$
\beta=2
$$

varying beta

Empirical evidence: Probability weighting function

Gonzalez \& Wu establish both a rationale and evidence for the shape of w :

- overweigh small probabilities (if larger than 0)
- underweigh large probabilities (if smaller than I)
- nonparametric estimation procedure for assessing the probability weighting function and value function at the level of the individual subject
- interpretation: one parameter measures how the decision maker discriminates probabilities, and the other parameter measures how attractive the decision maker views gambling

Similar estimates across the literature

FIG. 2. One-parameter weighting functions estimated by Camerer and Ho (1994), Tversky and Kahneman (1992), and Wu and Gonzalez (1996) using $w(p)=\left(p^{\beta} /\left(p^{\beta}+(1-p)^{\beta}\right)^{1 / \beta}\right)$. The parameter estimates were $.56, .61$, and .71 , respectively.

FIG. 6. Estimates of v and w for each individual participant using the nonparametric, alternating least squares algorithm. 165 gambles per subject. Error bars are $\pm 1 \mathrm{SE}$, estimated from the inverse Hessian at Steps 2 and 3. Note that value plots are scaled to each participant's own v.

FIG. 8. Same as Fig. 6 with best fitting power function for v and best fitting linear in \log odds w overlays. Note that value plots are scaled to each participant's own v.

Concepts: PT utility function (value function)

Definition (Tversky and Kahneman, 1979). A utility function, $v(x)$, is a continuous, strictly increasing, mapping $v: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies:

1. $v(0)=0$ (reference dependence).
2. $v(x)$ is concave for $x \geq 0$ (declining sensitivity for gains).
3. $v(x)$ is convex for $x \leq 0$ (declining sensitivity for losses).
4. $-v(-x)>v(x)$ for $x>0$ (loss aversion).

$$
v(x)= \begin{cases}x^{\alpha} & x \geq 0 \\ -\lambda(-x)^{\beta} & x<0\end{cases}
$$

$\alpha>0$: degree of risk aversion in gains
$\beta>0$: degree of risk seeking in losses
$\lambda>0$: degree of loss aversion
$\left(^{*}\right)$ Note: reference point depends on context, so may be changed

Plots: Utility function (PT value function) for various parameters

alpha =
$0.25,0.5$, $1,2,4$
beta = 1

