Question from class test

Question: Consider a lottery in which, with probability p you win $£ 100$ and with probability $1-p$ you lose $£ 1$. You may decide to enter or not to enter.
i. What is the maximin decision as a function of p ?
ii. What is the expected monetary value decision as a function of p ?
iii. What is the maximax decision as a function of p ?

Solution:

i.

Not to enter unless $p=1$ - then the worst possible outcome is losing nothing. If $p=1$ then the worst possible outcome of entering is to win $£ 100$ but for any other value you could lose $£ 1$.
ii.

The expected reward of buying a ticket is $100 p-1(1-p)=101 p-1$. The expected reward of not buying a ticket is 0 . The EMV decision, therefore, is to buy a ticket provided that $101 p-1>0$, in other words $p>1 / 101$.
iii.

For any $p>0$ there is a possibility of winning $£ 100$ by buying a ticket whilst the best than can happen otherwise is no loss. Consequently, provided that $p>0$ the maximax decision is to enter the lottery.

Practice question

Question: Tversky and Kahneman defined the probability weighting function

$$
w(p)=\frac{p^{\gamma}}{\left(p^{\gamma}+(1-p)^{\gamma}\right)^{1 / \gamma}} \quad(p \in[0,1])
$$

for parameters $\gamma>0$.
Show that w has the subcertainty property $\gamma \neq 1$, that is,

$$
w(p)+w(1-p)<1 \text { for all } p \in(0,1) .
$$

Note:

For $\gamma=1$ the inequality is not true, but this is the trivial case of w being the identity, so there is no probability weighting and the inequality becomes a trivial equality.

Practice question solution

$$
\begin{aligned}
w(p)+w(1-p) & =\frac{p^{\gamma}}{\left(p^{\gamma}+(1-p)^{\gamma}\right)^{1 / \gamma}}+\frac{(1-p)^{\gamma}}{\left((1-p)^{\gamma}+(1-(1-p))^{\gamma}\right)^{1 / \gamma}} \\
& =\frac{p^{\gamma}+(1-p)^{\gamma}}{\left(p^{\gamma}+(1-p)^{\gamma}\right)^{1 / \gamma}} \\
& =\left(p^{\gamma}+(1-p)^{\gamma}\right)^{(\gamma-1) / \gamma}
\end{aligned}
$$

Hence,

$$
w(p)+w(1-p)<1 \Leftrightarrow \log (w(p)+w(1-p))<0 \Leftrightarrow \frac{\gamma-1}{\gamma} \log \left(p^{\gamma}+(1-p)^{\gamma}\right)<0
$$

This is true if one of the factors is positive and the other is negative, but it turns out that this is always the case:

$$
\frac{\gamma-1}{\gamma}<0 \Leftrightarrow \gamma<1 \Leftrightarrow p \gamma+(1-p)^{\gamma}>1 \Leftrightarrow \log \left(p^{\gamma}+(1-p)^{\gamma}\right)>0
$$

