Methodology: Normative theory versus descriptive theory

Normative approaches

Subjective probability

Uncertainty, risk

Game theory Strategies, moves

Probabilistic

 judgement
Decision theory Preferences, choices

Reward
maximisation

Expected utility maximisation

Descriptive approaches

Perceived probabilities and observed processing (axioms may not hold)

Observed choice behaviour

Observed moves and motives

Methodology: Sequence of coin tosses

> Sequence \#1

T HHHHT T T T HHHHT HHHHHHHHT T THHT T HHHHHT T T T T T HHT HHT HHHT T T HT T HHHHT HT T T HT T T HHT T T T HHHHHHT T T HHT T HHHT HHHHHT T T T T HT T T HHT T HT T HHT T T HHT T T HH THHT HHT T T T T HHT HHHHHHT HT HT T HT HT T HHHT T HHT HT HHHHHHHHT THT T HHHT HHT T HT T T T T T HHHT HHH

Sequence \#2
T HT HT T T HT T T T T HT HT T T HT T HHHT HHT HT HT HT T T T HHT T HHT T HHHT HHHT T HHHT T T HHHT HHHHT T T HT HT HHHHT HT T T HHHT HHT HT T T HHT H HHT HHHHT T HT HHT HHHT T T HT HHHT HHT T T HHHT T T T HHHT HT HHHHT H T.T HHT T T T HT HT HT T HT HHT T HT T THT T T T HHHHT HT HHHT T HHHHHT HH

One of these sequences was generated by a sequence of coin tosses, the other one was generated by students being told to write down a sequence generated by coin tosses.
Which one is the sequence generated by coin tosses?

Methodology: Sequence of coin tosses

$$
\text { Sequence \# } 1
$$

T HHHHT T T T HHHHT HHHHHHHHT T THHT T HHHHHT T T T T T HHT HHT HHHT T T HT T HHHHT HT T T HT T T HHT T T T HHHHHHT T T HHT T HHHT HHHHHT T T T T HT T T HHT T HT T HHT T T HHT T T HH THHT HHT T T T T HHT HHHHHHT HT HT T HT HT T HHHT T HHT HT HHHHHHHHT THT T HHHT HHT T HT T T T T T HHHT HHH

Sequence \#2
T HT HT T T HT T T T T HT HT T T HT T HHHT HHT HT HT HT T T T HHT T HHT T HHHT HHHT T HHHT T T HHHT HHHHT T T HT HT HHHHT HT T T HHHT HHT HT T T HHT H HHT HHHHT T HT HHT HHHT T T HT HHHT HHT T T HHHT T T T HHHT HT HHHHT H T.T HHT T T T HT HT HT T HT HHT T HT T THT T T T HHHHT HT HHHT T HHHHHT HH

How can you tell? Which features can you look at?

- number of heads, number of tails
- number of alternations
- numbers of runs

Methodology: Sequence of coin tosses

> Sequence \#1

T HHHHT T T T HHH T T HT T HHHHT HT T T HT T T HHT T T T HH H H H T HT T T HHT T HT T HHT T T HHT T T HH THHT HHT T T T T HHT HHHHHHT HT HT T HT HT T HHHT T HHT HT HHHHHHHHT THT T HHHT HHT T HT T T T T T HHHT HHH

Sequence \#2
T HT HT T T HT T T T T HT HT TT HT T HHHT HHT HT HT HT T T T HHT T HHT T HHH T HHHT T HHHT T T HHHT HHHHT T T HT HT HHHHT HT T T HHHT HHT HT T T HHT H HHT HHHHT T HT HHT HHHT T T HT HHHT HHT T T HHHT T T T HHHT HT HHHHT H T.T HHT T T T HT HT HT T HT HHT T HT T THT T T T HHHHT HT HHHT T HHHHHT HH

Runs of H of lengths r

H	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\# 1$	6	3	2	2	0	2
$\# 2$	11	5	1	0	0	0

Runs of T of lengths r

\mathbf{T}	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\# \#$	6	1	2	2	0	0
$\# 2$	9	4	2	0	0	0

Methodology:

Expected number of runs in a sequence of coin tosses

$X_{i}(i=1, \ldots, n) 0-1$ sequence of length n, independent and identically distributed with $P\left(X_{i}=1\right)=0.5$
$Z_{r}=$ number of runs of exactly length r in n tosses

$$
\begin{aligned}
E\left[Z_{r}\right] & =2 \cdot E\left[\sum_{i=1}^{n-r+1} 1_{\left\{X_{i}=X_{i+1}=\ldots=X_{i+r-1}=1, X_{i-1}=X_{i+r}=0\right\}}\right] \\
& =2 \cdot \sum_{i=1}^{n-r+1} P\left(X_{i}=X_{i+1}=\ldots=X_{i+r-1}=1, X_{i-1}=X_{i+r}=0\right) \\
& \approx 2 \cdot(n-r+1) P\left(X_{2}=X_{3}=\ldots=X_{r+1}=1, X_{1}=X_{r+2}=0\right) \\
& =2 \cdot(n-r+1) \cdot 2^{-(r+2)} \\
& =(n-r+1) \cdot 2^{-r-1}
\end{aligned}
$$

R <- vector (length=10)
$\mathrm{N}=200$
for $\left(r\right.$ in 1:10) $\left\{R[r]=(N-r+1)^{*} 2^{\wedge}\{-1-r\}\right\}$
> round(R, digits=1)
[1] $50.0 \quad 24.9 \quad 12.4 \quad 6.2 \quad 3.1 \quad 1.5 \quad 0.8$
$0.4 \quad 0.2 \quad 0.1$
$R<-$ vector (length=10)
$\mathrm{N}=200$
for $\left(r\right.$ in 1:10) $\left\{R[r]=(N-r+1)^{*} 2^{\wedge}\{-1-r\}\right\}$
> round(R, digits=1)
$\begin{array}{llllllll}{[1]} & 50.0 & 24.9 & 12.4 & 6.2 & 3.1 & 1.5 & 0.8\end{array}$
$0.4 \quad 0.2 \quad 0.1$
Compare with sum of the entries in the tables below

H	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	\mathbf{T}	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\# \# 1$	6	3	2	2	0	2	$\# 1$	6	1	2	2	0	0
$\# \#$	11	5	1	0	0	0	$\# 2$	9	4	2	0	0	0

Methodology:
 Distribution of the longest run

$X_{i}(i=1, \ldots, n) 0-1$ sequence of length n, independent and identically distributed with $P\left(X_{i}=1\right)=0.5$
$R_{n}=$ length of the longest run of heads in n tosses
CDF $F_{n}(x)=P\left(R_{n} \leq x\right)$
$A_{n}=$ number of sequences of length n with longest run at most x
$F_{n}=2^{-n} A_{n}$

Strategy:

- Partition the set of these sequences
- derive a recursive formula

Methodology: Distribution of the longest run

Strategy:

- Partition the set of these sequences
- derive a recursive formula

Key idea:

To see how this works, consider the case in which the longest head run consists of three heads or fewer. If $n \leq 3$ then clearly $A_{n}(3)=2^{n}$ since any outcome is a favorable one. For $n>3$, each favorable sequence begins with either T, HT, HHT, or HHHT and is followed by a string having no more than three consecutive heads. Thus

$$
A_{n}(3)=A_{n-1}(3)+A_{n-2}(3)+A_{n-3}(3)+A_{n-4}(3) \text { for } n>3
$$

Methodology: Distribution of the longest run

To see how this works, consider the case in which the longest head run consists of three heads or fewer. If $n \leq 3$ then clearly $A_{n}(3)=2^{n}$ since any outcome is a favorable one. For $n>3$, each favorable sequence begins with either T, HT, HHT, or HHHT and is followed by a string having no more than three consecutive heads. Thus

$$
A_{n}(3)=A_{n-1}(3)+A_{n-2}(3)+A_{n-3}(3)+A_{n-4}(3) \text { for } n>3 .
$$

Using the recursion, the values of $A_{n}(3)$ can easily be computed:

n	0	1	2	3	4	5	6	7	8	\cdots
$A_{n}(3)$	1	2	4	8	15	29	56	108	208	\cdots

Using the recursion, the values of $A_{n}(3)$ can easily be computed:

n	0	1	2	3	4	5	6	7	8	\cdots
$A_{n}(3)$	1	2	4	8	15	29	56	108	208	\cdots

Thus for, say, $n=8$ tosses of a fair coin, the probability is $208 / 2^{8}=0.8125$ that the longest head run has length no greater than 3 . In the general case we obtain

$$
A_{n}(x)= \begin{cases}\sum_{j=0}^{x} A_{n-1-j}(x) & \text { for } n>x \tag{1}\\ 2^{n} & \text { for } n \leq x\end{cases}
$$

Note that for $n=1,2,3, \ldots$, the number $A_{n}(1)$ of sequences of length n that contain no two consecutive heads is the ($n+2$)nd Fibonacci number.

Distribution of longest run lengths

Human perception: Coin tossing

High density in heads or tails in repeated chain tossing. If a coin toss is repeated several times and the majority of the results consists of "heads", the assumption of local representativeness will cause the observer to believe the coin is biased toward "heads".

Try yourself. If you don't have any change to toss, use the online coin flip simulator at:
https://www.random.org/coins/

