Example*) A patient has eye disease x_{1} if unable to distinguish 2 kinds of image. Before experimetation prob. a patient has this disease is p patient is presented with n such images. Given the patient has the disease x_{1} or not - atom x_{2} - the n events of the success of her guess will be independent. The prob. a normal person classiifes any of these n images correctly is 0.8.\& for a diseased person 0.5.Immediate treatment can be given (d_{1}) at a cost of $£ 1,000$ whether or not she has the disease. Alternatively treatment can be deferred $\left(d_{2}\right)$ and if $X=x_{2}$ there will be no cost. On the other hand if treatment delayed when $X=x_{1}$ treatment cost will be $£ 10,000$. Calculate the doctor's EMV strategy as a function of p, and the no. r out of n correctly classified images.

Answer

- Let R be the number of correctly classified images. Then given $X=x_{1}, R \backsim B i(n, 0.5)$ has binomial distribution whose pmf

$$
\begin{gathered}
p\left(r \mid x_{1}\right)=\binom{n}{r}(0.5)^{r}(0.5)^{n-r} \\
\text { If } X=x_{2} R \sim B i(n, 0.8), \\
p\left(r \mid x_{2}\right)=\binom{n}{r}(0.8)^{r}(0.2)^{n-r}
\end{gathered}
$$

*) from Jim Smith' lecture notes

- $L\left(d_{1}\right)$ does not depend on X so $\bar{L}\left(d_{1}\right)=£ 1,000$.
- OTOH

$$
\bar{L}\left(d_{2}\right)=10,000 \times p\left(x_{1} \mid r\right)+0 \times p\left(x_{2} \mid r\right)=10,000 \times p\left(x_{1} \mid r\right)
$$

Question How do we calculate $p\left(x_{1} \mid r\right)$?

Answer Use Bayes Rule!

$$
\begin{aligned}
p\left(x_{1} \mid r\right)= & \binom{n}{r}(0.5)^{n} p \\
= & \frac{5^{n} p}{5^{n} p+8^{r} 2^{n-r}(1-p)} \begin{aligned}
&\left.(0.8)^{r}(0.2)^{n-r}(1-p)+(0.5)^{n} p\right\} \\
& \bar{L}\left(d_{2}\right) \leq \bar{L}\left(d_{1}\right) \Leftrightarrow p\left(x_{1} \mid r\right) \leq 0.1 \Leftrightarrow \text { so delay if } \\
& 10 \frac{5^{n} p}{5^{n} p+8^{r} 2^{n-r}(1-p)} \leq 1 \\
& 10\left(5^{n} p\right) \leq 5^{n} p+8^{r} 2^{n-r}(1-p) \\
& 9\left(5^{n} p\right) \leq 8^{r} 2^{n-r}(1-p) \\
& 9\left(\left(\frac{5}{2}\right)^{n} \frac{p}{1-p}\right) \leq 4^{r} \\
&(\log 4)^{-1}\left\{\log 9+n \log 2.5+\log \frac{p}{1-p}\right\} \leq r
\end{aligned}
\end{aligned}
$$

