Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	0000000

Games

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games •0000000 0000000 0000000 0000000
What is a Gam	ıe?				
What is		 			

A *game* in mathematics is, roughly speaking, a problem in which:

- ▶ Several *agents* or *players* make 1 or more decisions.
- ▶ Each player has an objective / set of preferences.
- ▶ The outcome is influenced by the set of decisions.
- ▶ There may be additional non-deterministic uncertainty.
- ▶ The players may be in competition or they may be cooperating.
- ▶ Examples include: chess, poker, bridge, rock-paper-scissors and many others.

However, we will stick to simple two player games with each player simultaneously making a single decision.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	0000000 00000000 00000000 00000000
3371						

Simple Two Player Games

- ▶ Player 1 chooses a move for a set $D = \{d_1, \ldots, d_n\}$.
- ▶ Plater 2 chooses a move from a set $\Delta = \{\delta_1, \ldots, \delta_m\}$.
- Each player has a *payoff function*.
- If the players choose moves d_i and δ_j , then:
 - Player 1 receives reward $R(d_i, \delta_j)$.
 - Player 2 receives reward $S(d_i, \delta_j)$.
- ▶ The relationship between decisions and rewards is often shown in a payoff matrix:

	δ_1	 δ_m
d_1	$(R(d_1,\delta_1),S(d_1,\delta_1))$	 $(R(d_1, \delta_m), S(d_1, \delta_m))$
÷		:
d_n	$(R(d_n, \delta_1), S(d_n, \delta_1))$	 $(R(d_n, \delta_m), S(d_n, \delta_m))$

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000	Games 0000000 0000000 0000000 0000000
What is a Gan	ne?					
Payoff M	latrices A	gain				
	netimes usef n of the pos		0	e player's j	payoff as a	

Player 1 and player 2 have these payoff matrices:

	δ_1		δ_m
d_1	$R(d_1,\delta_1)$	• • •	$R(d_1, \delta_m)$
:			:
d_n	$R(d_n, \delta_1)$		$R(d_n, \delta_m)$
	δ_1		δ_m
d_1	$S(d_1,\delta_1)$		$S(d_1, \delta_m)$
:			÷
d_n	$S(d_n, \delta_1)$		$S(d_n, \delta_m)$

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000
What is a Gan	ıe?				

Example (Rock-Paper-Scissors)

▶ Each player picks from the same set of decisions:

$$D = \Delta = \{R, P, S\}$$

- \blacktriangleright R beats S; S beats P and P beats R
- One possible payoff matrix is:

	R	Р	S
R	(0,0)	(-1,1)	(1,-1)
Р	(1,-1)	$(0,\!0)$	(-1,1)
S	(-1,1)	(1,-1)	(0,0)

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	0000000 00000000 00000000 00000000
What is a Gan	ne?					

Example (The Prisoner's Dilemma)

▶ Again, each player picks from the same set of decisions:

 $D = \Delta = \{$ Stay Silent, Betray Partner $\}$

- ► If they both stay silent they will receive a short sentence; if they both betray one another they will get a long sentence; if only one betrays the other the traitor will be released and the other will get a long sentence.
- One possible payoff matrix is:

▶ Notice that each player wishes to minimise this payoff!

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 0000000 00000000
What is a Gan	ne?				

Example (Love Story)

• A boy and a girl must go to either of:

$$D = \Delta = \{$$
Football, Opera $\}$

- ▶ They both wish to meet one another most of all.
- ► If they don't meet, the boy would rather see the football; the girl, the opera.

► A possible payoff matrix might be:

	F	0
F	(100, 100)	(50,50)
0	(0,0)	(100,100)

Introduction 000000000000	Probability 000000000000000000000000000000000000		$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 0000000 0000000 00000000
What is a Gau	me?					
		.1	1			

Some Features of these Examples

- ▶ The rock-paper-scissors game is *purely competitive*: any gain by one player is matched by a loss by the other player.
- ▶ The RPS and PD problems are symmetric:

$$R(d,\delta) = S(\delta,d)$$

[Note that this makes sense as $D = \Delta$]

► $D = \Delta$ in all three of these examples, but it isn't always the case.

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 000000000000	Games 00000000 00000000 00000000 00000000
What is a Gan	ıe?					
Uncertai	nty in Ga	lmes				
As the is unce	players don ⁵ rtainty.	't know wł	nat action t	he other w	vill take, the	ere

- ▶ Thankfully, the Bayesian interpretation of probability allows them to encode their uncertainty in a probability distribution.
- ▶ Player 1 has a probability mass function p over the actions that player 2 can take, Δ .
- Player 2 has a probability mass function q over the actions that player 1 can take, denoted D.

Introduction 00000000000	Probability 00000000000 00000000 000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 00000000 0000000 00000000 00000000
What is a Gan	ne?				

Expected Rewards

Just as in a decision problem, we can think about expected rewards:

For player 1, the expected reward of move d_i is:

1

k

$$\bar{R}(d_i) = \mathbb{E} \left[R(d_i, \delta_j) \right]$$
$$= \sum_{j=1}^m q(\delta_j) R(d_i, \delta_j)$$

▶ Whilst, for player 2, we have

$$\bar{S}(\delta_j) = \mathbb{E} \left[S(d_i, \delta_j) \right]$$
$$= \sum_{i=1}^n p(d_i) S(d_i, \delta_j)$$

Introduction 00000000000	000000000000000000000000000000000000000	citation Condi 0 000000 0000000 000000 0000000 000000		000000	0000000				
What is a Gan	What is a Game?								
a t		, •							

Some Interesting Questions

- ▶ When can a player act without considering what the opponent will do? i.e. When is player 1's strategy independent of *p* or player 2's of *q*?
- ▶ When *p* or *q* is important, how can rationality of the opponent help us to elicit them?
- ▶ What are the implications of this?

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games ○○○○○○○○ ○○○○○○○○ ○○○○○○○○
Separability an	d Domination				

Separable Games

If we can decompose the rewards appropriately, then there is no interaction between the players' decisions:

► A game is *separable* if:

$$R(d,\delta) = r_1(d) + r_2(\delta)$$

$$S(d,\delta) = s_1(d) + s_2(\delta)$$

 Here, the effect of the other player's act on a player's reward doesn't depend on their own decision:

$$\bar{R}(d_i) = r_1(d_i) + \sum_{j=1}^m q(\delta_j) r_2(\delta_j)$$
$$\bar{S}(\delta_j) = \sum_{i=1}^n p(d_i) r_1(d_i) + r_2(\delta_j)$$

Introduction 00000000000	Probability 00000000000 00000000 000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 000000000000000000	
Separability and Domination							

Strategy in Separable Games

- Player 1's strategy should depend only upon r₁ as the decision they make doesn't alter the reward from r₂.
- Player 2's strategy should depend only upon s₂ as the decision they make doesn't alter the reward from s₁.
- ▶ So, player 1 should choose a strategy from the set:

$$D^{\star} = \{ d^{\star} : r_1(d^{\star}) \ge r_1(d_i) \quad i = 1, \dots, n \}$$

▶ And player 2 from:

$$\Delta^{\star} = \{\delta^{\star} : s_2(\delta^{\star}) \ge s_2(\delta_j) \quad j = 1, \dots, m\}$$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	0000000 0000000 00000000

Separability and Domination

The Prisoner's Dilemma is a Separable Game

- Let $r_1(S) = 0$ and $r_1(B) = 1$.
- Let $r_2(S) = -1$ and $r_2(B) = -5$.
- Now, $R(d, \delta) = r_1(d) + r_2(\delta)$.
- And $D^* = \{B\}$.
- Similarly for the second player, $\Delta^* = \{B\}$.
- ▶ This is the so-called paradox of the prisoner's dilemma: both players acting rationally and independently leads to the worst possible solution!

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 00000000 000000000000000000000000000
Separability ar	nd Domination				

Rationality and Games

As in decision theory, a rational player should maximise their expected utility. We will generally assume that utility is equal to payoff; no greater complications arise if this is not the case.

• For a given pmf q, player 1 has:

$$\bar{R}(d_i) = \sum_{j=1}^m R(d_i, \delta_j) q(\delta_j)$$

• Whilst for given p, player 2 has:

$$\bar{S}(\delta_j) = \sum_{i=1}^n S(d_i, \delta_j) p(d_i)$$

- We want p and q to be consistent with the assumption that the opponent is rational.
- ▶ We assume, that rationality of all players is common knowledge.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Separability and Domination

:

Common Knowledge: A Psychological Infinite Regress

In the theory of games the phrase *common knowledge* has a very specific meaning.

- ▶ Common knowledge is known by all players.
- ▶ That common knowledge is known by all players is known by all players.
- That common knowledge is common to all players is known by all players
- More compactly: common knowledge is something that is known by all players and the fact that this thing is known by all players is itself common knowledge.
- ▶ This is an example of an infinite regress.

Introduction 00000000000	$\begin{array}{c} \mathbf{Probability}\\ 000000000000000000000000000000000000$		$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 000000000 000000000 00000000	
Separability and Domination							

Domination

▶ A move d^* is said to dominate all other strategies if:

$$\forall d_i \neq d^*, j: \qquad R(d^*, \delta^j) \ge R(d_i, \delta_j)$$

▶ It is said to *strictly dominate* those strategies if:

$$\forall d_i \neq d^\star, j: \qquad R(d^\star, \delta^j) > R(d_i, \delta_j)$$

• A move d' is said to be *dominated* if:

 $\exists i \text{ such that } d_i \neq d' \text{ and } \forall j : R(d', \delta_j) \leq R(d_i, \delta_j)$

▶ It is said to be *strictly dominated* if:

 $\exists i \text{ such that } d_i \neq d' \text{ and } \forall j : R(d', \delta_j) < R(d_i, \delta_j)$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Separability and Domination

Theorem (Dominant Moves Should be Played)

If a game has a payoff matrix such that player 1 has a dominant strategy, d^* then the optimal move for player 1 is d^* irrespective of q. Proof:

▶ Player 1 is rational and hence seeks the d_i which maximises

$$\sum_{j} R(d_i, \delta_j) q(d_j)$$

► Domination tells us that $\forall i, j : R(d^*, \delta_j) \ge R(d_i, \delta_j)$

► And hence, that:

$$\sum_{j} R(d^{\star}, \delta_j) q(d_j) \ge \sum_{j} R(d_i, \delta_j) q(d_j)$$

A gipsilan negulta holda for player 9

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Concerch 114	ad Damination					

Rationality and Domination

If rationality is common knowledge and d^* is a strictly dominant strategy for player 1 then:

- ▶ Player 1, being rational, plays move d^{\star} .
- ▶ Player 2, knows that player 1 is rational, and hence knows that he will play move *d*^{*}.
- Player 2 can exploit this knowledge to play the optimal move given that player 1 will play d*.
- ▶ Player 2 plays moves δ^* with δ^* such that:

$$\forall j: S(d^\star, \delta^\star) \ge S(d^\star, \delta_j)$$

► If there are several possible δ^* then one may be chosen arbitrarily.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Concerch !!! to an	Domination					

Example (A game with a dominant strategy)

Consider the following payoff matrix:

	δ_1	δ_2	δ_3	δ_4
d_1	(2,-2)	(1,-1)	(10, -10)	(11,-11)
d_2	(0,0)	(-1,1)	(1, -1)	(2,-2)
d_3	(-3,3)	(-5,5)	(-1,1)	(1,-1)

- If rational, player 1 must choose d_1 .
- Player 2 knows that player 1 will choose d_1 .
- Consequently, player 2 will choose δ_2 .
- (d_1, δ_2) is known as a discriminating solution.

Introduction 00000000000	Probability 000000000000000000000000000000000000		$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000			
Separability ar	Separability and Domination								

Iterated Strict Domination

- 1. Let $D_0 = D$ and $\Delta_0 = 0$. Let t = 1
- 2. Player 1 checks D_{t-1} to see if it contains one or more strictly dominated moves. Let D'_t be the set of such moves.

3. Let
$$D_t = D_{t-1} \setminus D'_t$$
.

- 4. Player 1 checks D_{t-1} to see if it contains one or more strictly dominated strategies given that player 2 must choose a move from Δ_{t-1} . Let D'_t be the set of these strategies. Let $D_t = D_{t-1} \setminus D'_t$.
- 5. Player 2 updates Δ_{t-1} in the same way noting that player 1 must choose a move from D_t .
- 6. If $|D_t| = |\Delta_t| = 1$ then the game is solved.
- 7. If $|D_t| < |D_{t-1}|$ or $|\Delta_t| < |\Delta_{t-1}|$ let t = t + 1 and goto 2.
- 8. Otherwise, we have reduced the game to the simplest form we can by this method.

Introduction 00000000000	Probability 0000000000 00000000 0000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 00000000 000000000000000000000000000
Separability ar	nd Domination				

Example (Iterated Elimination of Dominated Strategies)

Consider a game with the following payoff matrix:

	L	\mathbf{C}	\mathbf{R}
Т	(4,3)	(5,1)	(6,2)
Μ	(2,1)	(8,4)	$(3,\!6)$
В	$(3,\!0)$	$(9,\!6)$	(2,8)

Look first at player 2's strategies...

Introduction 00000000000	Probability 0000000000 00000000 0000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000
Separability a	nd Domination				

Example (Iterated Elimination of Dominated Strategies)

C is strictly dominated by R, leading to:

	L	R
Т	(4,3)	(6,2)
Μ	(2,1)	$(3,\!6)$
В	(3,0)	(2,8)

Player 1 knows that player 2 won't play C...

0000000 000000000000000000000000000000							
Separability and Domination							

Example (Iterated Elimination of Dominated Strategies) Conditionally, both M and B are dominated by T:

Player 2 knows that player 1 will play T and so, they play L. Again, we have a deterministic "solution".

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games	
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000	
Zero-Sum Games							

Purely Competitive Games

- ▶ In a purely competitive game, one players reward is improved only at the cost of the other player.
- ► This means, that if $R(d', \delta) = R(d, \delta) + x$ then $S(d', \delta) = S(d, \delta) x$.
- Hence $R(d', \delta) + S(d', \delta) = R(d, \delta) + S(d, \delta)$.
- The sum over all players' rewards is the same for all sets of moves.
- ▶ It doesn't change the domination structure or the ordering of expected rewards if we add a constant to all rewards.
- Hence, any purely competitive game is equivalent to a game in which:

$$\forall \delta \in \Delta, d \in D: R(d, \delta) + S(d, \delta) = 0$$

a zero-sum game.

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000	Games 00000000 00000000 00000000	
Zero-Sum Games							

Payoff and Zero-Sum Games

▶ In a zero-sum game:

$$S(d_i, \delta_j) = -R(d_i, \delta_j)$$

- ▶ Hence, we need specify only one payoff.
- Payoff matrices may be simplified to specify only one reward⁶

Example (Rock-Paper-Scissors is a zero-sum game)

	R	Р	\mathbf{S}
R	0	-1	1
Р	1	0	-1
\mathbf{S}	-1	1	0

► It can be convenient to use standard matrix notation, with $M = (m_{ij})$ and $R(d_i, \delta_j) = m_{ij}$.

⁶In the two player case at least

Introduction 00000000000	Probability 00000000000 00000000 000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
Zero-Sum Gam	ies					
What if	no move i	s domin	ant?			

- ► In the RPS game, like many others, no move is dominant (or dominated) for either player.
- ▶ If either player commits themself to playing a particular move, the other play can exploit that commitment (if they knew what it was, that is).
- ▶ We need a strategy for dealing with such games.
- ▶ Perhaps the maximin approach might be useful here...

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Maximin Strategies in Zero-Sum Games

- ▶ If a player adopts a maximin strategy, he believes that the opponent will always correctly predict their move.
- ▶ This means, the opponent will choose their best possible action based upon the player's act.
- ▶ In this case, player 1's expected payoff is:

$$R_{\text{maximin}}(d_i) = \min_j R(d_i, \delta_j)$$

▶ If this is the case, then player 2's payoff is:

$$-R_{\text{maximin}}(d_i) = \max_j -R(d_i, \delta_j)$$

Hence P1 should play d^{*}_{maximin} = arg max_{d_i} min_j R(d_i, δ_j).
One could swap the two players to obtain a maximin strategy for player 2.

00000000 0000000 000000 000000 000000 0000	0000000
	0000000 0000000 0000000
Zero-Sum Games	

Example (RPS and Maximin)

- Let $M = (m_{ij})$ denote the payoff matrix for the RPS game.
- Then, $\min_j R(d_i, \delta_j) = \min_j m_{ij} = -1$ for all *i*.
- Thus any move is maximin for player 1.
- ► Player 1 expects to receive a payout of -1 whatever he does.
- ▶ If both players adopt a maximin view, then player 2 has the same expectation (by symmetry).
- ▶ How can we resolve this paradox?

Introduction 00000000000	Probability 000000000000000000000000000000000000		$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000
Zero-Sum Gam	ies					
What's (Gone Wrc	ng?				

- ▶ The players aren't using all of the information available.
- ▶ They haven't used the fact that it is a zero sum game.
- ▶ They don't have compatible beliefs:
 - ▶ If P1 believes P2 can predict their move and P2 believes that P1 can predict their move then things inevitably go wrong.
 - It cannot be common knowledge that *both* players will adopt a maximin strategy!
- ▶ If a player really believes their opponent can predict their move then they can use randomization to make their action less predictable...

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
Zero-Sum Gam	ies				
Mixed St	trategies				

- ▶ A *mixed strategy* for player 1 is a probability distribution over *D*.
- ▶ If a player has mixed strategy $\mathbf{x} = (x_1, \ldots, x_n)$ then they will play move d_i with probability x_i .
- ▶ This can be achieved using a randomization device such as a spinner to select a move.
- A *pure* strategy is a mixed strategy in which exactly one of the x_i is non-zero (and is therefore equal to 1).
- ► A similar definition applies when considering player 2.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	000000 000000 000000
Zero-Sum Gan	nes					

Expected Rewards and Mixed Strategies

What is player 1's expected reward if...

- ► Player 1 has mixed strategy \underline{x} and player 2 plays pure strategy δ_j ?
- ▶ Player 1 has pure strategy d_i and player 2 plays mixed strategy y?
- ▶ Player 1 has mixed strategy \underline{x} and player 2 has mixed strategy \underline{y} ?

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Zero-Sum Gan	nes					

In the first case, the uncertainty is player 1's own move, and his expectation is:

$$\sum_{i=1}^{n} x_i R(d_i, \delta_j)$$

In the second case, the uncertainty comes from player 2:

$$\sum_{j=1}^{m} y_j R(d_i, \delta_j)$$

Whilst both provide (independent) uncertainty in the third case:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} x_i R(d_i, \delta_j) y_j = \underline{x}^{\mathsf{T}} M \underline{y}$$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Zero-Sum Gam	ies					

Maximin Revisited

Player 1's maximin *mixed* strategy is the <u>x</u> which minimises:

$$V_1 = \max_{\underline{x}} \min_{\underline{y}} \sum_{i} \sum_{j} x_i R(d_i, \delta_j) y_j$$

Player 2's maximin *mixed* strategy is the <u>y</u> which minimises:

$$\max_{\underline{y}} \min_{\underline{x}} - \sum_{i} \sum_{j} x_{i} R(d_{i}, \delta_{j}) y_{j}$$
$$= \min_{\underline{y}} \max_{\underline{x}} \sum_{i} \sum_{j} x_{i} R(d_{i}, \delta_{j}) y_{j}$$

▶ Which leads to a payoff for player 1 of:

$$V_2 = \min_{\underline{y}} \max_{\underline{x}} \sum_i \sum_j x_i R(d_i, \delta_j) y_j$$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Zero-Sum Gam	ies					i i

Theorem (Fundamental Theorem of Zero Sum Two Player Games)

 V_1 and V_2 as defined before satisfy:

 $V_1 = V_2$

The unique value, $V = V_1 = V_2$ is known as the value of the game.

- ▶ The strategies \underline{x} and \underline{y} which achieve this value may not be unique.
- ▶ How can we find suitable strategies in general?

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000
Zero-Sum Gan	nes				

Example (Maximin in a Simple Game)

 Consider a zero sum two player game with the following payoff matrix:

	δ_1	δ_2
d_1	1	3
d_2	4	2

- ▶ With a pure strategy maximin approach:
 - P1 plays d_2 expecting P2 to play δ_2 .
 - P2 plays δ_2 expecting P1 to play d_1 .
 - ▶ P1 expects to gain 2; P2 expects to lose 3.
 - ▶ This is not consistent.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Zero-Sum Gan	nes					

▶ Consider, instead, a mixed strategy maximin approach:

- ▶ P1 plays a strategy (x, 1 x) and player 2 plays (y, 1 y).
- Player 1's expected payoff is:

$$\begin{bmatrix} x & 1-x \end{bmatrix} \begin{bmatrix} 1 & 3\\ 4 & 2 \end{bmatrix} \begin{bmatrix} y\\ 1-y \end{bmatrix} = -4(x-\frac{1}{2})(y-\frac{1}{4}) + \frac{5}{2}$$

- Player 1 seeks to maximise this for the worst possible y.
- ► As the 2nd player can control the sign of the first term, his optimal strategy is to make it vanish by choosing $x = \frac{1}{2}$.
- ► Similarly, the 2nd player wants to prevent the first player from exploiting the first term and chooses $y = \frac{1}{4}$.
- ▶ Now, the expected reward for the first player is, consistently, 2.5 as both expect the same maximin strategies to be played.
- ► *Both* players have a higher expected return than they would playing pure strategies.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Game
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	000000 000000 000000

How do we determine maximin mixed strategies?

- We need a general strategy for determining strategies \underline{x}^* and \underline{y}^* which achieve the common maximin return for player 1.
- ▶ It's straightforward (if possibly tedious) to calculate, for payoff matrix *M* the expected return for player 1 as a function of the strategies:

$$V(\underline{x},\underline{y}) = \underline{x}^{\mathsf{T}} M \underline{y}$$

▶ We then seek to obtain $\underline{x}^{\star}, y^{\star}$ such that:

$$V(\underline{x}^{\star}, \underline{y}^{\star}) = \max_{\underline{x}} \min_{\underline{y}} V(\underline{x}, \underline{y})$$

- ▶ In general, this is a problem which can be efficiently addressed by linear programming.
- If one player has only two possible decisions, however, a simple graphical method can be employed.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000

Graphical Solution, Part 1: Player 1's approach

▶ Consider a two player zero sum game with payoff matrix:

$$M = \left[\begin{array}{rrr} 2 & 3 & 11 \\ 7 & 5 & 2 \end{array} \right]$$

- Consider a mixed strategy (x, 1 x) for player 1.
- ▶ For the three pure strategies available to player 2, player 1 has expected reward:

•
$$\delta_1: 2x + 7(1-x) = 7 - 5x$$

•
$$\delta_2: 3x + 5(1-x) = 5 - 2x$$

- $\delta_3: 11x + 2(1-x) = 2 + 9x$
- ▶ For each value of x, the worst case response of player 2 is the one for which the expected reward of player 1 is minimised.
- Plotting the three lines as a function of x...

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000
Zero-Sum Gam	nes					

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

- ▶ The maximin response maximises the return in the worst case.
- ▶ In terms of our graph, this means we choose *x* to maximise the distance between the lowest of the lines and the ordinate axis.
- ► This is at the point where the lines associated with δ_2 and δ_3 intersect, at x^* which solves:

$$5 - 2x = 2 + 9x$$
$$11x = 3 \Rightarrow x^* = 3/12$$

- Hence player 1's maximin mixed strategy is (3/11, 8/11).
- ▶ Playing this, his expected return is:

$$V_1 = 2 + 9 \times 3/11 = 49/11 = 5 - 2 \times 3/11 = 49/11$$

0000000 000000000000000000000000000000	Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
							00000000 00000000 000000000

Graphical Solution, Part 2: Player 2's approach

- ▶ Player 2 only needs to consider the moves which optimally oppose player 1's maximin strategy (δ_2 and δ_3).
- They may consider a mixed strategy (0, y, 1 y).
- ▶ By the fundamental theorem, player 2's maximn strategy leads to the same expected payoff for player 1 as his own maximin strategy:

$$V_2 = V_1 = 49/11.$$

• They should play y^* to solve:

$$V_2 = 3y + 11(1 - y) = 49/11$$

8y = (121 - 49)/11 = 72/11 $\Rightarrow y^* = 9/11$

• Leading to a mixed strategy (0, 9/11, 2/11).

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions}\\ \circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\circ\\ \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 000000000000000000000000000
Zero-Sum Gan	nes				

Example (Spy Game)

- ► A spy has escaped and must choose to flee down a *river* or through a *forest*. Their guard must choose to chasse them using a *helicopter*, a pack of *dogs* or a *jeep*.
- ▶ They agree that the probabilties of escape are as given in this payoff matrix:

	Н	D	J
R	0.1	0.8	0.4
F	0.9	0.1	0.6

▶ Both players wish to adopt maximin strategies.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games	
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000	
Zero-Sum Games							

- ▶ The spy plays strategy (x, 1 x): with probability x they escape via the river; with probability 1 x they run through the forest.
- ▶ For given *x*, their probabilities of escaping for each of the guard's possible actions are:

$$p_{H} = 0.1x + 0.9(1 - x) \qquad p_{D} = 0.8x + 0.1(1 - x)$$
$$= \frac{9 - 8x}{10} \qquad = \frac{1 + 7x}{10}$$
$$p_{J} = 0.4x + 0.6(1 - x)$$
$$= \frac{6 - 2x}{10}$$

• Plotting these three lines as a function of x we obtain the following figure:

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Zero-Sum Gan	nes					

- The maximin solution is the interesection of the lines for strategies D and H.
- This occurs at the solution, x^* of:

$$p_H = p_D \Rightarrow 9 - 8x = 1 + 7x$$
$$8 = 15x \qquad \Rightarrow x^* = 8/15$$

• The value of the game is: $V = V_1 = \frac{9-8x^*}{10} = 71/150$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Zero-Sum Gam	ies					

- ▶ By the fundamental theorem of zero sum two player games, the guard needs to consider only H and D.
- Otherwise the spy's chance of escape will be better than V_1 if he plays his own maximin strategy.
- Consider a strategy (y, 1 y, 0).
- By the same theorem, $V_2 = V = V_1$, so:

$$V_2 = 0.1y^* + 0.8(1 - y^*) = 71/150$$
$$8 - 7y^* = 71/15$$
$$y^* = 7/15$$

Introduction 00000000000	Probability 0000000000000 0000000000000000000000		$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000
Zero-Sum Gam	nes					
On Zero	Sum Two) Player	Games			

- ▶ The "fundamental theorem" does not generalise to games of more than two players.
- ▶ The "fundamental theorem" does not generalise to non-zero-sum games.
- Games with an element of co-operation are much more interesting.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	0000000 0000000 0000000

A Few Useful Concepts from Game Theory

- Maximin pairs provide a "solution" concept for zero-sum games.
- ▶ Some problems arise considering non-zero-sum games:
 - ▶ Maximin pairs don't necessarily make sense any more.
 - ▶ It's not obvious what properties a solution should have.
- ▶ In general, we consider ideas of equilbrium and stability.
- ▶ Notions of optimality and equilibrium:
 - Pareto optimality.
 - Nash equilibrium.

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000	
Selected Game-Theoretic Concepts							
Pareto O	ptimality	7					

- A collection of strategies (one per player) in a game is (strongly) Pareto optimal/efficient if no change can be made which will improve one players reward without harming any other player.
- ► A collection of strategies is *weakly Pareto optimal* if no change can be made which will improve all players' rewards.
- ▶ If a collection of strategies is not Pareto optimal then at least one player could obtain a better outcome with a different collection.
- ► In a game of pure conflict, all sets of pure strategies are Pareto optimal.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games	
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000	
Selected Came-Theoretic Concepts							

Nash Equilibrium

- ▶ A collection of strategies (one per player) in a game is a *Nash equilibrium* if no player can improve their reward by unilaterally changing their strategy.
- ▶ In the two-player case, mixed strategies \underline{x} and \underline{y} comprise a Nash equilibrium if:

$$\begin{array}{ll} \forall \underline{x}' : & \bar{R}(\underline{x},\underline{y}) \geq \bar{R}(\underline{x}',\underline{y}) \\ \forall \underline{y}' : & \bar{S}(\underline{x},\underline{y}) \geq \bar{S}(\underline{x},\underline{y}') \end{array}$$

where

$$\bar{R}(\underline{x},\underline{y}) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i R(d_i,\delta_j) y_j \quad \bar{S}(\underline{x},\underline{y}) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i S(d_i,\delta_j) y_j$$

▶ If the inequality holds strictly we have a *strict Nash* equilibrium.

	Preferences	Games
0000000 00000000 000000 000000 000000 000000	000000 0000000000	00000000 00000000 00000000 00000000

Nash Equilibria in 2 Player Zero Sum Games

▶ Maximin pairs are equivalent to Nash equilibria: if \underline{x}^* and \underline{y}^* are maximin, then, by definition:

$$\begin{aligned} \forall \underline{x}' : & \bar{R}(\underline{x}^{\star}, \underline{y}^{\star}) \geq \bar{R}(\underline{x}', \underline{y}^{\star}) \\ \forall \underline{y}' : & \bar{S}(\underline{x}^{\star}, \underline{y}^{\star}) \geq \bar{S}(\underline{x}^{\star}, \underline{y}') \end{aligned}$$

A similar argument holds in the reverse direction.

- ▶ All equilibria have the same expected payoff (this follows from the fact that S = -R).
- ▶ These properties do not extend to non zero-sum games.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	0000000 0000000 0000000 0000000

Nash Equilibria and the Prisoner's Dilemma

▶ Recall the prisoner's dilemma:

- ▶ (B, B): both players betraying one another is a pure-strategy Nash equilibrium.
- ▶ (S, S): both players remaining silent is Pareto optimal: no change can be made which leads to improvement for one player and no worsening of the other player's situation.
- ▶ The (S, S) strategy set is not stable: it is not an equilibrium as either player can unilateral improve their own reward.

Introduction	Probability 000000000000000000000000000000000000	0000000000	Conditions 0000000 000000 0000000	$\begin{array}{c} \textbf{Decisions}\\ 00000000\\ 0000000\\ 00000000\\ 00000000$	Preferences 000000 00000000000	Games 00000000 00000000 00000000 00000000		
Selected Game	-Theoretic Con	cepts				r i		
Solutions	s I: The N	lash Sen	lse					
 Two pairs (<u>x</u>, <u>y</u>) and (<u>x'</u>, <u>y'</u>) are interchangeable with respect to some property if (<u>x'</u>, <u>y</u>) and (<u>x</u>, <u>y'</u>) have the same property. A game is Nash solvable if all equilibrium pairs are 								
	game is <i>Mus</i>	n sorvaore	n an equin	brium pan	is are			

- interchangeable (with respect to being equilibrium pairs).
- ▶ All zero-sum games are Nash solvable.
- ▶ Not many other games are.

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000	Games 00000000 00000000 00000000 000000000		
Selected Game-Theoretic Concepts								
Solutions II: The Strict Sense								

- A game is solvable in the strict sense if:
 - Amongst the Pareto optimal pairs there is at least one equilibrium pair.
 - ▶ The equilibrium Pareto optimal pairs are interchangeable.
- ▶ The solution to such a game is the set of equilibrium Pareto optimal pairs.
- ▶ In a zero sum game, all strategies are Pareto optimal and so this reduces to the notion of Nash solvability: all zero sum games are solvable in the strict sense.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 0000000

Solutions III: The Completely Weak Sense

- ▶ A game is *solvable in the completely weak sense* if after iterated elimination of dominated strategies, the reduced game is solvable in the strict sense.
- ▶ The solution is then the strict solution of the reduced game.
- ▶ In a zero sum game no strategies are dominated and so this reduces to the notion of solvability in the strict sense: all zero sum games are solvable in the completely weak sense.

Introduction 00000000000	Probability 000000000000000000000000000000000000		$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000		
Selected Game-Theoretic Concepts								

Solutions and the Prisoner's Dilemma

- The only equilibrium pair of this game is (B, B).
- The only Pareto optimal strategy is (S, S).
- The game is Nash Solvable, with solution (B, B).
- ▶ The game is not solvable in the strict sense: no Pareto efficient pair of strategies is an equilibrium pair.
- ▶ The game is solvable in the completely weak sense:
 - \blacktriangleright S is a dominated strategy for both players.
 - The reduced game after IEDS has a single strategy (B) for each player.
 - ► The strategy (B, B) is Pareto efficient in the reduced game (no other strategy exists).
 - (B, B) is an equilibrium pair in the reduced game.
 - The solution set is (B, B).