Games

Games

What is a Game

A game in mathematics is, roughly speaking, a problem in which:

- Several agents or players make 1 or more decisions.
- Each player has an objective / set of preferences.
- The outcome is influenced by the set of decisions.
- There may be additional non-deterministic uncertainty.
- The players may be in competition or they may be cooperating.
- Examples include: chess, poker, bridge, rock-paper-scissors and many others.
However, we will stick to simple two player games with each player simultaneously making a single decision.

Simple Two Player Games

- Player 1 chooses a move for a set $D=\left\{d_{1}, \ldots, d_{n}\right\}$.
- Plater 2 chooses a move from a set $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$.
- Each player has a payoff function.
- If the players choose moves d_{i} and δ_{j}, then:
- Player 1 receives reward $R\left(d_{i}, \delta_{j}\right)$.
- Player 2 receives reward $S\left(d_{i}, \delta_{j}\right)$.
- The relationship between decisions and rewards is often shown in a payoff matrix:

	δ_{1}	\ldots	δ_{m}
d_{1}	$\left(R\left(d_{1}, \delta_{1}\right), S\left(d_{1}, \delta_{1}\right)\right)$	\ldots	$\left(R\left(d_{1}, \delta_{m}\right), S\left(d_{1}, \delta_{m}\right)\right)$
\vdots			\vdots
d_{n}	$\left(R\left(d_{n}, \delta_{1}\right), S\left(d_{n}, \delta_{1}\right)\right)$	\ldots	$\left(R\left(d_{n}, \delta_{m}\right), S\left(d_{n}, \delta_{m}\right)\right)$

What is a Game?

Payoff Matrices Again

It's sometimes useful to consider a single player's payoff as a function of the possible decisions.
Player 1 and player 2 have these payoff matrices:

	δ_{1}	\ldots	δ_{m}
d_{1}	$R\left(d_{1}, \delta_{1}\right)$	\ldots	$R\left(d_{1}, \delta_{m}\right)$
\vdots			\vdots
d_{n}	$R\left(d_{n}, \delta_{1}\right)$	\ldots	$R\left(d_{n}, \delta_{m}\right)$
	δ_{1}	\ldots	δ_{m}
d_{1}	$S\left(d_{1}, \delta_{1}\right)$	\ldots	$S\left(d_{1}, \delta_{m}\right)$
\vdots			\vdots
d_{n}	$S\left(d_{n}, \delta_{1}\right)$	\ldots	$S\left(d_{n}, \delta_{m}\right)$

Example (Rock-Paper-Scissors)

- Each player picks from the same set of decisions:

$$
D=\Delta=\{R, P, S\}
$$

- R beats S ; S beats P and P beats R
- One possible payoff matrix is:

	R	P	S
R	$(0,0)$	$(-1,1)$	$(1,-1)$
P	$(1,-1)$	$(0,0)$	$(-1,1)$
S	$(-1,1)$	$(1,-1)$	$(0,0)$

Example (The Prisoner's Dilemma)

- Again, each player picks from the same set of decisions:

$$
D=\Delta=\{\text { Stay Silent, Betray Partner }\}
$$

- If they both stay silent they will receive a short sentence; if they both betray one another they will get a long sentence; if only one betrays the other the traitor will be released and the other will get a long sentence.
- One possible payoff matrix is:

	S	B
S	$(1,1)$	$(5,0)$
B	$(0,5)$	$(4,4)$

- Notice that each player wishes to minimise this payoff!

Example (Love Story)

- A boy and a girl must go to either of:

$$
D=\Delta=\{\text { Football, Opera }\}
$$

- They both wish to meet one another most of all.
- If they don't meet, the boy would rather see the football; the girl, the opera.
- A possible payoff matrix might be:

	F	O
F	$(100,100)$	$(50,50)$
O	$(0,0)$	$(100,100)$

Some Features of these Examples

- The rock-paper-scissors game is purely competitive: any gain by one player is matched by a loss by the other player.
- The RPS and PD problems are symmetric:

$$
R(d, \delta)=S(\delta, d)
$$

[Note that this makes sense as $D=\Delta$]

- $D=\Delta$ in all three of these examples, but it isn't always the case.

```
What is a Game?
```


Uncertainty in Games

As the players don't know what action the other will take, there is uncertainty.

- Thankfully, the Bayesian interpretation of probability allows them to encode their uncertainty in a probability distribution.
- Player 1 has a probability mass function p over the actions that player 2 can take, Δ.
- Player 2 has a probability mass function q over the actions that player 1 can take, denoted D.

Expected Rewards

Just as in a decision problem, we can think about expected rewards:

- For player 1, the expected reward of move d_{i} is:

$$
\begin{aligned}
\bar{R}\left(d_{i}\right) & =\mathbb{E}\left[R\left(d_{i}, \delta_{j}\right)\right] \\
& =\sum_{j=1}^{m} q\left(\delta_{j}\right) R\left(d_{i}, \delta_{j}\right)
\end{aligned}
$$

- Whilst, for player 2, we have

$$
\begin{aligned}
\bar{S}\left(\delta_{j}\right) & =\mathbb{E}\left[S\left(d_{i}, \delta_{j}\right)\right] \\
& =\sum_{i=1}^{n} p\left(d_{i}\right) S\left(d_{i}, \delta_{j}\right)
\end{aligned}
$$

Some Interesting Questions

- When can a player act without considering what the opponent will do? i.e. When is player 1's strategy independent of p or player 2 's of q ?
- When p or q is important, how can rationality of the opponent help us to elicit them?
- What are the implications of this?

Separable Games

If we can decompose the rewards appropriately, then there is no interaction between the players' decisions:

- A game is separable if:

$$
\begin{aligned}
R(d, \delta) & =r_{1}(d)+r_{2}(\delta) \\
S(d, \delta) & =s_{1}(d)+s_{2}(\delta)
\end{aligned}
$$

- Here, the effect of the other player's act on a player's reward doesn't depend on their own decision:

$$
\begin{aligned}
& \bar{R}\left(d_{i}\right)=r_{1}\left(d_{i}\right)+\sum_{j=1}^{m} q\left(\delta_{j}\right) r_{2}\left(\delta_{j}\right) \\
& \bar{S}\left(\delta_{j}\right)=\sum_{i=1}^{n} p\left(d_{i}\right) r_{1}\left(d_{i}\right)+r_{2}\left(\delta_{j}\right)
\end{aligned}
$$

Strategy in Separable Games

- Player 1's strategy should depend only upon r_{1} as the decision they make doesn't alter the reward from r_{2}.
- Player 2's strategy should depend only upon s_{2} as the decision they make doesn't alter the reward from s_{1}.
- So, player 1 should choose a strategy from the set:

$$
D^{\star}=\left\{d^{\star}: r_{1}\left(d^{\star}\right) \geq r_{1}\left(d_{i}\right) \quad i=1, \ldots, n\right\}
$$

- And player 2 from:

$$
\Delta^{\star}=\left\{\delta^{\star}: s_{2}\left(\delta^{\star}\right) \geq s_{2}\left(\delta_{j}\right) \quad j=1, \ldots, m\right\}
$$

The Prisoner's Dilemma is a Separable Game

- Let $r_{1}(S)=0$ and $r_{1}(B)=1$.
- Let $r_{2}(S)=-1$ and $r_{2}(B)=-5$.
- Now, $R(d, \delta)=r_{1}(d)+r_{2}(\delta)$.
- And $D^{\star}=\{B\}$.
- Similarly for the second player, $\Delta^{\star}=\{B\}$.
- This is the so-called paradox of the prisoner's dilemma: both players acting rationally and independently leads to the worst possible solution!

Rationality and Games

As in decision theory, a rational player should maximise their expected utility. We will generally assume that utility is equal to payoff; no greater complications arise if this is not the case.

- For a given pmf q, player 1 has:

$$
\bar{R}\left(d_{i}\right)=\sum_{j=1}^{m} R\left(d_{i}, \delta_{j}\right) q\left(\delta_{j}\right)
$$

- Whilst for given p, player 2 has:

$$
\bar{S}\left(\delta_{j}\right)=\sum_{i=1}^{n} S\left(d_{i}, \delta_{j}\right) p\left(d_{i}\right)
$$

- We want p and q to be consistent with the assumption that the opponent is rational.
- We assume, that rationality of all players is common knowledge.

Common Knowledge: A Psychological Infinite Regress

In the theory of games the phrase common knowledge has a very specific meaning.

- Common knowledge is known by all players.
- That common knowledge is known by all players is known by all players.
- That common knowledge is common to all players is known by all players
- More compactly: common knowledge is something that is known by all players and the fact that this thing is known by all players is itself common knowledge.
- This is an example of an infinite regress.

Domination

- A move d^{\star} is said to dominate all other strategies if:

$$
\forall d_{i} \neq d^{\star}, j: \quad R\left(d^{\star}, \delta^{j}\right) \geq R\left(d_{i}, \delta_{j}\right)
$$

- It is said to strictly dominate those strategies if:

$$
\forall d_{i} \neq d^{\star}, j: \quad R\left(d^{\star}, \delta^{j}\right)>R\left(d_{i}, \delta_{j}\right)
$$

- A move d^{\prime} is said to be dominated if:
$\exists i$ such that $d_{i} \neq d^{\prime}$ and $\forall j: R\left(d^{\prime}, \delta_{j}\right) \leq R\left(d_{i}, \delta_{j}\right)$
- It is said to be strictly dominated if:
$\exists i$ such that $d_{i} \neq d^{\prime}$ and $\forall j: R\left(d^{\prime}, \delta_{j}\right)<R\left(d_{i}, \delta_{j}\right)$

Theorem (Dominant Moves Should be Played)

If a game has a payoff matrix such that player 1 has a dominant strategy, d^{\star} then the optimal move for player 1 is d^{\star} irrespective of q.
Proof:

- Player 1 is rational and hence seeks the d_{i} which maximises

$$
\sum_{j} R\left(d_{i}, \delta_{j}\right) q\left(d_{j}\right)
$$

- Domination tells us that $\forall i, j: \quad R\left(d^{\star}, \delta_{j}\right) \geq R\left(d_{i}, \delta_{j}\right)$
- And hence, that:

$$
\sum_{j} R\left(d^{\star}, \delta_{j}\right) q\left(d_{j}\right) \geq \sum_{j} R\left(d_{i}, \delta_{j}\right) q\left(d_{j}\right)
$$

Rationality and Domination

If rationality is common knowledge and d^{\star} is a strictly dominant strategy for player 1 then:

- Player 1, being rational, plays move d^{\star}.
- Player 2, knows that player 1 is rational, and hence knows that he will play move d^{\star}.
- Player 2 can exploit this knowledge to play the optimal move given that player 1 will play d^{\star}.
- Player 2 plays moves δ^{\star} with δ^{\star} such that:

$$
\forall j: S\left(d^{\star}, \delta^{\star}\right) \geq S\left(d^{\star}, \delta_{j}\right)
$$

- If there are several possible δ^{\star} then one may be chosen arbitrarily.

Example (A game with a dominant strategy)
Consider the following payoff matrix:

	δ_{1}	δ_{2}	δ_{3}	δ_{4}
d_{1}	$(2,-2)$	$(1,-1)$	$(10,-10)$	$(11,-11)$
d_{2}	$(0,0)$	$(-1,1)$	$(1,-1)$	$(2,-2)$
d_{3}	$(-3,3)$	$(-5,5)$	$(-1,1)$	$(1,-1)$

- If rational, player 1 must choose d_{1}.
- Player 2 knows that player 1 will choose d_{1}.
- Consequently, player 2 will choose δ_{2}.
- $\left(d_{1}, \delta_{2}\right)$ is known as a discriminating solution.

Iterated Strict Domination

1. Let $D_{0}=D$ and $\Delta_{0}=0$. Let $\mathrm{t}=1$
2. Player 1 checks D_{t-1} to see if it contains one or more strictly dominated moves. Let D_{t}^{\prime} be the set of such moves.
3. Let $D_{t}=D_{t-1} \backslash D_{t}^{\prime}$.
4. Player 1 checks D_{t-1} to see if it contains one or more strictly dominated strategies given that player 2 must choose a move from Δ_{t-1}. Let D_{t}^{\prime} be the set of these strategies. Let $D_{t}=D_{t-1} \backslash D_{t}^{\prime}$.
5. Player 2 updates Δ_{t-1} in the same way noting that player 1 must choose a move from D_{t}.
6. If $\left|D_{t}\right|=\left|\Delta_{t}\right|=1$ then the game is solved.
7. If $\left|D_{t}\right|<\left|D_{t-1}\right|$ or $\left|\Delta_{t}\right|<\left|\Delta_{t-1}\right|$ let $t=t+1$ and goto 2 .
8. Otherwise, we have reduced the game to the simplest form we can by this method.

Example (Iterated Elimination of Dominated Strategies)
Consider a game with the following payoff matrix:

	L	C	R
T	$(4,3)$	$(5,1)$	$(6,2)$
M	$(2,1)$	$(8,4)$	$(3,6)$
B	$(3,0)$	$(9,6)$	$(2,8)$

Look first at player 2's strategies. . .

Example (Iterated Elimination of Dominated Strategies)
C is strictly dominated by R , leading to:

	L	R
T	$(4,3)$	$(6,2)$
M	$(2,1)$	$(3,6)$
B	$(3,0)$	$(2,8)$

Player 1 knows that player 2 won't play C. . .

Example (Iterated Elimination of Dominated Strategies)

Conditionally, both M and B are dominated by T :

	L	R
T	$(4,3)$	$(6,2)$

Player 2 knows that player 1 will play T and so, they play L. Again, we have a deterministic "solution".

Purely Competitive Games

- In a purely competitive game, one players reward is improved only at the cost of the other player.
- This means, that if $R\left(d^{\prime}, \delta\right)=R(d, \delta)+x$ then $S\left(d^{\prime}, \delta\right)=S(d, \delta)-x$.
- Hence $R\left(d^{\prime}, \delta\right)+S\left(d^{\prime}, \delta\right)=R(d, \delta)+S(d, \delta)$.
- The sum over all players' rewards is the same for all sets of moves.
- It doesn't change the domination structure or the ordering of expected rewards if we add a constant to all rewards.
- Hence, any purely competitive game is equivalent to a game in which:

$$
\forall \delta \in \Delta, d \in D: R(d, \delta)+S(d, \delta)=0
$$

a zero-sum game.

Payoff and Zero-Sum Games

- In a zero-sum game:

$$
S\left(d_{i}, \delta_{j}\right)=-R\left(d_{i}, \delta_{j}\right)
$$

- Hence, we need specify only one payoff.
- Payoff matrices may be simplified to specify only one reward ${ }^{6}$

Example (Rock-Paper-Scissors is a zero-sum game)

	R	P	S
R	0	-1	1
P	1	0	-1
S	-1	1	0

- It can be convenient to use standard matrix notation, with $M=\left(m_{i j}\right)$ and $R\left(d_{i}, \delta_{j}\right)=m_{i j}$.

What if no move is dominant?

- In the RPS game, like many others, no move is dominant (or dominated) for either player.
- If either player commits themself to playing a particular move, the other play can exploit that commitment (if they knew what it was, that is).
- We need a strategy for dealing with such games.
- Perhaps the maximin approach might be useful here...

Maximin Strategies in Zero-Sum Games

- If a player adopts a maximin strategy, he believes that the opponent will always correctly predict their move.
- This means, the opponent will choose their best possible action based upon the player's act.
- In this case, player 1's expected payoff is:

$$
R_{\operatorname{maximin}}\left(d_{i}\right)=\min _{j} R\left(d_{i}, \delta_{j}\right)
$$

- If this is the case, then player 2's payoff is:

$$
-R_{\operatorname{maximin}}\left(d_{i}\right)=\max _{j}-R\left(d_{i}, \delta_{j}\right)
$$

- Hence $P 1$ should play $d_{\text {maximin }}^{\star}=\arg \max _{d_{i}} \min _{j} R\left(d_{i}, \delta_{j}\right)$.
- One could swap the two players to obtain a maximin strategy for player 2.

Example (RPS and Maximin)

- Let $M=\left(m_{i j}\right)$ denote the payoff matrix for the RPS game.
- Then, $\min _{j} R\left(d_{i}, \delta_{j}\right)=\min _{j} m_{i j}=-1$ for all i.
- Thus any move is maximin for player 1.
- Player 1 expects to receive a payout of -1 whatever he does.
- If both players adopt a maximin view, then player 2 has the same expectation (by symmetry).
- How can we resolve this paradox?

What's Gone Wrong?

- The players aren't using all of the information available.
- They haven't used the fact that it is a zero sum game.
- They don't have compatible beliefs:
- If P1 believes P2 can predict their move and P2 believes that P1 can predict their move then things inevitably go wrong.
- It cannot be common knowledge that both players will adopt a maximin strategy!
- If a player really believes their opponent can predict their move then they can use randomization to make their action less predictable...

Mixed Strategies

- A mixed strategy for player 1 is a probability distribution over D.
- If a player has mixed strategy $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ then they will play move d_{i} with probability x_{i}.
- This can be achieved using a randomization device such as a spinner to select a move.
- A pure strategy is a mixed strategy in which exactly one of the x_{i} is non-zero (and is therefore equal to 1).
- A similar definition applies when considering player 2.

Expected Rewards and Mixed Strategies

What is player 1's expected reward if. . .

- Player 1 has mixed strategy \underline{x} and player 2 plays pure strategy δ_{j} ?
- Player 1 has pure strategy d_{i} and player 2 plays mixed strategy \underline{y} ?
- Player 1 has mixed strategy \underline{x} and player 2 has mixed strategy \underline{y} ?

In the first case, the uncertainty is player 1's own move, and his expectation is:

$$
\sum_{i=1}^{n} x_{i} R\left(d_{i}, \delta_{j}\right)
$$

In the second case, the uncertainty comes from player 2 :

$$
\sum_{j=1}^{m} y_{j} R\left(d_{i}, \delta_{j}\right)
$$

Whilst both provide (independent) uncertainty in the third case:

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j}=\underline{x}^{\top} M \underline{y}
$$

Maximin Revisited

- Player 1's maximin mixed strategy is the \underline{x} which minimises:

$$
V_{1}=\max _{\underline{x}} \min _{\underline{y}} \sum_{i} \sum_{j} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j}
$$

- Player 2's maximin mixed strategy is the \underline{y} which minimises:

$$
\begin{aligned}
& \max _{\underline{y}} \min _{\underline{x}}-\sum_{i} \sum_{j} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j} \\
= & \min _{\underline{y}} \max _{\underline{x}} \sum_{i} \sum_{j} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j}
\end{aligned}
$$

- Which leads to a payoff for player 1 of:

$$
V_{2}=\min _{\underline{y}} \max _{\underline{x}} \sum_{i} \sum_{j} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j}
$$

Theorem (Fundamental Theorem of Zero Sum Two Player Games)

V_{1} and V_{2} as defined before satisfy:

$$
V_{1}=V_{2}
$$

The unique value, $V=V_{1}=V_{2}$ is known as the value of the game.

- The strategies \underline{x} and \underline{y} which achieve this value may not be unique.
- How can we find suitable strategies in general?

Example (Maximin in a Simple Game)

- Consider a zero sum two player game with the following payoff matrix:

	δ_{1}	δ_{2}
d_{1}	1	3
d_{2}	4	2

- With a pure strategy maximin approach:
- P1 plays d_{2} expecting P2 to play δ_{2}.
- P2 plays δ_{2} expecting P1 to play d_{1}.
- P1 expects to gain 2; P2 expects to lose 3.
- This is not consistent.

Example

- Consider, instead, a mixed strategy maximin approach:
- P1 plays a strategy $(x, 1-x)$ and player 2 plays $(y, 1-y)$.
- Player 1's expected payoff is:

$$
\left[\begin{array}{ll}
x & 1-x
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right]\left[\begin{array}{c}
y \\
1-y
\end{array}\right]=-4\left(x-\frac{1}{2}\right)\left(y-\frac{1}{4}\right)+\frac{5}{2}
$$

- Player 1 seeks to maximise this for the worst possible y.
- As the 2nd player can control the sign of the first term, his optimal strategy is to make it vanish by choosing $x=\frac{1}{2}$.
- Similarly, the 2nd player wants to prevent the first player from exploiting the first term and chooses $y=\frac{1}{4}$.
- Now, the expected reward for the first player is, consistently, 2.5 as both expect the same maximin strategies to be played.
- Both players have a higher expected return than they would playing pure strategies.

How do we determine maximin mixed strategies?

- We need a general strategy for determining strategies \underline{x}^{\star} and \underline{y}^{\star} which achieve the common maximin return for player 1.
- It's straightforward (if possibly tedious) to calculate, for payoff matrix M the expected return for player 1 as a function of the strategies:

$$
V(\underline{x}, \underline{y})=\underline{x}^{\top} M \underline{y}
$$

- We then seek to obtain $\underline{x}^{\star}, \underline{y}^{\star}$ such that:

$$
V\left(\underline{x}^{\star}, \underline{y}^{\star}\right)=\max _{\underline{x}} \min _{\underline{y}} V(\underline{x}, \underline{y})
$$

- In general, this is a problem which can be efficiently addressed by linear programming.
- If one player has only two possible decisions, however, a simple graphical method can be employed.

Graphical Solution, Part 1: Player 1's approach

- Consider a two player zero sum game with payoff matrix:

$$
M=\left[\begin{array}{ccc}
2 & 3 & 11 \\
7 & 5 & 2
\end{array}\right]
$$

- Consider a mixed strategy $(x, 1-x)$ for player 1.
- For the three pure strategies available to player 2, player 1 has expected reward:
- $\delta_{1}: 2 x+7(1-x)=7-5 x$
- $\delta_{2}: 3 x+5(1-x)=5-2 x$
- $\delta_{3}: 11 x+2(1-x)=2+9 x$
- For each value of x, the worst case response of player 2 is the one for which the expected reward of player 1 is minimised.
- Plotting the three lines as a function of $x \ldots$

Conditions

Preferences

Games

Zero-Sum Games

- The maximin response maximises the return in the worst case.
- In terms of our graph, this means we choose x to maximise the distance between the lowest of the lines and the ordinate axis.
- This is at the point where the lines associated with δ_{2} and δ_{3} intersect, at x^{\star} which solves:

$$
\begin{aligned}
5-2 x & =2+9 x \\
11 x & =3 \Rightarrow x^{\star}=3 / 11
\end{aligned}
$$

- Hence player 1's maximin mixed strategy is $(3 / 11,8 / 11)$.
- Playing this, his expected return is:

$$
V_{1}=2+9 \times 3 / 11=49 / 11=\quad 5-2 \times 3 / 11=49 / 11
$$

Graphical Solution, Part 2: Player 2's approach

- Player 2 only needs to consider the moves which optimally oppose player 1's maximin strategy (δ_{2} and δ_{3}).
- They may consider a mixed strategy $(0, y, 1-y)$.
- By the fundamental theorem, player 2's maximn strategy leads to the same expected payoff for player 1 as his own maximin strategy:

$$
V_{2}=V_{1}=49 / 11
$$

- They should play y^{\star} to solve:

$$
\begin{aligned}
V_{2}=3 y+11(1-y) & =49 / 11 \\
8 y & =(121-49) / 11=72 / 11 \Rightarrow y^{\star}=9 / 11
\end{aligned}
$$

- Leading to a mixed strategy $(0,9 / 11,2 / 11)$.

Example (Spy Game)

- A spy has escaped and must choose to flee down a river or through a forest. Their guard must choose to chasse them using a helicopter, a pack of dogs or a jeep.
- They agree that the probabilties of escape are as given in this payoff matrix:

	H	D	J
R	0.1	0.8	0.4
F	0.9	0.1	0.6

- Both players wish to adopt maximin strategies.

Example

- The spy plays strategy $(x, 1-x)$: with probability x they escape via the river; with probability $1-x$ they run through the forest.
- For given x, their probabilities of escaping for each of the guard's possible actions are:

$$
\begin{array}{rlrl}
p_{H} & =0.1 x+0.9(1-x) & p_{D} & =0.8 x+0.1(1-x) \\
& =\frac{9-8 x}{10} & =\frac{1+7 x}{10} \\
p_{J} & =0.4 x+0.6(1-x) & \\
& =\frac{6-2 x}{10} &
\end{array}
$$

- Plotting these three lines as a function of x we obtain the following figure:

Conditions

Preferences

Games

Zero-Sum Games

Example

- The maximin solution is the interesection of the lines for strategies D and H.
- This occurs at the solution, x^{\star} of:

$$
\begin{aligned}
p_{H}=p_{D} \Rightarrow 9-8 x & =1+7 x \\
8 & =15 x \quad \Rightarrow x^{\star}=8 / 15
\end{aligned}
$$

- The value of the game is: $V=V_{1}=\frac{9-8 x^{\star}}{10}=71 / 150$

Example

- By the fundamental theorem of zero sum two player games, the guard needs to consider only H and D.
- Otherwise the spy's chance of escape will be better than V_{1} if he plays his own maximin strategy.
- Consider a strategy $(y, 1-y, 0)$.
- By the same theorem, $V_{2}=V=V_{1}$, so:

$$
\begin{aligned}
V_{2}=0.1 y^{\star}+0.8\left(1-y^{\star}\right) & =71 / 150 \\
8-7 y^{\star} & =71 / 15 \\
y^{\star} & =7 / 15
\end{aligned}
$$

On Zero Sum Two Player Games

- The "fundamental theorem" does not generalise to games of more than two players.
- The "fundamental theorem" does not generalise to non-zero-sum games.
- Games with an element of co-operation are much more interesting.

A Few Useful Concepts from Game Theory

- Maximin pairs provide a "solution" concept for zero-sum games.
- Some problems arise considering non-zero-sum games:
- Maximin pairs don't necessarily make sense any more.
- It's not obvious what properties a solution should have.
- In general, we consider ideas of equilbrium and stability.
- Notions of optimality and equilibrium:
- Pareto optimality.
- Nash equilibrium.

Pareto Optimality

- A collection of strategies (one per player) in a game is (strongly) Pareto optimal/efficient if no change can be made which will improve one players reward without harming any other player.
- A collection of strategies is weakly Pareto optimal if no change can be made which will improve all players' rewards.
- If a collection of strategies is not Pareto optimal then at least one player could obtain a better outcome with a different collection.
- In a game of pure conflict, all sets of pure strategies are Pareto optimal.

Nash Equilibrium

- A collection of strategies (one per player) in a game is a Nash equilibrium if no player can improve their reward by unilaterally changing their strategy.
- In the two-player case, mixed strategies \underline{x} and \underline{y} comprise a Nash equilibrium if:

$$
\begin{array}{ll}
\forall \underline{x}^{\prime}: & \bar{R}(\underline{x}, \underline{y}) \geq \bar{R}\left(\underline{x}^{\prime}, \underline{y}\right) \\
\forall \underline{y}^{\prime}: & \bar{S}(\underline{x}, \underline{y}) \geq \bar{S}\left(\underline{x}, \underline{y}^{\prime}\right)
\end{array}
$$

where

$$
\bar{R}(\underline{x}, \underline{y})=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j} \quad \bar{S}(\underline{x}, \underline{y})=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} S\left(d_{i}, \delta_{j}\right) y_{j}
$$

- If the inequality holds strictly we have a strict Nash equilibrium.

Nash Equilibria in 2 Player Zero Sum Games

- Maximin pairs are equivalent to Nash equilibria: if \underline{x}^{\star} and \underline{y}^{\star} are maximin, then, by definition:

$$
\begin{array}{ll}
\forall \underline{x}^{\prime}: & \bar{R}\left(\underline{x}^{\star}, \underline{y}^{\star}\right) \geq \bar{R}\left(\underline{x}^{\prime}, \underline{y}^{\star}\right) \\
\forall \underline{y}^{\prime}: & \bar{S}\left(\underline{x}^{\star}, \underline{y}^{\star}\right) \geq \bar{S}\left(\underline{x}^{\star}, \underline{y}^{\prime}\right)
\end{array}
$$

A similar argument holds in the reverse direction.

- All equilibria have the same expected payoff (this follows from the fact that $S=-R$).
- These properties do not extend to non zero-sum games.

Nash Equilibria and the Prisoner's Dilemma

- Recall the prisoner's dilemma:

	S	B
S	$(-1,-1)$	$(-5,0)$
B	$(0,-5)$	$(-4,-4)$

- (B, B) : both players betraying one another is a pure-strategy Nash equilibrium.
- (S, S) : both players remaining silent is Pareto optimal: no change can be made which leads to improvement for one player and no worsening of the other player's situation.
- The (S, S) strategy set is not stable: it is not an equilibrium as either player can unilateral improve their own reward.

Solutions I: The Nash Sense

- Two pairs $(\underline{x}, \underline{y})$ and $\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right)$ are interchangeable with respect to some property if $\left(\underline{x}^{\prime}, \underline{y}\right)$ and $\left(\underline{x}, \underline{y}^{\prime}\right)$ have the same property.
- A game is Nash solvable if all equilibrium pairs are interchangeable (with respect to being equilibrium pairs).
- All zero-sum games are Nash solvable.
- Not many other games are.

Solutions II: The Strict Sense

- A game is solvable in the strict sense if:
- Amongst the Pareto optimal pairs there is at least one equilibrium pair.
- The equilibrium Pareto optimal pairs are interchangeable.
- The solution to such a game is the set of equilibrium Pareto optimal pairs.
- In a zero sum game, all strategies are Pareto optimal and so this reduces to the notion of Nash solvability: all zero sum games are solvable in the strict sense.

Solutions III: The Completely Weak Sense

- A game is solvable in the completely weak sense if after iterated elimination of dominated strategies, the reduced game is solvable in the strict sense.
- The solution is then the strict solution of the reduced game.
- In a zero sum game no strategies are dominated and so this reduces to the notion of solvability in the strict sense: all zero sum games are solvable in the completely weak sense.

Solutions and the Prisoner's Dilemma

- The only equilibrium pair of this game is (B, B).
- The only Pareto optimal strategy is (S, S).
- The game is Nash Solvable, with solution (B, B).
- The game is not solvable in the strict sense: no Pareto efficient pair of strategies is an equilibrium pair.
- The game is solvable in the completely weak sense:
- S is a dominated strategy for both players.
- The reduced game after IEDS has a single strategy (B) for each player.
- The strategy (B, B) is Pareto efficient in the reduced game (no other strategy exists).
- (B, B) is an equilibrium pair in the reduced game.
- The solution set is (B, B).

