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Outline

• Models and sampling

• Berkson’s bias and related phenomena

• Length bias and related phenomena

• Throughout the talk there will are examples 
(admissions, cancer screening, individual trader 
behaviour, quality inspection, microscopy)
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Berkson’s bias

Two independent events become conditionally dependent (negatively) 
given that at least one of them occurs.

P (A|B) = P (A), but P (A|B,A [B) < P (A|A [B)

P (A|B) > P (A), but P (A|B,A [B) < P (A|A [B)

• Example of a selection bias

• Selection leads to correlation between previously unassociated variables

• Aka Berkson's paradox, Berkson’s fallacy, conditioning on a collider 

• Version with a priori positive dependency:

• (Continuous) random variable version:  
P (X � x|Y � y) � P (X � x),

but P (X � x|Y � y,X + Y � x+ y) < P (x � x|X + Y � x+ y)X

  Julia Brettschneider    3 

https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Conditional_independence


(*) Berkson, Joseph (June 1946). "Limitations of the Application of Fourfold Table Analysis to Hospital 
Data". Biometrics Bulletin. 2 (3): 47–53.

Berkson’s bias: the original

Two independent events become conditionally dependent (negatively) 
given that at least one of them occurs.

• Observed (spurious) negative correlation between risk factor (B) and disease 

(A) in hospital in-patient population

• In other words: Hospitalised patient w/o risk factor has increased likelihood for 

disease (compared to person in the general population)

• Explanation: Patients w/o diabetes may have had some non-diabetes 

cholecystitis-causing reason to enter the hospital 

• In original example (*) A=cholecystitis B=diabetes

A negatively correlated with B
A not correlated with B

H

P (A|B,A [B) < P (A|A [B)
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Berkson’s bias: the maths

Two independent events become conditionally dependent (negatively) 
given that at least one of them occurs.

P (A|B) = P (A), but P (A|B,A [B) < P (A|A [B)

How is this possible?

P (A \B) = P (A)P (B) =) P (A|C)P (B|C) = P (A \B|C)x
Possible mechanism leading to Berkson’s bias:

P (A|B,A [B) = P (A|B \ (A [B)) = P (A|B) = P (A) < P (A|A [B)

 occurrence of A or B  
inflates the chance of A 
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Berkson’s bias: a cartoon version
Two independent (or positively dependent) random variables become 
conditionally dependent (negatively) given that at least one of them is 
above a threshold.
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Berkson’s bias: a cartoon version
Two independent (or positively dependent) random variables become 
conditionally dependent (negatively) given that at least one of them is 
above a threshold.

 x+y > 110

 x+y > 130

....

.

. .
.
. .

.
..

. . .
.

.. .
.

.

. .
.

Even stronger negative correlation if 
additional selection at the very top.

....

.

. .
.
. .

.
..

. . .
.

.. .y

x

  Julia Brettschneider    7 

https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Conditional_independence


Berkson’s bias: grad school
Grad school admission in the US using GRE and GPA: trend reversal.
GRE and GPA negative among admitted students but positive among 
applicants (*).  Illustration with simulated data (**).

Correlation 0.3 Correlation -0.25

(*) Robyn Dawes, Graduate Admission Variables and Future Success, Science  28 Feb 1975:
Vol. 187, Issue 4178, pp. 721-723
(**) Illustration from https://hardsci.wordpress.com/2014/08/04/
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Berkson’s bias in UG admissions?

• UG admissions may involve uncorrelated or weakly correlated 
criteria (school grades, interview, additional papers (STEP), reference 
letters, statements etc).

• Criteria typically weakly positively correlated or independent.

• How predictive are admission criteria for success at university?

• In UK also relevant: How predictive are predicted (by schools) A-
level grades for achieved A-level grades?

• Observations at Warwick Statistics Department (preliminary analysis 
of 5 years of UG admissions data) shows evidence of Berkson’s bias 
for Further Maths grade and other criteria (STEP etc).
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Admissions (hypothetical data)
Two independent (or positively dependent) criteria used for 
admissions may become conditionally dependent (negatively) 
given that at least one of them is above a threshold.

 x+y > 110

 x+y > 130

....

.

. .
.
. .

.
..

. . .
.

.. .
.

.

. .
.

Even stronger negative correlation if 
additional selection at the very top.

....

.

. .
.
. .

.
..

. . .
.

.. .y

x

go to other 
university

rejected

  Julia Brettschneider   10 

https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Conditional_independence


Simpson’s paradox

Trend appears in several different groups of data but disappears or 
reverses when these groups are combined (aggregation).

Continous case (aka ecological regression):

positive correlation overall negative correlation for each group
https://paulvanderlaken.com/2017/09/27/simpsons-paradox-two-hr-examples-with-r-code/
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French English
Quebec 1.8 1.64
Other 

Provinces 2.14 1.97

Total 
Canada 1.85 1.95

Mean Number of Children 1971-1976
Source: Canadian Census 1976, N. Keyfitz,            
Applied Mathematical Demography

Simpson’s paradox (ct’ed)

Example: Which language group in Canada has more children?

French have more

French have more

English have more

Discrete case
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Fluorescent microscopy
for observing intensity & 
location of proteins

Confocal fluorescent laster microscopy
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Nixon*, F.M., Honnor*, T.R., Starling, G.P., Beckett, A.J., Johansen, A.M., Brettschneider, J.A., 
Prior, I.A. & Royle, S.J. Microtubule organization within mitotic spindles revealed by 
serial block face scanning EM and image analysis, J Cell Science, April 2017 

Collaboration with Steve Royle Lab

Figure 2: Sample microscope images taken perpendicular to the microtubule axis, left, and parallel

to the microtubule axis, right (Hepler et al., 1970). Arrows indicate the location intermicrotubule

bridges formed by mesh.

multiple samples under each of the two experimental regimes.

This report begins with an introduction to the problem and methodology, followed by a de-

scription of the data. A concise background on spatial point patterns is then given, after which the

methodology is described in detail. The following section describes the formulation and results of a

simulation study of the e↵ectiveness of the proposed methodology. After successful application to

simulations a set of biological data is analysed, sensitivity testing is carried out for the biological

data and conclusions are presented.

2 Data description

2.1 2D point patterns

We choose to investigate 2D coordinate locations obtained from imaging biological samples as point

patterns x 2 �2, where �2 is the set of all finite point patterns on R2. That is x = {x1, x2, . . . , x
n(x)}

with x
j

2 R2.

Multiple sets of coordinate locations produce a set of m point patterns xi 2 �2 indexed by

i 2 I = {1, 2, . . . ,m}. The notation xI = {xi : i 2 I} is used to represent the set of all 2D point

patterns. Two subsets of point patterns, indexed by A0(I) and A1(I) and denoted by xA0(I) and

xA1(I), are obtained by partitioning the set I

A0(I) [A1(I) = I A0(I) \A1(I) = �

where � denotes the empty set. Under this notation, xi

j

is the location of the jth point in the ith

point pattern, xi.

Choosing to model the TACC3 2D point pattern data within this framework, we have |I| = m =

63, A0(I) indexing observations under the control regime with |A0(I)| = 26 and A1(I) indexing

observations under the treatment regime with |A1(I)| = 37.

3

Figure 1: Diagram of the stages of mitosis (Ali Zifan).

Point pattern data comprising observations from two populations may arise in numerous ways.

The locations of a particular subcellular structure within multiple cells identified from microscope

images, when one set of cells has received a treatment and the other has not. The locations of trees

or plants across multiple locations, when observations are divided into two sets based upon the

climate conditions at each location. The location of particular archaeological finds within historical

sites, when observations are divided into two sets based upon the ages of the sites. The location

of aftershocks after earthquakes, when observations are divided into two sets based upon whether

they are on land or underwater.

Development of the proposed methodologies is motivated by a biological problem. During

mitosis, subcellular structures known as kinetochore fibers (K-fibers) connect two anchor points,

centrosomes, within the cell to each of the chromosome pairs. The chromosomes contain the genetic

information and successful mitosis requires the pairs to be evenly divided, such that each of the two

daughter cells contains one of each chromosome. K-fibers are believed to apply the force necessary

to separate chromosome pairs and as a result they are important for successful cell division. An

illustration of the process of mitosis including the function of the K-fibers can be seen in Figure 1.

Each K-fiber is made up of a number of microtubules, approximately cylindrical structures

which are bound together by a mesh structure to form the rigid K-fiber. Our collaborators, Dr.

Steve Royle and his research group within the Centre for Mechanochemical Cell Biology at the

University of Warwick, are interested in the e↵ect that overexpression of the TACC3 protein,

Transforming acidic coiled-coil containing protein 3, may have on the structure of microtubules

within K-fibers. The structure may be visualised by microscopy imaging of cells at the correct point

in the cell cycle under a control regime and a treatment regime for which there is overexpression of

TACC3. Images are collected in planes perpendicular to the K-fiber axis, resulting in microtubules

visible through their cross-sections as dark circles. Example images may be seen in Figure 2. The

collection of microtubule centres within a single image produces a set of coordinate locations, with

imaging of multiple cells under each regime producing the two sets of coordinate locations for

analysis.

Also available is a data set comprised of paired 2D microtubule coordinate locations obtained

from two parallel image slices through the same sample, including information on which coordinate

locations represent the same microtubule in each of the slices. These are similarly collected for

2

TR Honnor, AM Johansen, JA Brettschneider
A nonparametric test for dependency between between estimated local bulk movement patterns 
CRiSM Working Paper Series No. 17-03, 2017

TR Honnor, JA Brettschneider, AM Johansen 
Differences in spatial point patterns with applications to subcellular biological structures 
CRiSM Working Paper Series No. 17-01, 2017
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Example: Quantifying protein abundance 
in their actual locations in cells 

Green: SSX2IP expression visualised
by anti-SSX2IP-fluorescein 
isothiocyanate on the cell’s surface. 

Blue: Stained Cell nuclei using 4,6'-
diamino-2-phenylindole (DAPI).
Protocol of the experiment:  
Leukaemia cell line K562 air dried for 
4-18hours onto glass microscope slides, 
stored at -20oC wrapped in saranwrap, 
defrosted, stained with antigen specific 
primary, and fluorescently labelled 
secondary antibodies. 

http://www.intechopen.com/books/novel-gene-therapy-approaches/identification-and-validation-of-targets-for-cancer-immunotherapy-from-the-bench-to-bedside

Sub-cellular localisation of tumour antigen SSX2IP in leukemia cells 
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Example: Colocalisation of two 
proteins in cancer cells

http://www.olympusmicro.com/primer/techniques/confocal/applications/colocalization.html

Colocalization in the 
lateral optical plane of 
the cytoskeletal protein 
actin with vinculin, a 
protein associated with 
focal adhesion and 
adherens junctions.

Applications:
• Detect physical location within cell
• Uncover functions of proteins based on location
• Unravel interactions, build networks, infer function

Need: quantification, inferential methods for colocalisation
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Quantifying colocalisation
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where A
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and B
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are the voxel or pixel intensities (also called grey values) of
channels A and B, respectively, and a and b are the corresponding average inten-
sities over the entire image. Therefore, the values of the coe�cient range from
�1 to 1, with values tending to 1 representing complete positive correlation, 0
for no correlation and �1 for negative correlation. Nevertheless, in true biolog-
ical situations one cannot obtain values very close to �1, due to the underlying
similarity between two channels of the same image, as noted later. A major
advantage of this approach is that it considers the similarities between shapes,
but is not influenced by the average intensity of the signal. In other words, the
coe�cient is scaling invariant [15, 11]. This approach has been applied to study
the behaviour of DNA replication patterns in interphase nuclei [11, 12]. It has
been suggested that this method has significant drawbacks as well, such as the
fact that it cannot discriminate between partial colocalization and exclusion,
with values in the range of �0.5 to 0.5 providing ambiguous interpretations,
and sensitivity to noise, which are discussed below through analysing artificial
images [7, 22].

3.4 Manders’ coe�cients: M
1

and M
2

A major problem with having a single output value as the colocalization mea-
surement occurs when the amount in fluorescence intensities in both channels
di↵ers significantly. For instance, in the case of Pearson’s correlation coe�cient
the influence of the number of fluorescent objects in both components is con-
siderable and can cause ambiguity in the interpretation. A simple example of
this would be when one channel completely colocalizes with the other, but is
present in only a small proportion of the pixels that the other channel occupies,
a quarter say. In this case, Pearson’s coe�cient would give us a small positive
result that could be interpreted in a number of ways, without telling us what
the actual situation is. With the aim of overcoming this problem, Manders
developed two separate coe�cients,
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> 0 (analogously for B
i

). Thus, M1

and M2 can be interpreted as the amount of signal intensities of colocalizing
objects in each channel, relative to the total signal intensity in that channel.
Hence, Manders’ coe�cients vary in the range from 0, representing no coinci-
dental objects, to 1, corresponding to 100% colocalization. It is immediate that
this pair of measures can be easily determined and interpreted even with dif-
ferent volumes of fluorescence [11]. Unfortunately, an obvious drawback is the
sensitivity of this method to background and noise, which requires the estima-
tion of a threshold, thus introducing bias [2]. On one hand Manders’ coe�cients
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for no correlation and �1 for negative correlation. Nevertheless, in true biolog-
ical situations one cannot obtain values very close to �1, due to the underlying
similarity between two channels of the same image, as noted later. A major
advantage of this approach is that it considers the similarities between shapes,
but is not influenced by the average intensity of the signal. In other words, the
coe�cient is scaling invariant [15, 11]. This approach has been applied to study
the behaviour of DNA replication patterns in interphase nuclei [11, 12]. It has
been suggested that this method has significant drawbacks as well, such as the
fact that it cannot discriminate between partial colocalization and exclusion,
with values in the range of �0.5 to 0.5 providing ambiguous interpretations,
and sensitivity to noise, which are discussed below through analysing artificial
images [7, 22].
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channels A and B, respectively, and a and b are the corresponding average inten-
sities over the entire image. Therefore, the values of the coe�cient range from
�1 to 1, with values tending to 1 representing complete positive correlation, 0
for no correlation and �1 for negative correlation. Nevertheless, in true biolog-
ical situations one cannot obtain values very close to �1, due to the underlying
similarity between two channels of the same image, as noted later. A major
advantage of this approach is that it considers the similarities between shapes,
but is not influenced by the average intensity of the signal. In other words, the
coe�cient is scaling invariant [15, 11]. This approach has been applied to study
the behaviour of DNA replication patterns in interphase nuclei [11, 12]. It has
been suggested that this method has significant drawbacks as well, such as the
fact that it cannot discriminate between partial colocalization and exclusion,
with values in the range of �0.5 to 0.5 providing ambiguous interpretations,
and sensitivity to noise, which are discussed below through analysing artificial
images [7, 22].
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A major problem with having a single output value as the colocalization mea-
surement occurs when the amount in fluorescence intensities in both channels
di↵ers significantly. For instance, in the case of Pearson’s correlation coe�cient
the influence of the number of fluorescent objects in both components is con-
siderable and can cause ambiguity in the interpretation. A simple example of
this would be when one channel completely colocalizes with the other, but is
present in only a small proportion of the pixels that the other channel occupies,
a quarter say. In this case, Pearson’s coe�cient would give us a small positive
result that could be interpreted in a number of ways, without telling us what
the actual situation is. With the aim of overcoming this problem, Manders
developed two separate coe�cients,
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objects in each channel, relative to the total signal intensity in that channel.
Hence, Manders’ coe�cients vary in the range from 0, representing no coinci-
dental objects, to 1, corresponding to 100% colocalization. It is immediate that
this pair of measures can be easily determined and interpreted even with dif-
ferent volumes of fluorescence [11]. Unfortunately, an obvious drawback is the
sensitivity of this method to background and noise, which requires the estima-
tion of a threshold, thus introducing bias [2]. On one hand Manders’ coe�cients
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•Scaling invariant
•Does not fully take into account spatial information, noise

•Problem with all measures: depends on selection of regions. Automatic 
selection addressed by Wang et al (2016)

•Two measures, not scaling invariant  
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Detecting correlation

r
p

=

P
i

(A
i

� a)(B
i

� b)pP
i

(A
i

� a)2(B
i

� b)2
(1)

where A
i

and B
i

are the voxel or pixel intensities (also called grey values) of
channels A and B, respectively, and a and b are the corresponding average inten-
sities over the entire image. Therefore, the values of the coe�cient range from
�1 to 1, with values tending to 1 representing complete positive correlation, 0
for no correlation and �1 for negative correlation. Nevertheless, in true biolog-
ical situations one cannot obtain values very close to �1, due to the underlying
similarity between two channels of the same image, as noted later. A major
advantage of this approach is that it considers the similarities between shapes,
but is not influenced by the average intensity of the signal. In other words, the
coe�cient is scaling invariant [15, 11]. This approach has been applied to study
the behaviour of DNA replication patterns in interphase nuclei [11, 12]. It has
been suggested that this method has significant drawbacks as well, such as the
fact that it cannot discriminate between partial colocalization and exclusion,
with values in the range of �0.5 to 0.5 providing ambiguous interpretations,
and sensitivity to noise, which are discussed below through analysing artificial
images [7, 22].
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A major problem with having a single output value as the colocalization mea-
surement occurs when the amount in fluorescence intensities in both channels
di↵ers significantly. For instance, in the case of Pearson’s correlation coe�cient
the influence of the number of fluorescent objects in both components is con-
siderable and can cause ambiguity in the interpretation. A simple example of
this would be when one channel completely colocalizes with the other, but is
present in only a small proportion of the pixels that the other channel occupies,
a quarter say. In this case, Pearson’s coe�cient would give us a small positive
result that could be interpreted in a number of ways, without telling us what
the actual situation is. With the aim of overcoming this problem, Manders
developed two separate coe�cients,
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dental objects, to 1, corresponding to 100% colocalization. It is immediate that
this pair of measures can be easily determined and interpreted even with dif-
ferent volumes of fluorescence [11]. Unfortunately, an obvious drawback is the
sensitivity of this method to background and noise, which requires the estima-
tion of a threshold, thus introducing bias [2]. On one hand Manders’ coe�cients
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• Another case of induced negative 
correlation (after removing noise)?

• Correlation hidden by ambiguity due 
to subgroups?

Easy case
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Image source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074624/

Costes: Identify background
Partial collocalisation

Easy case
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Meaningful subgroups

Image source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074624/

Colocalization without a simple linear relationship. 

• A: medial focal plane of MDCK cells incubated with Texas Red-
transferrin (red)  and Oregon Green IgA (green). 

• B: as in A but collected 1.2 μm higher. 

• C: as in A but collected 2.4 μm higher. 

• D: scatterplots of red and green pixel intensities of the top cell 
collected from the focal plane shown in A (green), B (blue), or C (red).
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Sampling bias

Systematic error due to non-random sample of a population, causing some 
members of the population to be less likely to be included than others

• Time interval (e.g. early termination of experiment)

• Selection mechanism (e.g. Chicago Tribune vs Gallup pool, 1936 USA)

• Malmquist bias (astronomy: intrinsically bright objects preference)

• Self-selection/non-response

• Symptom based 

• Cavemen bias (preservation)

• Cherry picking/confirmation

• Censoring
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Size bias: cartoon version
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Length bias: cartoon version

Source: https://stats.stackexchange.com/questions/122722/please-explain-the-waiting-paradox
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Length bias: the maths 

Holding times Si � 0 (i 2 N) i.i.d.

Jump times Ji (i 2 N)

Renewal process N(t) = sup{n : Jn  t} (t > 0)

8t 9! N(t) : JN(t)  t < JN(t)+1

t
Y (t)

Residual time Y (t) = JN(t)+1 � t

with CDF F
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Length bias: the maths 

Holding times Si � 0 (i 2 N) i.i.d.

Jump times Ji (i 2 N)

t
Y (t)

with CDF F

For large t, distribution of Y becomes independent of t.

mean µ, SD �

whenever �2 > 0

E[Y ] = µ2+�2

2µ > µ
2 = E[Si] Waiting time paradox
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Length bias: cartoon version

Source: https://stats.stackexchange.com/questions/122722/please-explain-the-waiting-paradox

E[Y ] = µ2+�2

2µ

E[Si] =
µ
2
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Length bias in cancer screening: 
Terminology

Context: Population based cancer screening programme at regular intervals

Lead time: Length of time by which diagnosis is advanced by screening

Sojourn time: Length of time between screen detectable and clinically detectable
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Length bias in cancer screening: 
Connection with tumour growth

Rapidly growing cancers: 
Screen detected 2 out of 6

Slowly growing cancers: 
Screen detected 4 out of 6

Length bias!  
(Relative oversampling of slowly 
vs rapidly growing tumours)

Screening oversamples slowly growing tumours relative to rapidly growing ones.
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Length bias in cancer screening: 
Lead time and survival time

• Screening oversamples slowly growing tumours relative to rapidly growing ones.

• Lead time is perceived as additional survival time.

• Lead time allows early intervention, which may increase survival. 

• If no early treatment option is available, early diagnosis is questionable. 
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Estimation tasks in cancer screening 
Context: Population based cancer screening programme at regular intervals

Lead time: Length of time by which diagnosis is advanced by screening
Sojourn time: Length of time between screen detectable and clinically detectable

• Both these times are unobservable

• Mathematical models for estimation

• Sojourn time: recurrence models, Markov chains under progressive assumption

• NHSBSP data: round length 3 years, women ages 50-70

• Maximum likelihood estimate: mean sojourn time=2.91 years

S Cheung, JL Hutton, JA Brettschneider
Review of sojourn time calculation models used in breast cancer screening 
CRiSM Working Paper Series No. 17-04, 2017

S Cheung MPhil Dissertation 2016 (Supervisors: JL Hutton, JA Brettschneider)
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Lead time and survival time: 
Genomic testing under three scenarios

• Test result may cause anxiety and apathy during lead time (could be 50 years!)

• If treatment is available testing may increase survival time. 

Diagnosis 
(genetic)

Treatment

Death

Death

Death

No treatment available

No testing performed      No treatment available

Diagnosis 
(clinical)

Basic molecular biology: 
From DNA to cells
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Basic molecular biology: 
From DNA to cells
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Construction  
of organisms 

(very simplified) 

• Proteins are built according 
to genetic information, in a 
multi-step process.

• Proteins are the building 
blocks for cells.

• Genes are the blue print of 
the cells.
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proteinRNADNA
Transcription Translation

Reverse
Transcription

Replication Replication

Biological information flow (*)

...AGCTGA...
...AGCUGA... ...Serine, STOP 

...TCGACT...
| | | | | |

 (*) very simplified   Julia Brettschneider    34 



Gene expression

• Type of the cell  
• State of cell (developmental, diseased/healthy etc) 
• Cellulaire structure

Depends on factors such as:

Gene expression =  
         the gene’s degree of biochemical activity  
         (to a molecular biologist: amount of RNA  
             to a biochemist: amount of protein)  

Measuring expression levels helps understanding 
cellular processes, diseases, development etc.
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Lead time and survival time: 
Genomic testing under three scenarios

• Test result may cause anxiety and apathy during lead time (could be 50 years!)

• Test result may be wrong (e.g. immature research, multiple testing)

• If correct and if treatment is available testing may increase survival time 

Test result Treatment

Death

Death

No treatment available

No treatment available

Diagnosis

 Time gained

No testing  Death

Test result
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Two tails of the City: 
Trades & traders

Basics psychology: 

Homo economicus decisions theory 
sapiens
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Normative theories of decision making: 
• How idealised (rational) world behave when taking decisions
• Based on an “idealised” form of human being:                             

e.g. homo economics (rational utility maximiser), homme moyen

• Methods: Mathematical axioms and optimisation

Normative theory versus descriptive theory

Why is normative theory not enough?

Descriptive theories of decision making 
• How people actually make decisions

• Based on observation (empirical studies)

• Methods: empirical studies, revised models

Empirical studies have demonstrated that people do not always 
follow the axioms of probability (biases, fallacies, heuristics).
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Empirically shown deviations from normative theory

• Gambler’s fallacy, inverse gambler’s fallacy, belief in hot hand

• Random sequences generation biases (starting value, runs)

• Clustering illusion

• Certainty effect (Allais paradox)

• Anchoring bias (with related and unrelated information)

• Framing effect (Kahneman & Tversky)

• Availability bias (Kahneman & Tversky)

• Conjunction fallacy / “Linda problem” (Kahneman & Tversky)

• Disjunction effect (Shafir & Tversky)

• Base rate neglect

• Disposition effect (Odean, Weber & Camerer)
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The less restrictive condition 
creates fewer words!

Violates normative rules of 
probability: 

For A subset of B, 

P(A) < P(B)
 

       ----ing group 49 students

----n- group 51 students 

Example: Availability bias

Reason: Increased efficiency of 
memory search in 
“- - - ing”-condition

  Julia Brettschneider    40 



Heuristic strategies:  
• Shortcuts and approximations, especially if correct answers 

are not known or would take too long to construct.  
• Using heuristics is useful and necessary, but may lead to 

biases in judgement. 

Heuristics & biases

Resulting behavioural bias:
Differences arising from the use of heuristics or other non-
normative strategies.

Context here: Probability (risk & prospect) 
Perception, estimation and judgement



Empirical study of selling behaviour

Individual trader data from LDB (Odean, 1998):

• Discount brokerage house use by primarily non-professional investors

• Trading activities of 78,000 American individual households 

• Period 1991-1996 

• Characteristics of individuals 

EUT would suggest a threshold strategy, i.e. stop at random time

where     is current price level and    is an ex ante optimal threshold.

S(b,X) = min{t � 0 : Xt �}
X b

JA Brettschneider, M Burgess
Using a frailty model to measure the effect of covariates on the disposition effect 
CRiSM Working Paper Series No. 17-05, 2017

Giovanni Burro, PhD project (Supervised by JA Brettschneider, Vicky Henderson)

http://www2.warwick.ac.uk/fac/sci/statistics/crism/research/17-05/


Two tails of the City: 
Trades & traders

• Trades’ perspective: round trips

• Trader’s perspective: series of round trips

Do the two perspectives lead to different results?
Answer depends on the study question.

In the trade’s perspective, faster traders are oversampled.  Hence the 
distribution of observations will be dominated by these oversampled 
fast traders.  If the outcome variable is associated with trading speed 
then this oversampling can create a bias.

This can be overcome by using the average of a series of roundtrips

Two alternative choices for observational unit.
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Simulated data:  
Stopping times

threshold (fast) group deterministic (slow) group

both groups - 
trade perspective

both groups - 
trader perspective
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Histogram of tauuAn
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Simulated data: 
Relative #days below selling price

some invisible bits 
here… (scale!)

both groups 
- trade perspective

both groups - 
trader perspective

threshold (fast) group deterministic (slow) group
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Further applications

• Quality assessment of items

• Quality of data in crowd sourced repositories

• X-ray detector damage monitoring
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Thanks!
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