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1. Introduction: Quasi-likelihood estimating equations

The term ‘quasi-likelihood’ has been used recently to describe a fairly wide variety of techniques
for estimation and inference. This paper focuses on the method introduced by Wedderburn (1974),
further developed by McCullagh (1983), but which, as pointed out by Crowder (1987), has roots
at least as far back as Williams (1959, §4.5). A brief introduction and overview are given by
McCullagh (1986), and more comprehensive treatments with examples of application may be
found in McCullagh & Nelder (1989) and McCullagh (1991).

The quasi-likelihood method of estimation is probably best viewed as a straightforward ex-
tension of generalized least squares. Suppose that y is a n × 1 response vector, assumed to be a
realization of a random vector Y with

E(Y) = µ(β), cov(Y) = φV (µ), (1)

where µi(β) (i = 1, . . . , n) are regression functions depending on a p × 1 vector of unknown
parameters β, φ is a scalar dispersion parameter and V (.) is a symmetric, positive-definite matrix
of known functions of the unknown means µ. The functions µi(.) typically express dependence
on explanatory variables, often but not necessarily via a linear model µ = Xβ or a generalized
linear model g(µ) = Xβ for some specified link function g(.); the parameters β are taken to be
of interest. If the elements of V are known constants, not depending on µ, a standard generalized
least-squares approach minimizing (y −µ)T V −1(y −µ) yields the vector equation

DT V −1(y −µ) = 0, (2)

to be solved for β, where D is the n×p matrix of derivatives ∂µi/∂βr. When the covariance matrix
V is functionally dependent on µ, the equations (2) are called the quasi-likelihood (estimating)
equations and their solution vector β̂, assuming it exists, the quasi-likelihood estimate. Quasi-
likelihood estimation may therefore be viewed as extending the domain of application of generalized
least squares via the estimating equations (2). McCullagh (1991) argues strongly that this, rather
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than the possibly more obvious route of minimizing (y−µ)T V −1(µ)(y−µ), is the appropriate
extension of least-squares ideas to the general setting (1).

Quasi-likelihood estimates have an optimality property that may be regarded as extending the
familiar Gauss-Markov optimality of least-squares estimates. McCullagh (1983) shows that, among
all estimators obtained as solutions to linear (i.e., linear in y) unbiased estimating equations, the
quasi-likelihood estimator β̂ is best in the sense of having greatest asymptotic precision; if β̃
is another estimator obtained from linear estimating equations, then for any constant vector a the
asymptotic variance of aT β̃ is at least as great as that of aT β̂. See also McCullagh & Nelder (1989,
§9.5) and Morton (1981). An alternative, non-asymptotic extension of the Gauss-Markov theorem
holds for the estimating equation (2) itself (e.g., Godambe & Heyde, 1987; Godambe & Thompson,
1989), but it appears that such finite-sample optimality does not in general extend to the estimate
derived as its solution.

The name ‘quasi-likelihood’ was coined by Wedderburn (1974) largely because of similarities
between the behaviour of the vector

U = DT V −1(Y −µ)/φ (3)

and that of a likelihood-based score vector. Specifically, the familiar identities

E(U) = 0, cov(U) = −E(∂U/∂β) (4)

that hold if U is the score vector in a regular likelihood-based model continue to hold for the ‘quasi-
score’ vector U in (3), under only the second-moment assumptions (1). Since the identities (4) form
the basis of standard arguments for the asymptotic properties of maximum likelihood estimates and
associated inference procedures, similar properties hold also for quasi-likelihood estimates under
the considerably weaker assumptions (1), subject of course to certain regularity and other technical
conditions.

A further connection between quasi-likelihood and maximum likelihood estimates is that, if
there exists a linear exponential-family model for y that has E(Y) = µ and cov(Y) ∝ V (µ),
then solution of (2) for β is equivalent to solving the maximum likelihood equations for that
exponential family. The simplest example is the case V (µ) = I , the identity matrix, corresponding
to constant-variance regression with no correlation. The unique exponential-family model with this
mean-variance structure is Y ∼ N(µ, φI) (Morris, 1982). The equivalence in this case between
solution of (2), the least-squares equations, and maximization of the normal-model likelihood for
β, is well known. Other examples of this equivalence are:

Covariance function V (µ) Exponential family model

diag(µi) Independent Poisson
diag{µi(1− µi/mi)} Independent binomials, indices mi

diag(µ2
i ) Independent exponential/gamma

V (no dependence on µ) Multivariate normal

In these and other such instances, quasi-likelihood estimation of the parameters β is operationally
equivalent to maximum likelihood estimation based on a standard model. This equivalence is often
exploited at a practical level by making use of software designed for exponential-family maximum
likelihood calculations, such as GLIM, to obtain quasi-likelihood estimates.

This paper reviews some of the main developments and applications of quasi-likelihood methods
as introduced above. The aim will be broadly to indicate strands of development and to provide
appropriate references, rather than to explore any aspect in detail. Sections 2-4 discuss general
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issues such as the estimation of standard errors, procedures for inference, efficiency and robustness.
Sections 5-7 mention some of the major applications of quasi-likelihood methods to date, including
models for overdispersed data and the ‘generalized estimating equations’ approach to modelling
longitudinal and clustered data. Sections 8 and 9 introduce the ideas of ‘extended’ quasi-likelihood
and ‘local’ quasi-likelihood, designed to increase flexibility in the variance specification and in the
regression model, respectively.

A notable omission from this review is discussion of the somewhat broader, martingale-based
theory of quasi-likelihood estimation and inference in stochastic processes (e.g., Hutton & Nelson,
1986; Godambe & Heyde, 1987; Heyde, 1989; Sørensen, 1990) and the theory of estimating
functions generally. These topics are surveyed in Godambe (1991); see also McCullagh (1991) or
McCullagh & Nelder (1989, §9.4).

2. Standard errors

Under the model assumptions (1), and subject to certain regularity and other conditions, the
quasi-likelihood estimate β̂ that solves (2) is consistent and asymptotically normal, with asymptotic
variance-covariance matrix [i(β)]−1 = φ(DT V −1D)−1. This depends in general on β through
the matrices D and V , and on the dispersion parameter φ. When computing estimated standard
errors it is usual to substitute β̂ for the unknown β, and if φ is unknown to estimate it using an
appropriately chosen quadratic form. Since

E
[
(Y −µ)T V −1(µ)(Y −µ)

]
= nφ,

an unbiased estimate of φ would be (y−µ)T V −1(µ)(y−µ)/n; the ‘degrees of freedom corrected’
(but not, in general, unbiased) estimate

φ̃ = (y − µ̂)T V −1(µ̂)(y − µ̂)/(n− p)

takes account of substituting µ̂ = µ(β̂) for µ, by analogy with the corresponding procedure for
linear models. Estimated standard errors for components of β̂ are then computed as square roots
of diagonal elements of

covM (β̂) = φ̃(D̂T V̂ −1D̂)−1, (5)

where D̂ denotes D(β̂), etc., and the subscript M indicates a ‘model-based’ estimate.
The estimated covariance matrix (5) is constructed on the assumption that the model specifi-

cation (1) is correct. In many applications the assumption E(Y) = µ(β) defines the quantities
of interest, while the second-moment specification cov(Y) = φV (µ) is a working ‘guess’ at the
true covariance structure, made in the hope of obtaining increased efficiency when estimating β.
In this respect the quasi-likelihood approach enjoys a useful robustness property. Since the quasi-
likelihood estimating equation (2) is linear in y, it is an unbiased estimating equation (i.e., the left
hand side has mean zero) under only the first-moment specification E(Y) = µ(β); unbiasedness
of the estimating equation, and hence (subject to certain conditions) consistency of β̂, is robust
to failure of the working covariance structure V (µ). Unfortunately, the same is not true for the
estimated covariance matrix in (5). If cov(Y) is not as specified in (1), the asymptotic covariance
matrix of β̂ is the ‘information sandwich’

(DT V −1D)−1DT V −1 cov(Y)V −1D(DT V −1D)−1
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(e.g., Cox, 1961), an obvious estimate of which is

covR(β̂) = (D̂T V̂ −1D̂)−1D̂T V̂ −1(y − µ̂)(y − µ̂)T V̂ −1D̂(D̂T V̂ −1D̂)−1. (6)

For a general discussion motivating this type of ‘robust’ covariance matrix estimator, see Roy-
all (1986); see also Pregibon (1983).

The use of a working covariance function V (µ) to ‘tune’ the quasi-likelihood procedure in the
hope of near-optimal estimation of β, together with robust standard errors derived from covR(β̂),
is the essence of the ‘generalized estimating equations’ approach to the analysis of longitudinal or
clustered data (Liang & Zeger, 1986; see also §7).

The price paid for robustness is typically some loss of efficiency under ideal conditions, so
it is to be expected that covR(β̂) will be less efficient than the model-based estimator covM (β̂)
when the working V (µ) is in fact correct. As a simple example to illustrate this, consider (as in
Royall, 1986) the one-parameter model µi(β) = β (i = 1, . . . , n), V (µ) = diag(µ) in which φ is
assumed to be 1. Then β̂ = ȳ, the sample mean, and the model-based and robust variance estimates
for β̂ are

covM (β̂) = ȳ/n, covR(β̂) =
n∑

i=1

(yi − ȳ)2/n2.

The asymptotic relative efficiency of the two variance estimators, under a working assumption that
Yi ∼ Poisson(β), is 1/(1+2β): the loss of efficiency incurred when using covR(β̂) can be severe
if β is large.

The example just given is unrealistically simple but serves to illustrate the general point. In
a more complex setting involving overdispersed counts, Breslow (1990b) confirms by simulation
that covR(β̂) can be much less precise than covM (β̂). However, the picture is not entirely clear.
In further simulations, made in the context of correlated binary data, Sharples & Breslow (1992)
find that covR(β̂) is almost as efficient as covM (β̂) when the assumed form of V (µ) is correct. A
systematic study, to identify the conditions under which covR(β̂) has reasonably high efficiency,
would be useful.

In situations where loss of efficiency can be serious, there is a trade-off between precision
under the assumed V (µ) and robustness to departures from that working model. A ‘compromise’
estimator of the formλ covR(β̂)+(1−λ) covM (β̂), where0 ≤ λ ≤ 1, is motivated by Firth (1987a)
using a partially Bayesian argument; see also Efron (1986b). The tuning constant λ may be chosen
either on the basis of previous experience, or derived, in an empirical Bayes fashion, from the
observed distribution of the residuals. More work is needed on this ‘adaptive’ type of estimator.

A further problem with the robust estimator of cov(β̂) is its bias. The true standard deviations of
elements of β̂ are typically underestimated by standard errors derived from covR(β̂), as is confirmed
in simulation studies by Breslow (1990b) in the context of overdispersed Poisson models, and by
Sharples & Breslow (1992) and Lee, Scott and Soo (1993) in models for correlated binary data. The
problem is most easily understood in terms of a simple linear model in which µ = Xβ, V (µ) = I

and β̂ is the ordinary least-squares estimate (XT X)−1XT y. The robust estimator of cov(β̂) in
this case is

covR(β̂) = (XT X)−1XT diag(yi − µ̂i)
2X(XT X)−1,

which is biased since the squared residuals (yi − µ̂i)
2 tend to underestimate the correspond-

ing variances var(Yi); for example, if var(Yi) = φ (constant) as in the working model, then
E

[
(Yi − µ̂i)

2
]

= φ(1− hii) where hii ∈ (0, 1) is the ith ‘leverage’, i.e., the ith diagonal element

of the ‘hat’ matrix H = X(XT X)−1XT . While consistency of covR(β̂) for the true cov(β̂) is
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based on standard assumptions that include hii → 0 for all i as n→∞, in finite samples hii need
not be small for all i and the bias in covR(β̂) can be severe. Chesher & Jewitt (1986) give examples
and calculate bounds, based on max{hii}, for the bias.

Various bias-corrected versions of covR(β̂) have been suggested in the linear-model case.
These include (i) a version corrected by replacing each squared residual (yi − µ̂i)

2 by (yi −
µ̂i)

2/(1 − hii) (MacKinnon & White, 1985), and (ii) a ‘degrees of freedom’ correction in which
covR(β̂) is simply multiplied by n/(n − p) (Hinkley, 1977). See also Wu (1986). The former
correction is exactly unbiased under the working, constant-variance model; the latter requires also
that hii = constant = p/n (i = 1, . . . , n), i.e., a balanced design, to achieve exact unbiasedness.
A potential problem with approach (i) occurs if there are observations with high leverage, i.e., if
hii is close to 1 for some i. In such a case, division by 1− hii is not only bias-reducing but is also
severely variance-inflating, so the bias-corrected version of covR(β̂) may be rather unstable; an
extreme example appears in Firth (1987a). Further work is needed to establish a generally-reliable
form of bias correction for covR(β̂), and to extend these ideas drawn from the literature on linear
models to the wider context of quasi-likelihood models.

3. Tests and confidence regions

As in likelihood-based theory, standard methods for approximate inference on β in (1) include
the ‘Wald’-type test, the (quasi-)score test and the (quasi-)likelihood ratio test, and procedures
based on these for the construction of confidence regions. McCullagh (1991, §11.6) provides a
good summary. The methods are as in the familiar likelihood-based theory, but with two main
differences.

First, although the quasi-likelihood approach outlined in §1 provides the necessary ingredi-
ents β̂, U and i(β) for Wald-based and score-based inferences, no ‘likelihood-like’ function is
immediately available for tests and confidence regions of the likelihood-ratio (LR) type. In the ‘in-
dependence’ case with V (µ) = diag{Vi(µi)}, this is remedied by defining a quasi-loglikelihood
function

Q(β;y) =

n∑

i=1

∫ µi

yi

yi − t

φVi(t)
dt , (7)

which is like a log-likelihood in the sense that its derivative vector with respect to β is the quasi-score
function,

∇Q =

n∑

i=1

yi − µi

φVi(µi)
× ∂µi

∂β
= DT V −1(y −µ)/φ = U.

More generally, if V (µ) is non-diagonal, it is not usually possible to find a function Q such that
∇Q = U; a notable exception is if V does not depend on µ, in which case Q is the multivariate
normal N(µ, φV ) log-likelihood. Some recent theoretical work, e.g., Li (1992), has focused on
the construction of a ‘likelihood-like’ function when no Q satisfies ∇Q = U exactly; see also
McCullagh & Nelder (1989, §9.3) and McCullagh (1991, §11.7). The results of this work seem
quite promising, but it is too early to assess their practical value. At present, then, likelihood-
ratio type methods are available when ∇Q = U can be satisfied by appropriate choice of the
quasi-loglikelihood function Q, but not in general.

The second main difference is the presence of the dispersion parameter φ. If φ is unknown it
must be estimated, e.g., by φ̃ as in (5). Allowance for estimation of φ may be made by using F
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instead of χ2 approximations for the null distributions of test statistics. For example, an approximate
100(1− α)% confidence region of the form

{β : W (β) ≤ φχ2
p,α},

for φ known, becomes
{β : W (β)/p ≤ φ̃Fp,n−p,α}

if φ̃ is an estimate on n − p degrees of freedom; here W (β) is (β̂ − β)T (D̂T V̂ −1D̂)(β̂ − β)

(estimate-based), or UT (DT V −1D)−1U (score-based), or 2[Q(β̂;y)−Q(β;y)] (LR-based, if Q
is defined).

The relative merits of estimate-based, score-based and LR-based methods are much as in
standard likelihood theory. The main considerations are outlined by McCullagh (1991, §11.6), who
argues that LR-based methods are preferable when available; this justifies the ongoing search for
a suitable function to use as a quasi-loglikelihood in cases where no Q satisfies ∇Q = U. When
no such Q exists, or if the computational expense of LR-based confidence regions cannot be met,
score-based methods are preferred to the approach based on asymptotic normality of β̂, on the
grounds of invariance to reparameterization.

If the ‘working’ covariance matrix V (µ) is incorrect, the asymptotic theory underlying the
above χ2 approximations is invalid. A remedy, at least asymptotically, in the case of the estimate-
based and score-based methods, is to make appropriate use of the ‘information sandwich’ of §2
when constructing test statistics, etc. Details are given by Rotnitzky & Jewell (1991), for example.
However, as observed by Rotnitzky & Jewell and by others (e.g., Breslow, 1990b), the resulting
‘robust’ methods can be rather unstable in other than large samples, and are computationally quite
cumbersome. As an alternative, Rotnitzky & Jewell propose adjustments like those of Rao &
Scott (1981) to the more stable, model-based methods described above, designed to restore the
validity of the standard χ2 approximations.

4. Efficiency and robustness

While quasi-likelihood provides estimators that are optimal among those derived from linear
estimating equations, an obvious question is to what extent efficiency is lost relative to estimators
outside that class. It is natural to make comparisons with the ‘globally’ optimum method, maximum
likelihood. Cox & Hinkley (1968) consider the case of ordinary least-squares estimation in a linear
model {µ(β) = Xβ, V (µ) = I}, and show how the asymptotic efficiency of least squares
relative to maximum likelihood depends principally on the skewness of the true error distribution.
Firth (1987b) extends these calculations to the context of models with constant coefficient of
variation {V (µ) = diag(µ2

i ); see §6}, and to quasi-likelihood models for overdispersed binomial,
Poisson and exponential data (see §5). It is found that quasi-likelihood estimates have high efficiency
under modest overdispersion, confirming a conclusion of Cox (1983).

Under only the moment assumptions (1), the method of maximum likelihood is not available
and so the calculations just referred to are mainly of theoretical interest. An alternative comparison
is with an estimator derived from the optimum quadratic estimating equation (Crowder, 1987;
Firth, 1987b) based on (1). Such calculations also are mainly of theoretical interest, since the
optimum relative weight given to linear and quadratic terms in the estimating equation depends on
the 3rd and 4th moments of Y, which are not specified in (1). Crowder (1987) shows that in some
situations even a sub-optimal quadratic estimating equation, not requiring knowledge of 3rd and 4th
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moments, yields an estimator with markedly better properties than the quasi-likelihood estimator;
but such situations do not seem typical.

Godambe & Thompson (1989) advocate the general use of optimum quadratic estimating
equations under assumptions such as (1), and present a unified theoretical framework, but as noted
in Firth (1987b) there are some practical difficulties. Quadratic estimating equations rely for their
unbiasedness on the correctness of V (µ), so the corresponding estimates lack the robustness of
quasi-likelihood estimates, mentioned in §2, to failure of the ‘working’ covariance function. The
problem of needing to know 3rd and 4th moments to determine optimum weights has been mentioned
already; if these are to be estimated from the data, highly unstable results are to be expected in all
but very large samples. Finally, and more seriously from a practical viewpoint, valid standard errors
for estimates derived from quadratic estimating equations also depend on 3rd and 4th moments,
and may therefore be difficult to determine reliably.

Quadratic estimating equations have been found useful in situations where the working covari-
ance function V (µ) is not fully specified but depends on a further unknown parameter or parameters
(see §§7,8).

The ‘robustness’ of quasi-likelihood estimates, in the sense of consistency under misspecifi-
cation of V (µ), should not be confused with the more usual meaning of robustness in connection
with regression methods, i.e., robustness to contamination of the data by spurious observations or
gross errors. In common with the method of least squares, quasi-likelihood estimators have a linear
influence function and therefore exhibit similar sensitivity to outliers. Robust alternatives to least
squares are well-developed in the literature; Morgenthaler (1992) explores the generalization of
one such alternative, the method of ‘least absolute deviations’, to the more general quasi-likelihood
setting.

5. Overdispersion

Quasi-likelihood methods are now routinely used in regression problems, especially generalized
linear models, to deal with data that are overdispersed relative to a standard probability model, e.g.,
a binomial or Poisson model. In the case of overdispersed ‘Poisson’ data, for example, variance
assumptions that may be made in order to accommodate extra variation are

var(Yi) = φµi (8)

or
var(Yi) = µi + λµ2

i . (9)

Of these, specification (8) fits directly into the quasi-likelihood framework; overdispersion is rep-
resented by φ > 1, and the rarer phenomenon of underdispersion by φ < 1. The quasi-likelihood
equations for β are the same as maximum likelihood equations based on a Poisson model, but the
standard likelihood analysis is modified by estimation of φ as in (5). That is, estimated standard er-
rors derived from the standard likelihood analysis are multiplied by

√
φ̃ to allow for overdispersion,

or underdispersion, whichever is the case.
The alternative specification (9) is more complicated, but is often regarded as more realistic.

One simple justification is that if λ > 0 it corresponds to a ‘random effects’ model in which
Yi|Zi ∼ Poisson(µiZi), and Z1, . . . , Zn are i.i.d. random effects with E(Zi) = 1, var(Zi) = λ;
here Zi might be thought of as representing the effect of unobserved covariates in a log-linear
model, for example. If λ is known, (9) is also amenable to the quasi-likelihood approach, in this
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case with φ = 1. This suggests a natural ‘see-saw’ algorithm in which quasi-likelihood estimation
of β is alternated with estimation of λ by some other method.

For overdispersed binomial data, the appropriate variance functions are different but the basic
idea is the same. Discussion of suitable variance specifications in the binomial case can be found
in Cox & Snell (1989, §3.2.4) and McCullagh & Nelder (1989, §4.5.1); see also Morton (1991).

The details of quasi-likelihood estimation, including moment-based methods for parameters in
the variance function, such as λ above, are given by Williams (1982) for overdispersed binomial
models and by Breslow (1984) for the Poisson case. Moore (1986) provides a unified asymptotic
treatment. Methods for criticism and elaboration of the assumed variance function are developed
by Moore (1987) and Ganio & Schafer (1992). Breslow (1989,1990a,b) studies quasi-score tests
in the overdispersed-Poisson context.

6. Multiplicative errors

Multiplicative-error regression models, in which Y1, . . . , Yn are assumed independent with

Yi = µi(β)Zi (i = 1, . . . , n) (10)

where the errors Zi have E(Zi) = 1, var(Zi) = φ, are natural alternatives to the standard additive-
error model if the response is a positive measurement, for example. The variance is var(Yi) = φµ2

i ,
which may adequately describe the commonly-found phenomenon of greater imprecision in larger
measurements.

A standard approach in such a model is to log-transform the data so that the errors become
additive, and then to perform a least-squares analysis, i.e., a maximum-likelihood analysis based
on a lognormal distribution for the {Zi}. Alternatively, (10) may be treated directly by quasi-
likelihood, which in the case V (µ) = diag{µ2

i } corresponds to maximum likelihood based on the
assumption that the {Zi} have a gamma distribution. There are thus two natural quasi-likelihood
approaches to (10), let us call them the lognormal and gamma methods, and it is of some interest
to consider briefly their relative merits. Asymptotic efficiency calculations (Firth, 1988; Hill &
Tsai, 1988) are inconclusive. For example, there is little loss of efficiency if the gamma method is
used when in fact the {Zi} are lognormally distributed, and vice versa. From a practical viewpoint
also it appears that there is usually little difference between the two methods of analysis, except
that the lognormal approach is highly sensitive to potential rounding error in measurements close to
zero, and breaks down completely if any observed yi is zero or negtive; such problems are avoided
if the original scale of the data is used throughout, as in the gamma method.

7. Longitudinal, clustered and other correlated data

The most active area of recent research on quasi-likelihood has been application and further
development of the methods in modelling non-independent responses, often in the form of counts
or binary outcomes, for which standard normal-theory approaches are inappropriate. Problems
involving longitudinal or repeated-measures data, cluster-sampled data, data with hierarchical error
structure or ‘random effects’, and time series, have been successfully analysed by quasi-likelihood
methods. The relevant literature is large, and only a brief survey of some of the main developments
is attempted here.

Regression problems involving successive responses from each of K independent subjects, or
from subjects sampled in K independent clusters, may be considered as a special case of (1) in
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which V (µ) is block-diagonal with covariance function matrices Vk(µk) (k = 1, . . . , K) for each
‘cluster’, or for each subject in the repeated-measures context. A simple framework for imposing
a common structure upon V1, . . . , VK is provided by Liang & Zeger (1986), who write

Vk(µk) = A
1/2
k (µk)Rk(α)A

1/2
k (µk)

in which Ak is a diagonal matrix of variance functions and Rk(α) a working correlation matrix,
possibly depending on unknown parameters α that are assumed equal for all k. As a simple ex-
ample, if the responses are counts then Ak might be specified as Ak = diag{µk}, mimicking the
Poisson variance function. The simplest specification of Rk(α) is Rk = I (Scott & Holt, 1982;
Binder, 1983), which simply ‘ignores’ any correlation among the responses. More complex spec-
ifications of Rk(α), based on a ‘guess’ at the underlying correlation structure, might be made in
the hope of improved efficiency of estimation for the regression parameters β in µ(β). In the
case of cluster sampling, an obvious specification has all the off-diagonal elements equal to α, a
single intra-cluster correlation parameter. For longitudinal data, R(α) may be chosen as in Liang
& Zeger (1986) or Zeger & Liang (1986) to describe a pattern of serial correlation among repeated
observations on the same subject. If α is known, quasi-likelihood estimation of β can be applied
directly. In practice an estimate of α must be used; Liang & Zeger (1986) develop a simple method
based on residuals.

Prentice (1988) and Prentice & Zhao (1991) develop these ideas further, and in particular suggest
that the quasi-likelihood estimating equations for β be supplemented by quadratic estimating
equations, then solved for (β,α) jointly. Zeger, Liang & Albert (1988) make a useful distinction
between ‘population averaged’, or marginal, regression models as above, and ‘subject specific’
models involving the estimation of random effects. Thall & Vail (1990) discuss alternative forms of
working covariance function Vk(µk) for longitudinal count data. For correlated binary data, Lipsitz,
Laird & Harrington (1991) show that specification in terms of odds ratios rather than correlations
has certain advantages; Liang, Zeger & Qaqish (1992) and the accompanying discussion synthesize
much of the development up to mid-1991; Sharples & Breslow (1992) and Lee, Scott & Soo (1993)
explore efficiency relative to maximum likelihood, and present valuable empirical findings on the
finite-sample performance of estimates and standard errors. Ashby et al. (1992) give other relevant
references, including several on applications of these methods.

Morton (1987, 1988) uses quasi-likelihood to model count data with a more complex, hierarchi-
cal variance-covariance structure, and develops quasilikelihood-ratio tests that mimic the standard
analysis of variance procedures for ‘split-plot’ type experiments. Engel (1990) and Firth & Har-
ris (1991) find that the same approach is particularly simple in the case of measurements subject
to several sources of multiplicative error; as in §6, quasi-likelihood then provides an alternative
to standard least-squares analysis of log-transformed data. Breslow & Clayton (1993) elegantly
synthesize a number of aspects of the quasi-likelihood approach to generalized linear models with
random effects, and present a ‘penalized’ quasi-likelihood method for use when subject-specific
rather than marginal effects are of interest; this is closely related to the general, algorithmic approach
of Schall (1991).

Quasi-likelihood methods have also been applied recently in the analysis of non-Gaussian
time series. For example, in the terminology used by Cox (1981) to classify time-series models,
Zeger (1988) uses quasi-likelihood estimation in the context of a ‘parameter-driven’ model for a
time series of counts, while Zeger & Qaqish (1988) show how to construct ‘observation-driven’
quasi-likelihood models for counts and other non-Gaussian series in which Markov structure can
be assumed.

8. Joint modelling of mean and dispersion: ‘extended’ quasi-likelihood
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The ‘overdispersed Poisson’ variance function (9), involving an unknown parameter λ, falls
outside the standard quasi-likelihood framework (1). The methods of §§1-3 do not yield an estimate
of λ. The same difficulty arises if the dispersion parameter φ is not assumed constant as in (1) but
is allowed to depend on covariates, as suggested by Pregibon (1984), according to some parametric
model. In simple cases such as (9), moment-based estimators can be constructed for parameters
in the variance specification (e.g., Williams, 1982; Breslow, 1984). The need for a systematic
approach for more general use prompted Pregibon (1984) and Nelder & Pregibon (1987) to develop
a ‘likelihood-like’ method; the quasi-loglikelihood defined in (7), although ‘likelihood-like’ with
regard to β, cannot be used directly for inference on a parameter such as λ.

A fairly flexible generalization of the standard variance assumption var(Yi) = φVi(µi) is

var(Yi) = φi(γ)Vi(µi;λ), (11)

in which the functions φi(.) are determined by known covariates or factors, e.g., via a generalized
linear model, and λ provides some flexibility in the specification of Vi(.). In most applications,
γ and λ are of low dimension and are not both present in the same model. The overdispersed-
Poisson variance (9) is an example with scalar λ and no γ. In overdispersed-binomial problems, a
commonly used variance assumption (e.g., Cox & Snell, 1989, §3.2.4) having γ but not λ, is

var(Yi) = {1 + γ(mi − 1)}Vi(µi),

where Vi(µi) is the binomial variance and mi the binomial ‘index’ or ‘number of trials’. Many other
instances of variance assumptions in the form (11) have appeared in the literature. Of particular
current interest is the use of this type of model in connection with quality-improvement experiments
(e.g., Nelder & Lee (1991); Engel, 1992), where φi(γ) is used to model dispersion separately from
the mean in order that process conditions can be determined under which the mean is close to a
desired target while the dispersion is minimized.

Pregibon (1984) and Nelder & Pregibon (1987) suggest, for joint inference on (β,γ,λ), an
‘extended’ quasi-loglikelihood (EQL) function

Q+(β,γ,λ;y) =

n∑

i=1

{
−1

2
log[2πφi(γ)Vi(yi;λ)]− 1

2

Dλ(yi, µi)

φi(γ)

}
,

in which Dλ is the deviance function,

Dλ(yi, µi) = −2

∫ µi

yi

yi − t

Vi(t;λ)
dt,

corresponding to the variance function Vi(µi;λ). Similar constructions are suggested also by
West (1985) and, particularly, Efron (1986). Motivation for Q+ is provided by the fact that, if there
exists a linear exponential-family model with variance function Vi(µi,λ), Q+ is the log-likelihood
function based on a saddlepoint approximation to that family. The overdispersed-Poisson variance
function µi + λµ2

i , for example, is the variance function for a negative binomial family; use of
Q+ for inference in that case is approximately the same as use of the negative-binomial likelihood.
The function Q+ ‘extends’ Q in (7) in the sense that, in the absence of γ and λ, the two functions
differ only by a constant, and so for purposes of inference on β are equivalent. McCullagh &
Nelder (1989, §9.6) show how the ‘likelihood-like’ properties of Q for inference on β, mentioned
in §1, extend in an approximate fashion to Q+ for inference about (β,γ,λ) jointly.
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Estimating equations derived from Q+ by differentiation with respect to β are

n∑

i=1

yi − µi

φiVi(µi,λ)
× ∂µi

∂βr
= 0 (r = 1, . . . , p),

and are, as before, unbiased estimating equations even if the variance specification is incorrect.
However, as pointed out by Davidian & Carroll (1988), the corresponding equations obtained by
differentiation with respect to γ or λ are not, in general, unbiased, even if the model assumptions
are correct. For example, in the simple case where φi(γ) = γ, a constant, differentiation with
respect to γ yields the equation

n∑

i=1

{Dλ(yi, µi)− γ} = 0. (12)

Typically E[Dλ(Yi, µi)] is approximately, but not exactly, equal to γ, and so each term of the sum
in (12) contributes a constant bias to the equation. As a result, γ is not consistently estimated.
This example sets the general pattern: except in some special cases, maximization of Q+ yields
inconsistent estimators of parameters γ or λ in the variance formula. Since consistency is usually
regarded as a minimum requirement of estimation procedures, this might be considered a rather
serious shortcoming.

An alternative to (12) is to use the so-called pseudo-likelihood procedure (Carroll & Rup-
pert, 1982, 1988; Davidian & Carroll, 1987) in which Dλ(yi, µi) in equations such as (12) is
replaced by (yi−µi)

2/Vi(µi;λ). The quadratic estimating equations that result are unbiased, and
hence the estimate consistent, provided that the assumed variance specification is correct. Mainly
for this reason, pseudo-likelihood has found wider use than EQL in practice.

Lee & Nelder (1992) compare EQL and pseudo-likelihood in simulation experiments. While
EQL is inconsistent for the variance parameters, and therefore unsatisfactory as n→∞, it is found
that estimates based on EQL can actually perform better in finite samples than a consistent alternative
such as pseudo-likelihood; the effects of bias are outweighed by differences in variance between
the two approaches. Further investigation is needed to identify more precisely the conditions under
which one or other method is to be preferred on grounds of efficiency, and at what sample size the
asymptotic bias of EQL begins to have an appreciable effect.

9. ‘Local’ quasi-likelihood

Much attention has recently been given to techniques for nonparametric regression, or ‘scat-
terplot smoothing’. One strand of development has been in algorithmic methods such as kernel
averaging, running means, running lines, etc., and the notion of local quasi-likelihood may be seen
as a straightforward extension of such methods.

For simplicity, consider the case with a single explanatory variable x and response Y . The aim
is to model E(Y |x). A parametric model as in (1) may be fitted to a sample of independent points
{(xi, Yi), i = 1, . . . , n} by solving the quasi-likelihood equations

n∑

i=1

yi − µi

V (µi)
× ∂µi

∂βr
= 0 (r = 1, . . . , p) (13)
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for the unknown parameters β in µi(β) = E(Yi|xi). For simplicity, we re-express (13) as∑
ui(β) = 0. For any specified value of x, a ‘local’ model with parameter vector β(x) may

be estimated by solving for β(x) the equations

n∑

i=1

wi(x)ui(β(x)) = 0, (14)

where the weights {wi(x)} are chosen to be close to zero if xi is distant from x. The regression
function E(Y |x) is then estimated by µ(β̂(x)).

A simple example has µ(β) = xβ, V (µ) = µ, in which the scalar parameter β is the slope of
a straight line regression through the origin. Solution of the ‘global’ quasi-likelihood equation

n∑

i=1

yi − xiβ

xiβ
xi = 0

yields β̂ =
∑

yi/
∑

xi, the well-known ratio estimate. The introduction of weights wi as in (14)
results in the ‘local’ ratio estimate β̂(x) = {∑wi(x)yi}/{

∑
wi(x)xi} at each value of x, and the

corresponding fitted regression curve is Ê(Y |x) = xβ̂(x).
The weights {wi(x)} may be chosen in a variety of ways. One possibility is to use a kernel

function, such as the Gaussian kernel wi(x) = f((xi − x)/b) where f(z) = exp(−z2/2), in
which b is an adjustable bandwidth. Several other forms of weighting are discussed in Hastie &
Tibshirani (1990, §2).

Tibshirani & Hastie (1987) introduced the idea of a locally-weighted score equation as in
(14). Firth, Glosup & Hinkley (1991) use local quasi-likelihood fitting to test the adequacy of a
parametric regression model µ(β); the parametric fit µ(β̂) is the limit as the bandwidth b tends to
infinity of the local regression curves µ(β̂b(x)), and this embedding provides a suitable framework
for criticism of µ(β) itself. Fan, Heckman & Wand (1992) develop asymptotic theory and discuss
bandwidth selection for the class of locally-fitted generalized polynomial models, in which µ(β) =
g−1(β1+β2x+. . .+βpx

p) for some specified link function g; local fits based on polynomials of odd
degree (linear, cubic,...) are found to have particularly good properties, including reduced bias near
the ends of the range of sample x-values. This last finding generalizes the well known result that the
edge-effect bias of a kernel-averaging smoother may be improved by using instead kernel-weighted
least squares to fit local straight lines. In Severini & Staniswalis (1992), local quasi-likelihood
fitting is used in a ‘semiparametric’ model involving both parametric and nonparametric terms;
‘locally constant’ fitting of the nonparametric part, based effectively on a polynomial of degree
zero, is considered in detail.

Work on these ideas is in its infancy, but it appears that local quasi-likelihood fitting as a
generalization of smoothing methods such as kernel averaging and local least squares has promise,
and merits further research.

10. Concluding remarks

This paper surveys a large body of recent literature on quasi-likelihood methods, but is far from
comprehensive. Topics left out, in addition to those already mentioned at the end of §1, include
applications in models with covariate measurement error (e.g., Whittemore & Keller, 1988; Carroll
& Stefanski, 1990) and work on computational algorithms (e.g., Gay & Welsch, 1988; Osborne,
1992).
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SUMMARY

This paper reviews some recent developments and applications of quasi-likelihood functions,
as introduced by Wedderburn (Biometrika 61, 1974, 439-47) and McCullagh (Ann. Statist. 11, 1983,
59-67). Topics discussed include optimality, efficiency and robustness of estimation; calculation of
estimated standard errors; applications such as overdispersion, multiplicative errors, longitudinal
data and other correlated data; and the notions of ‘extended’ quasi-likelihood and ‘local’ quasi-
likelihood.

RESUME

Cet article fait un exposé des applications et développements récents en matière de fonctions
de quasi-vraisemblance, introduites par Wedderburn (Biometrika 61, 1974, 439-47) et McCullagh
(Ann. Statist. 11, 1983, 59-67). Nous discutons, entre autres, des sujets suivants: robustesse, efficacité
et optimalité de l’estimation de paramètres et calcul d’écart-types estimés. Plusieurs applications
sont également présentées pour illustrer les problèmes de données trop dispersées, de données à
erreurs multiplicatives, de données longitudinales ou corrélées d’une autre façon. Nous abordons
finalement les notions de quasi-vraisemblance étendue et de quasi-vraisemblance locale.
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