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On improved estimation for importance sampling

David Firth
University of Warwick, UK

Abstract. The standard estimator used in conjunction with importance sam-
pling in Monte Carlo integration is unbiased but inefficient. An alternative
estimator is discussed, based on the idea of a difference estimator, which is
asymptotically optimal. The improved estimator uses the importance weight
as a control variate, as previously studied by Hesterberg (Ph.D. Disserta-
tion, Stanford University (1988); Technometrics 37 (1995) 185–194; Statis-
tics and Computing 6 (1996) 147–157); it is routinely available and can de-
liver substantial additional variance reduction. Finite-sample performance is
illustrated in a sequential testing example. Connections are made with meth-
ods from the survey-sampling literature.

1 Introduction

Importance sampling is one of the most effective and commonly used techniques
of variance reduction in Monte Carlo simulation, and is described in numerous
texts (e.g., Evans and Swartz, 2000; Hammersley and Handscomb, 1964; Ripley,
1987; Robert and Casella, 2004). If the aim is to estimate θ = Ef {φ(X)} =∫

φ(x)f (x)dx, where f (x) is a density function, the method of importance sam-
pling is to generate variates X1, . . . ,Xn from density g(x) and then to estimate θ

by

θ̂0 = n−1
n∑

i=1

φ(Xi)f (Xi)/g(Xi).

This estimator is unbiased, and has variance

var(θ̂0) = n−1
∫ {

φ(x)
f (x)

g(x)
− θ

}2

g(x)dx.

The density g is chosen to be easily simulated from, and to be such that
φ(x)f (x)/g(x) is nearly constant so that var(θ̂0) is small.

In the following, g is taken to be fixed, and alternatives to θ̂0 are considered for
estimating θ from X1, . . . ,Xn. Notation is simplified by using just f to stand for
f (x), and fi for f (Xi), etc.
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2 Asymptotically optimum estimator

Suppose that g has the same support as f . Then for any fixed value of the con-
stant c, the estimator

θ̂c = θ̂0 + c
(
1 − n−1

∑
fi/gi

)

is unbiased, and has variance

var(θ̂c) = n−1
∫ {

(φ − c)
f

g
− (θ − c)

}2

g dx.

The variance here is easily shown to be minimized by the choice c = γ , say, where

γ = Ef (φf/g) − θ

Ef (f/g) − 1
; (2.1)

and the minimum variance may be expressed as

var(θ̂γ ) = var(θ̂0) − n−1 {Ef (φf/g) − θ}2

Ef (f/g) − 1
.

The above optimality result follows directly from familiar ideas in the literature
on survey sampling and on simulation. In the terminology of survey sampling,
θ̂c is a difference estimator; see, for example, Särndal, Swensson and Wretman
(1992), Section 6.3 for the general idea, and Van Deusen (1995) for application to
the estimation of integrals. In the present context, if h(x) is any function which is
thought to approximate φ(x) to some extent, and whose mean Ef {h(X)} is known,
then h(x) generates a difference estimator

θ̂h(x) = Ef {h(Y )} + n−1
n∑

i=1

(φi − hi)
fi

gi

which is unbiased for θ . The estimator θ̂c above results from taking h(x) ≡ c,
and optimality of the particular choice c = γ follows either by simple calculus or
as a special case of arguments given by Särndal, Swensson and Wretman (1992),
Section 6.8. In terms of the literature on Monte Carlo methods, θ̂c is an example
of the method of control variates. Since Eg(f/g) is known to equal unity, f/g

is available as a control variate in the estimation of θ = Eg(φf/g), and it is well
known that the optimum choice of c is then covg(φf/g,f/g)/varg(f/g) (e.g.,
Ripley, 1987, p. 124), which is the same as γ above.

In practice, γ is usually unknown, and must also be estimated. If γ̂ is an esti-
mator such that n1/2(γ̂ − γ ) = Op(1), then

θ̂γ̂ = θ̂γ + (γ̂ − γ )
(
1 − n−1

∑
fi/gi

)

= θ̂γ + Op(n−1),
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since n1/2(1 − n−1 ∑
fi/gi) = Op(1) under sampling from g. Thus θ̂γ̂ has vari-

ance var(θ̂γ ) + O(n−2) and asymptotically negligible bias of order O(n−1): pro-
vided γ̂ is

√
n-consistent, the optimum first-order efficiency of θ̂γ within the

class θ̂c is attained by θ̂γ̂ .
For estimation of γ from X1, . . . ,Xn, various

√
n-consistent estimators im-

mediately suggest themselves. One possibility is to estimate the unknowns
Ef (φf/g), Ef (f/g) and θ in (2.1) by the corresponding unbiased sample quanti-
ties n−1 ∑

φi(fi/gi)
2, n−1 ∑

(fi/gi)
2 and θ̂0. Another is the ordinary least-squares

estimate obtained by linear regression of φifi/gi on fi/gi :

γ̂ = n−1 ∑
φi(fi/gi)

2 − (n−1 ∑
fi/gi)θ̂0

n−1 ∑
(fi/gi)2 − (n−1 ∑

fi/gi)2 . (2.2)

By the argument given above, these and other possibilities are equivalent to first
order, asymptotically as n → ∞. The least-squares estimator γ̂ in (2.2) has some
particularly appealing properties. In the trivial case where φ(x) ≡ θ , γ = γ̂ = θ ,
exactly: in contrast to the standard estimator θ̂0, θ̂γ̂ estimates θ without error in this
case. Similarly, in the ideal but impracticable setting where φ ∝ g/f , γ̂ = γ = 0,
and again θ is estimated without error. The latter property, in particular, suggests
that the least-squares choice γ̂ of (2.2) should enjoy a certain advantage in terms
of second-order efficiency, but this has not been investigated in detail.

The estimator θ̂γ̂ , with γ̂ as in (2.2), has been previously studied by Hesterberg
(1988, 1995, 1996), a primary part of whose motivation was the equivariance of
that estimator under the addition of a constant to φ(x). The asymptotic optimality
above complements Hesterberg’s empirical studies, from which it is concluded that
θ̂γ̂ performs well, and asymptotically as well as any of the competitors considered,
in a variety of importance-sampling problems. We note that one of the competitors
studied by Hesterberg (1988, 1995, 1996) is the “ratio” estimator

θ̂ratio = θ̂0

n−1 ∑
fi/gi

,

which may be viewed as a simple renormalization of θ̂0 to achieve equivariance un-
der φ(x) �→ φ(x) + constant. In the finite-population sampling literature this cor-
responds to the well-known form

∑
(φi/πi)/

∑
(1/πi), where {πi} are first-order

sample inclusion probabilities, and in the survey-sampling context this estimator
is usually found to perform better (e.g., Särndal, Swensson and Wretman, 1992,
Section 5.7) than the unbiased Horvitz–Thompson estimator N−1 ∑

φi/πi which
corresponds to θ̂0 above. In the empirical studies of Hesterberg (1988, 1995, 1996)
and in the example of Section 3 below, θ̂ratio is found to perform markedly worse
in the importance-sampling context than θ̂0. This may be explained heuristically
in terms of the θ̂c family: while θ̂0 is optimal for the “ideal” importance-sampling
problem in which φ ∝ g/f , it is easily shown that θ̂ratio = θ̂θ + Op(n−1), so that
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θ̂ratio is asymptotically optimal for the trivial problem in which φ(x) ≡ θ . So θ̂ratio
is efficient in some situations where importance sampling itself offers little or no
variance reduction, but is typically out-performed by θ̂0, which in turn is out-
performed by θ̂γ , when importance sampling is effective.

3 Example

As an illustration, we use the now-classical example of Siegmund (1976), con-
sidered also in Ripley (1987), Section 5.2. Suppose Z1,Z2, . . . are independently
distributed as N(μ,1), with partial sums Sk = Z1 + · · · + Zk . For a ≤ 0 < b let

T = min{k : Sk ≤ a or Sk ≥ b},
and define θ = pr(ST ≥ b) = Ef {I (ST ≥ b)}, where f is the density of ST and
I (·) is the indicator function. Siegmund (1976) suggests importance sampling with
realizations X1, . . . ,Xn of ST obtained by drawing the {Zi} not from N(μ,1) but
from N(−μ,1); the ratio of densities f/g is then exp(2μST ), and the standard
importance-sampling estimator is

θ̂0 = n−1
∑

I (Xi ≥ b) exp(2μXi).

Table 1 shows the results of a simulation experiment with a = −4, b = 7 and
n = 104, patterned after Ripley (1987), Table 5.2. The γ̂ used here is the least-
squares estimator from (2.2).

The empirical efficiencies shown in Table 1 support the intuition developed in
Section 2. When the variance reduction provided by importance sampling itself is
very large—in the case μ = −0.5 a factor of 9600 is reported by Ripley (1987)—
θ̂0 is close to optimal and no appreciable improvement is provided by θ̂γ̂ . In other

situations θ̂γ̂ is considerably more efficient than θ̂0: when μ = −0.1, for example,
the variance reduction factor of 12 reported by Ripley (1987), for importance sam-
pling with θ̂0, is improved to a variance reduction factor of more than 200 by use
of θ̂γ̂ . In all cases the computational cost of θ̂γ̂ differs negligibly from that of θ̂0.

Table 1 Empirical performance of three estimators of θ = pr(ST ≥ b). Variances are all estimated
from 1000 simulation runs, and are accurate to two significant digits

Estimated standard deviations Est. rel. efficiency

μ θ θ̂0 θ̂ratio θ̂γ̂ var(θ̂0)/var(θ̂γ̂ )

−0.1 0.1444 0.0011 0.0026 0.00024 19.44
−0.2 0.0408 0.00020 0.0011 0.000092 4.52
−0.3 0.00991 0.000038 0.00041 0.000029 1.68
−0.5 0.000506 0.0000025 0.000063 0.0000024 1.02
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Hesterberg (1988, 1995, 1996) provides further empirical evidence, finding
that θ̂γ̂ is hugely more efficient than θ̂0 in some problems, but that, as in the above
example, there is little or no efficiency gain when the quantity θ being estimated
is a very small probability.

4 Discussion

We have considered here the “pure” importance-sampling problem in which noth-
ing is known except that f and g are densities, so that the expectations Ef (g/f ) =
Eg(f/g) = 1 are known. With only this knowledge, θ̂c is the most general class
possible of control-variate or difference estimators. If other functions are available
whose expectation is known, such functions may be used as additional control
variates, and may yield still further variance reduction; see Hesterberg (1996) for
exploration of this.

The routine availability of f/g as a potentially helpful control variate seems to
have been neglected in many, perhaps most, published applications of importance
sampling. The resulting variance reduction is computationally inexpensive, and—
as the above example shows—can be substantial. The gain in precision achieved
by this device will be greatest when the regression of φifi/gi on fi/gi explains a
substantial fraction of the variance in the former. Figure 1 shows, for one typical
sample drawn at each of μ = −0.1 and μ = −0.5 in the above example, the fitted
regression line. Also shown in each panel of the figure is the corresponding statis-
tical model implicit in the use of the standard estimator θ̂0, which is a linear model
with intercept only. The R2 values are respectively 0.95 for μ = −0.1 and 0.04
for μ = −0.5; in the latter case, the low value of R2 results in almost no reduc-
tion in variance relative to the standard estimator θ̂0 (as was seen in Table 1). In
Figure 1(b) there are fewer than 100 points (out of 104 in all) in the φi = 0 group,
whereas in Figure 1(a) there are more than 3000 such points.

An incidental point to note is that the plots displayed in Figure 1 show clearly
that, from a statistical modeling perspective, a linear regression line is a poor fit
to the data. It is evident that more variance could be explained by a suitable non-
linear fit. The use of nonlinear models in a probability sampling framework such
as this is explored in some generality by Firth and Bennett (1998); unfortunately
their results—on, for example, the use of generalized linear models—are rarely
applicable in the present context, because expectations of nonlinear functions of
f/g are required. The simple linear model’s apparent lack of appeal as a statistical
description of the sample does not, in any case, invalidate its use as shown above
for the specific purpose of variance reduction.

The requirement that g has the same support as f is nontrivial: without it, the
mean under importance sampling of n−1 ∑

fi/gi is not 1, and so θ̂c is biased. If a
sampling density g is chosen whose support is a strict subset of that of f , as may
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(a)

(b)

Figure 1 Plot of φifi/gi versus fi/gi , for two typical samples in the sequential testing example:
(a) with μ = −0.1, (b) with μ = −0.5. The solid line is the fitted least squares regression which
underlies θ̂γ̂ ; the dashed line, drawn at the sample mean of φifi/gi , represents the corresponding

model underlying θ̂0.

be convenient for example if φ(x) is zero-valued in some interval, an appropriately
adjusted definition of θ̂c would require knowledge of Ef {I (g > 0)}, which usually
would be unavailable; in such a situation there appears to be no alternative to θ̂0.
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