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Abstract

We consider the problem facing a risk averse agent who seeks to liquidate

or exercise a portfolio of (infinitely divisible) American style options. The

optimal liquidation strategy is of threshold form and can be characterised

explicitly as the solution of a calculus of variations problem. Apart from a

possible initial exercise of a tranche of options, the optimal behaviour involves

liquidating the portfolio in infinitesimal amounts, but at times which are sin-

gular with respect to calendar time. We consider a number of illustrative

examples involving CRRA and CARA utility, stocks and portfolios of options

with different strikes, and a model where the act of exercising has an impact

on the underlying asset price.

1 Introduction

In this paper we consider the problem facing a risk-averse agent who seeks to liq-

uidate or exercise a portfolio of American-style options. The agent cannot hedge

and so faces an incomplete market. If the market were complete, the agent would

exercise a tranche of options at a single stopping time. This is no longer true in our

incomplete setting, and the key contribution of this paper is to allow the agent to

exercise fractions of the portfolio over time. Indeed, the options are assumed to be

perfectly divisible, and the (potentially different) constituents of the portfolio may

be exercised at a family of stopping times.
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Our objective is to study the optimal liquidation problem in a reasonably general

set-up with a time-homogeneous diffusion price process, general utility function, and

option payoff. Our first result is to show that the optimal exercise strategy is of

theshold form - the agent should exercise options the first time the asset price

reaches a barrier level which depends on that part of the portfolio which has not

yet been exercised. Just enough options are exercised to keep the portfolio holdings

below the barrier, and thus the solution is a singular control.

This barrier can be characterised in an explicit form as the solution of a calcu-

lus of variations problem. We give three examples where we can perform explicit

calculations, which are chosen to illustrate a variety of situations covered by our

approach. The idea is to calculate the value function for any strategy of threshold

type, and then to choose the best barrier. This is an alternative to the usual HJB

approach, although once we have solved for the candidate barrier, we use the HJB

approach for the verification. The advantage of this approach is that it decouples

the problems of finding the value function and finding the optimal strategy, whereas

the standard HJB approach finds both simultaneously. The disadvantage is that

it requires that a solution for the value function can be found for a wide class of

strategies, and not just the optimal strategy. Similar ideas have been tried on other

stochastic control problems: contrast the solutions of Peskir [17] and Hobson [14]

to an optimal stopping problem for Brownian motion.

There are several key features of the model which are crucial in allowing us to

make progress in obtaining an explicit solution. Firstly, we work with respect to

a single numeraire and assume that the characteristics of the option payoff and

the agent’s utility function can be expressed relative to this numeraire in such a

way that they are time-independent. Secondly, we assume that the dynamics of the

underlying asset are also time-homogeneous. Thirdly, we assume that the aim of the

agent is to maximise utility of wealth, where wealth is calculated as revenue from

the exercise of options over the infinite horizon. Finally, the options themselves

are perpetual American style. All of these features combine to make the problem

independent of time. However, we are still left with three dimensions - the asset

price, wealth of the agent, and the quantity of options remaining.

The observation that partial exercise of American options may be optimal in an

incomplete market appears in models considering identical options which are exercis-

able in discrete units. A natural setting for this problem is executive stock options,

whereby managers receive American call options on the stock of their company, and

are typically constrained from hedging, see Carpenter [6]. Jain and Subramanian
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[15] treated the multiple option exercise problem in a binomial setting. Grasselli

and Henderson [11] obtain closed-form solutions for successive exercise thresholds

in a model of multiple perpetual American options. Also, Rogers and Scheinkman

[18] and Leung and Sircar [16] have studied numerical solutions for exercise thresh-

olds for options with a finite maturity. Another area where problems of American

option exercise arise is that of real options (see Dixit and Pindyck [10]), and Hen-

derson [12] considered the situation of a single perpetual American call option and

dervied closed-form solutions for the threshold and utility indifference option value.

Swing options also result in consideration of a multiple optimal stopping problem,

see Carmona and Touzi [5].

We consider three representative examples which can be tackled using our re-

sults. In general, the optimal boundary depends upon the wealth of the agent.

Our first example with power utility illustrates this dependence. The boundary is

wealth and portfolio dependent and satisfies a consistency condition with regard to

the initial endowment.

The second situation we consider is a portfolio of (call) options with different

strikes. We begin with a lemma which under limited but natural circumstances

describes the order in which options are exercised under optimal behaviour. We

solve explicitly for the boundary when the portfolio has call options with two differ-

ent strikes. The boundary has a jump at the point where the agent switches from

exercising the low strike calls to the high strike calls. The solution is such that the

agent waits for a higher asset price before exercising the low strike options than an

agent with a portfolio containing the same total quantity of options but each with

the same low strike. Henderson and Hobson [13] previously considered a special

case of this example with identical options, exponential utility, and lognormal price

dynamics.

In our third example, we incorporate a price impact such that exercising options

or selling stock will have an effect on the asset price. Our example takes an ex-

ponential Brownian motion for the fundamental value of the asset, and appends a

permanent price impact which is a function of the quantity sold or exercised. This

mechanism is similar to those used in studies of the price impact of a large trader

(see Bank and Baum [4] and references therein). The solution remains a singular

control, however the price impact causes the boundary to shift such that the wait-

ing region is larger. Intuitively, since exercising causes the price to fall, in order

to compensate, the agent waits for a higher price level to start exercising. Various

limiting situations are of interest. We show that for some parameter values, the
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agent will always retain part of her portfolio. The solution also has the feature that

even with an arbitrarily large option position, it might be the case that the agent

never exercises any options, even though they all start in-the-money.

The character of our solution as a singular control makes our example quite

different to studies of liquidity involving a temporary price impact (Almgen [2],

Almgen and Chriss [3], Cetin, Jarrow and Protter [7], Cetin and Rogers [8] and

Rogers and Singh [19]). Usually the temporary impact plays the role of a transac-

tion cost and there is a trade-off between unwinding a position quickly to reduce

risk exposure and the accumulation of transactions costs. In particular, Scheid

and Schoneborn [20] model stock liquidation by a risk averse agent with Brownian

price dynamics and characterise the liquidation rate as the solution of a non-linear

parabolic pde.

The paper is structured as follows. In the next section we describe the set-up

of the model in detail. In Section 3 we describe how the problem can be translated

into the problem of choosing an optimal boundary to minimise a certain functional,

and how the optimum can be characterised via calculus of variations. In Section 4

we apply this general solution to several important examples. These examples form

the most important feature of this study.

2 The model

We consider a risk-averse agent with an initial portfolio of options on a single

underlying. Her aim is to maximise the expected utility of the total revenue achieved

from the liquidation of her portfolio.

The portfolio consists of options with (potentially) different characteristics. The

main example we have in mind is when the different types of options have different

strikes. Her initial portfolio can be considered as a measure ρ on the space K ⊆ R of

possible types or labels. If ρt is the measure of un-exercised options at time t then

(ρt)t≥0 is a decreasing family of measures (on (K,B(K))) with ρ0 = ρ and ρt ≥ 0.

We denote by Θt the total number of remaining options so that Θt =
∫

K
ρt(dk)

and Θ0 = θ0 =
∫

K
ρ(dk): we will argue below that for the class of problems which

we consider the general setting of a measure ρt can be reduced to a simpler case in

which Θt is a sufficient statistic. This is clearly the case if the portfolio of options

are all of the same type.

We assume that all the options are on the same underlying asset. We let Xt

describe the price of this asset. We work on a filtration (Ω,F , (F)t≥0,P) supporting
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a Brownian motion B and assume that Xt follows a time-homogeneous diffusion1

process with dynamics

dXt = σ(Xt)dBt + µ(Xt)dt X0 = x

such that X is transient to a lower value x (typically 0). We denote the scale

function of X by S which we normalise so that S(x) = 0, and the generator of X

by LX so that LXf = (1/2)σ(x)2fxx + µ(x)fx. In particular, S is a soluton to

LXf = 0.

All options are assumed to be perpetual American options, whose payoff does

not depend explicitly on t. Instead the payoff from exercising a unit of option with

label k is given by C = C(x, θ, k), where C is continuous. The total revenue from

the liquidation of options by the agent is

R =

∫ ∞

t=0

∫

K

C(Xt,Θt, k)(−dρt(dk))

and the objective of the agent is to maximise

E[U(w +R)]

for fixed initial wealth2 w and concave (and continuously differentiable) utility func-

tion U . Here the maximisation is taken over adapted decreasing families of measures

ρt.

2.1 Examples

Example 2.1 (Portfolio) The most important interpretation of the option label

or type is as the strike of the option. The choice ρ0(dk) = θ0δ(k −K)dk, where δ

is the Dirac function, corresponds to a portfolio of identical call options each with

strike K. If ρ0(dk) =
∑

i θ
(i)δ(k−K(i))dk where

∑

i θ
(i) = θ0 then the agent has a

portfolio of call options with different strikes.

Example 2.2 (Dynamics) Typically we will assume that the dynamics of X are

lognormal so that dXt = Xt(σdB + µdt) (with µ < σ2/2). Then x = 0 and

S(x) = xβ with β = 1−2µ/σ2. Alternatively we may take X to be linear Brownian

1We need X to be time-homogeneous and Markovian but the continuity property of a diffusion

is not strictly necessary. Rather we need the maximum process of X to be continuous. Other

processes which fit this description include (continuous increasing functions of) spectrally Lévy

negative processes.
2The initial wealth could be incorporated into the utility function U but it is convenient to

include it directly within the formulation of the problem.
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motion which might represent the logarithm of the traded price. It will be clear

that provided the option payout is modified to reflect the modelling changes, the

analysis is not sensitive to a re-parameterisation of this form.

Example 2.3 (Option payout) If the options are call options and x denotes the

traded price, and if the label is the strike of the option then the payoff C is of

the form C(x, θ, k) = (x − k)+. If x is the logarithm of the traded price then

C(x, θ, k) = (ex − k)+. We assume the agent receives the equivalent cash proceeds

upon exercise. Clearly, shares can be included by considering an option with strike

zero.

Example 2.4 (Price Impact) One interesting example arises when the act of

exercising options or selling shares has a detrimental effect on the price of the

underlying. Suppose that X has lognormal dynamics, and set Yt = Xte
−p(θ0−Θt) so

that (dYt/Yt) = σdBt + µdt + pdΘt. (Note that Θ is a decreasing, finite variation

process.) Then we might take C(Xt,Θt, k) = (Xte
−p(θ0−Θt) − k)+ = (Yt − k)+.

The interpretation is that Xt represents the ‘fundamental value’ of the share, and

Yt the ‘trading price’ of the share, net of the impact of sales by the manager. The

parameter p describes the (permanent) price impact of sales. The idea is that the

market interprets exercises by the manager as a negative signal. Another application

in this vein is the dilution effect arising from the issue of new shares to the manager.

3 The solution

The aim of this section is to provide a solution to the general problem described

in the previous section. The idea is to use the form of the problem (and especially

the time-homogeneity) to deduce that the optimal strategy involves exercising op-

tions the first time that the price crosses some wealth and portfolio dependent, but

time-independent threshold. Then, for any strategy of this form we calculate the

expected utility of the agent. Finally we use calculus of variations to determine

the optimal set of thresholds. The method should be contrasted with the classi-

cal HJB equation approach in which the optimal strategy and value function are

derived simultaneously. The advantage of decoupling the two problems is that in-

dividually the two problems may be simpler than the combined problem; however

this technique only works if the value function can be characterised for an arbitrary

threshold strategy.

We begin with a lemma which in limited but natural circumstances describes
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the order in which options are exercised under optimal behaviour. The important

case is when Γ(k) = k and the label is precisely the strike of the option.

Lemma 3.1 Suppose C(x, θ, k) = (G(x, θ) − Γ(k))+ where G is non-decreasing in

θ and Γ is non-decreasing in the label k. For any strategy for which options with a

high label are exercised before options with a low label, there is a modified version for

which options are exercised in increasing label order which raises at least as much

revenue.

Proof: Consider a strategy, identified with ρ̂t, in which options are not exercised in

increasing order of label. Let ρ̃t be a modified version of this strategy in which out-

of-the-money options (ie those with G(x, θ) < Γ(k)) are not exercised but otherwise

options with the same labels are exercised at the same times, and let ρ′t be a further

modification of ρ̃ in which the same quantity of options are exercised at each time

t, but they are exercised in order of increasing label. Then, using Θ to represent

the total number of options remaining in each case, we have by construction that

for each element of the sample space Θ̂t ≤ Θ̃t = Θ′
t. From the monotonicity of G

we have G(Xs, Θ̂s) ≤ G(Xs, Θ̃s) = G(Xs,Θ
′
s).

The key property of the strategy ρ′ is that for each t and element of the sample

space, the measures ρ0 − ρ̃t and ρ0 − ρ′t have the same total mass, but
∫

K
Γ(k)(ρ0 −

ρ̃t)(dk) ≥
∫

K
Γ(k)(ρ0 − ρ′t)(dk). Then

∫ t

0

∫

K

(−dρ̂s(dk))(G(Xs, Θ̂s) − Γ(k))+

=

∫ t

0

∫

K

(−dρ̃s(dk))(G(Xs, Θ̂s) − Γ(k))

=

∫ t

0

G(Xs, Θ̂s)(−dΘ̃s) −

∫

K

Γ(k)(ρ0 − ρ̃t)(dk)

≤

∫ t

0

G(Xs,Θ
′
s)(−dΘ

′
s) −

∫

K

Γ(k)(ρ0 − ρ′t)(dk)

This inequality holds at t = ∞, and hence if R with appropriate superscripts denotes

the total revenue under the various strategies then we have R̂ ≤ R′ as required. �

Henceforth we will make the following assumption:

Assumption 3.2 We assume either that the payoffs of the option contracts are

such that the hypotheses of Lemma 3.1 are satisfied, or that the order in which the

options contracts must be exercised is predetermined.

In the second case the label on the option might correspond to the order in

which the options are exercised. In either case, implicit in the optimal strategy is a
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Xt, St

Θt

h(φ)

H(s)

Figure 1: A generic threshold H(s) and inverse h(θ).

fixed order in which options are exercised, and we can write the label of the θ-to go

option as J(θ). Then C(x, θ, J(θ)) may be abbreviated to C(x, θ) and, given Θt, ρt

can be reconstructed as

ρt(A) =

∫ Θt

0

dθI{J(θ)∈A}

where I is the indicator function.

Given the time-homogeneity of the problem — in terms of price dynamics and

option payoffs — it follows that if it is optimal not to exercise options at a given price

level, then provided no options have been exercised in any intervening period, it will

still be optimal to not exercise the options if the price returns to this level. Hence the

exercise strategy must take the form of a set of thresholds, and must be Θt = H(St)

where St = maxs≤tXs. Here H is a necessarily non-increasing function, which we

assume to be right-continuous, though we do not preclude jumps, nor intervals of

constancy. Note that H may depend on w0 the initial wealth of the agent. We

denote by h = h(θ) = h(θ;w0) the left-continuous inverse of H, see Figure 1.

Given a non-increasing threshold function H (or equivalently, given h) we can

define an exercise strategy as follows. If the initial number of options θ0 is such

that θ0 > H(x0) then the agent exercises θ0 − H(x0) options immediately. After

this potential initial transaction, we insist that Θt = H(St). If H is continuous

then apart from a possible exercise of a tranche of options at t = 0, the exercise

strategy is continuous, though it is singular with respect to time since exercise only

occurs when Xt is at its historical maximum. Singular control also appears in the

transactions costs literature, see Davis and Norman [9].
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Theorem 3.3 For strategies of threshold type and for θ0 ≤ H(x0) we have

E[U(w +R)] = U(w) + S(x)

∫ θ0

0

C(h(θ), θ)

S(h(θ))
U ′

(

w +

∫ θ0

θ

C(h(φ), φ)dφ

)

dθ

Proof: For strategies of this threshold type we have that the total revenue from

exercise is

R = −

∫ ∞

t=0

C(Xt,Θt)dΘt =

∫ θ0

0

I{S≥h(θ)}C(h(θ), θ)dθ

where S = S∞ = maxtXt, which is finite almost surely by the transience assump-

tion on Xt. In particular, conditional on S,

R = R(S) =

∫ θ0

H(S)

C(h(θ), θ)dθ

is deterministic. Then, conditioning on S, integrating by parts and using the change

of variable θ = H(s),

E[U(w +R)] =

∫ ∞

x

P(S ∈ ds)U(w +R(s))

= [−U(w +R(s))P(S ≥ s)]
∞
x +

∫ ∞

x

P(S ≥ s)U ′(w +R(s))R′(s)ds

= U(w) −

∫ ∞

x

ds
S(x)

S(s)

dH

ds
C(s,H(s))U ′(w +R(s))

= U(w) + S(x)

∫ θ0

0

C(h(θ), θ)

S(h(θ))
U ′(w +R(h(θ)))dθ.

�

Thus, for a given threshold function we have calculated the value function for

the agent. It remains to choose the optimal threshold, h∗ say. First we need to find

h∗(0). For a general h set h̄ = h(0), and for small θ consider

1

θ

∫ θ

0

C(h(ψ), ψ)

S(h(ψ))
U ′

(

w +

∫ θ

ψ

C(h(φ), φ)dφ

)

dψ.

By l’Hôpital’s rule, provided C is continuous, this tends to

C(h̄, 0)

S(h̄)
U ′(w),

and the optimal h∗(0) is chosen to maximise this expression. Effectively h∗(0) is

fixed by considering the problem for the risk-neutral agent.

Fix x0, w0 and θ0. The aim is to choose a function h∗(φ) = h∗(φ;w0, θ0) to

maximise
∫ θ0

0

C(h(θ), θ)

S(h(θ))
U ′

(

w0 +

∫ θ0

θ

C(h(φ), φ)dφ

)

dθ. (1)
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The optimal threshold h can be characterised by calculus of variations.

Given C write c for the inverse c = C−1 so that if z = C(x, φ) then x = c(z, φ).

We assume that C and c are continuous and twice differentiable. Note that we

only need this property locally in the region where exercise takes place, so that if

C(x, k) = (x− k)+ then it is satisfied since exercise only occurs when the option is

in-the-money.

Theorem 3.4 The optimal h satisfies

h′(φ) = −

[

cφ −A(h, φ;w0, θ0)C
2cz + 2Cφcz + CCφczz + Cczφ

]

[2Cxcz +B(S, h(φ))Ccz + CCxczz]
(2)

where

A(h, φ;w, θ) =
U ′′(w +

∫ θ

φ
C(h(ψ), ψ)dψ)

U ′(w +
∫ θ

φ
C(h(ψ), ψ)dψ)

; B(S, h(φ)) =
S ′′(h(φ))

S ′(h(φ))
−2

S ′(h(φ))

S(h(φ))

and (2) is evaluated at x = h(φ) and z = C(h(φ), φ).

Proof:

Set D(φ) = −
∫ θ0
φ
C(h(ψ), ψ)dψ. Then, h(φ) = c(D′(φ), φ) and the expression in

(1) becomes
∫

0,θ0

dφD′(φ)D(D′(φ), φ)U ′(w0 −D(φ)) (3)

where D(z, φ) = 1/S(c(z, φ)). Choosing the optimal threshold h is equivalent to

choosing the optimal D. By Arfken [1, Equation 17.15] the optimal D solves

D′(φ)U ′(w −D(φ))
∂D

∂φ
(D′(φ), φ) +

d

dφ

[

U ′(w −D(φ))D′(φ)2
∂D

∂D′
(D′(φ), φ)

]

= 0

which in terms of h becomes

cφ−A(w, φ, h)C2cz+2cz(h
′Cx+Cφ)+B(S, h)h′Ccz+C [(h′Cx + Cφ)czz + czφ] = 0

where we use the fact that h(φ) = c(D′(φ), φ) and h′(φ) = (czD
′′ + cφ). �

Corollary 3.5 If C(x, θ) = C(x) is independent of θ (in particular if the options

are identical, and there is no price impact) then h∗ solves the simpler equation

C(h(φ))2S ′(h(φ)

C ′(h(φ))S(h(φ))2
U ′

(

w0 +

∫ θ0

φ

dψC(h(ψ))

)

= constant.

Proof:

In this case ∂D(D′(φ),φ)
∂φ = 0 and the d/dφ term can be integrated to leave U ′(w −

D(φ))D′(φ)2 ∂D∂D′
(D′(φ), φ) = constant. �
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Remark 3.6 Theorem 3.4 gives a candidate optimal threshold function h. As

we shall see in the examples below this candidate gives the true optimal strategy.

However, calculus of variations only gives that the candidate is associated with a

turning point which could in principle be merely a local maximum, or a minimum.

Therefore to complete the study of any given example further analysis is necessary,

for example in the form of a verification lemma of the Hamilton-Jacobi-Bellman

equation. Note that we have bypassed the problem of the construction of solutions

to the HJB equation, and the task is merely to verify that the candidate solution

has the necessary properties.

Remark 3.7 There is an implicit consistency condition in the form of any optimal

threshold h∗; namely if the agent with initial wealth w0 and options θ0 uses h∗ to

determine a strategy which reduces her holdings to θ1, then her optimal strategy

thereafter coincides with that of a second agent with initial allocation θ1 of options,

(whose strikes correspond to the highest θ1 strikes from the portfolio of the original

agent), and initial wealth w1 = w0 +
∫ θ0
θ1
C(max(x, h(θ)), θ)dθ. It is clear from the

form of A(h, φ;w0, θ0) in Theorem 3.4 that this consistency condition holds. See

the discussion in Section 4.1 for a direct verification of this consistency condition in

an example.

4 Examples

4.1 Agent with CRRA utility

Suppose that the dynamics of X are exponential Brownian motion as in Exam-

ple 2.2, that there is no price impact, G(x, θ) = x, and we consider a stock portfolio

so C(x, θ) = x. We have S(x) = xβ , with β = 1 − 2µ
σ2 . Suppose further that the

agent has constant relative risk aversion U(w) = w1−α/(1−α) with α ∈ (0,∞)\{1}.

By Corollary 3.5 the optimal h satisfies (for economy of notation in this Ex-

amples section we drop the superscript ∗ which we previously used to denote the

optimal)

h(φ)1−β

(

w0 +

∫ θ0

φ

h(ψ)dψ

)−α

= constant =

(

qα

1 − β

)−α

, (4)

for some constant q, subject to the fact that h(0) maximises F (h̄) = h̄1−β . Indeed,

if β > 1, h(0) = 0, the problem is degenerate and it is optimal to sell all stock

immediately. Henceforth we restrict attention to the case 0 < β < 1, in which case

h(0) is infinite.
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On differentiating the defining equation for the optimal threshold we find that

ḣ = −h1+η/q where η = (α+ β − 1)/α < 1, which has solution h(φ) = (ηφ/q)−1/η.

Since we require h(0) = ∞ the parameter values must be such that η > 0.

The constant q is fixed by the requirement that (4) holds:

w−α
0

(

ηθ0
q

)(β−1)/η

= lim
φ↓0

(

ηφ

q

)(β−1)/η
(

w0 +

(

η

q

)−1/η ∫ θ0

φ

ψ−1/ηdψ

)−α

=

(

1 − η

q

)α

so that q = η(η−1 − 1)ηwη0θ
1−η
0 . Finally

h(θ) = h(θ;w0, θ0) =
w0

θ0
(η−1 − 1)

(

θ0
θ

)1/η

. (5)

Note that h satisfies a consistency condition with regard to the initial endow-

ment. Consider an agent with endowment (w0, θ0) who follows the optimal policy,

and suppose the path of X is such that she has sold θ0 − θ1 stock. Then, from the

form of h(θ;w0, θ0) it follows that her wealth is w1 = w0(θ0/θ1)
1/η−1, and then, for

θ ≤ θ1,

h(θ;w0, θ0) =
w0

θ0
(η−1 − 1)

(

θ0
θ

)1/η

=
w1

θ1
(η−1 − 1)

(

θ1
θ

)1/η

= h(θ;w1, θ1)

so her thresholds for θ ≤ θ1 are consistent with those of an agent with initial

endowment (w1, θ1).

The candidate value function V (w, x, θ) = E[U(w + R)|X0 = x,Θ0 = θ] takes

two distinct forms depending on whether the initial endowment is such that x <

h(θ0;w0, θ0) or x ≥ h(θ0;w0, θ0). Let C denote the continuation region x < h(θ;w0, θ0)

and let E denote the exercise region x ≥ h(θ;w0, θ0).

By direct calculation based on the candidate optimal threshold we have that in

C

V (w, x, θ) =
w1−α

1 − α
+ w1−α

(

θx

w

)β (
1 − η

η

)1−β

(6)

Conversely, if the initial holdings are such that x > h(θ0;w0, θ0) then optimal

behaviour is to sell a strictly positive amount of stock instantly at time zero. This

amount should be chosen so that the new stock holdings θ1 satisfy

x = h(θ1;w0 + (θ0 − θ1)x, θ1) =
w0 + (θ0 − θ1)x

θ1

(1 − η)

η

so that θ1 = (w0 + θ0x)(1 − η)/x. For example, if initial wealth w0 is zero then

θ1 = θ0(1 − η). In the sale region x > h(θ0;w0, θ0) the value function is

V (w, x, θ) = V (w + (θ − θ1)x, x, θ1) =
(1 − α+ ηα)

η(1 − α)
(η(w + θx))

1−α
. (7)
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We now have a full candidate solution for the problem, including expressions

for the optimal exercise thresholds and the value function. Though we shall not

do so here, these expressions can be used to calculate further quantities of interest

such as the indifference value of her portfolio to the agent. The remaining step is

a verification lemma to show that the solution we have constructed via calculus of

variations gives a true optimum. (This step is also necessary in Examples 4.2 and

4.3, but given the method is standard, we shall only discuss verification here.)

For a function f = f(w, x, θ) recall that the generator LX is given by LXf =

σ(x)2fxx/2 + µ(x)fx, where a subscript denotes a partial derivative, which in our

case yields LXf = (σ2/2)[x2fxx + (1 − β)xfx]. Define the operator LΘ by LΘf =

fθ − xfw.

Lemma 4.1 In C the value function V solves LXV = 0, and LΘV ≥ 0. In E

we have LXV ≤ 0, and LΘV = 0. There is value matching on the boundary

x = h(θ;w, θ).

Proof: It is trivial that LXV = 0 in C and LΘV = 0 in E . Also at x = h(θ; (w, θ))

both (6) and (7) yield

V
(

w,
w

θ
(η−1 − 1), θ

)

= w1−α βα

(1 − α)(α+ β − 1)
.

After some calculation we find that in C,

LΘV = xw−αzβ−1
[

β + (1 − β)z − z1−β
]

where z = (θxη)/(w(1 − η)), and then the boundary corresponds to z = 1. Hence

LΘV ≥ 0 in C.

In E we have LXV ≤ 0 provided −αθ2x2 + (1 − β)xθ(w + θx) ≤ 0 and this is

equivalent to z ≥ 1. �

Proposition 4.2 V (w −
∫ t

0
XsdΘs,Xt,Θt) is a super-martingale in general and a

martingale under the strategy Θt = H(St;w−
∫ t

0
XsdΘs), where H is the inverse of

the optimal h given in (5). Hence the threshold strategy determined by h is optimal,

and the expressions in (6) and (7) give the value function.

Proof: By Itô’s formula,

dVt = LΘV dΘt + LXV dt+ dMt ≤ dMt

where the local martingale Mt is given by Mt =
∫ t

0
σXsVxdBs. Then Vt ≤ V0 +Mt

and since for a fixed initial endowment V is bounded below we have that Mt ≥

13



Vt − V0 is a supermartingale. Since dVt ≤ dMt this property is inherited by V .

Then E[U(w+R)] = E[(w−
∫∞

0
XsdΘs)

1−α/(1− α)] ≤ V (w, x, θ). Conversely, the

reverse inequality follows from direct calculation for the threshold strategy h. �

4.2 A Portfolio of options with different strikes

Suppose the agent has exponential utility U(w) = −e−γw/γ and that she has a

portfolio of perpetual American call options such that she starts with a measure

ρ0(dk) of options with strike k. As described in Section 3, assuming that she

behaves optimally and exercises the low-strike options first, we can parameterise

the strike of the call options in terms of the number of remaining options, so that

C(x, θ) = (x− J(θ))+ for a decreasing function J(θ).

Suppose that the price of the asset Xt follows a Bessel process of dimension 2−δ

with δ > 0. Then X hits zero with probability one, and we make zero an absorbing

boundary point. The process X is given by

dXt = dBt −
(δ − 1)

2X
dt; X0 = x > 0

and the scale function is S(x) = xδ.

Note that this scale function is identical to that of exponential Brownian motion.

(This also follows from the fact that one process is a stochastic time-change of the

other.) Hence the analysis of this section translates immediately to the exercise of

option portfolios in the exponential Brownian motion model for stock prices subject

to replacing δ with β.

If J is differentiable then we can apply Theorem 3.4 to find that the first-order

optimal threshold h satisfies

h′(φ) = −
h(φ)[γ(h(φ) − J(φ))2 − J ′(φ)]

2h(φ) − (h(φ) − J(φ))(1 + δ)
. (8)

Perhaps more realistic is the case where the agent has a portfolio of discrete strikes.

We cover the case where the agent has θ1 options with strike k1 and θ2 − θ1 options

with strike k2 < k1. (More complicated portfolios can be incorporated by exten-

sion.) By Lemma 3.1 we know that the optimal policy involves exercising the low

strike options first, and then J(φ) = k1 for φ ≤ θ1 and J(φ) = k2 for θ1 < φ ≤ θ2.

From (8) we can conclude that for φ < θ1 the optimal h solves

h′(φ) = −
γ(h(φ) − k1)

2h(φ)

k1(1 + δ) + (1 − δ)h(φ)
. (9)

The case with identical options and exponential utility is studied in Henderson

and Hobson [13]. Equation (9) can be solved by considering the inverse function

14



H = h−1, so that dH/dz = −(k1(1+δ)+(1−δ)z)/(γz(z−k1)
2). It is easily verified

(see [13] for details) that in the case δ ≤ 1, h(0) = ∞ and

H(x) =
2

γ(x− k1)
+

(1 + δ)

γk1
ln

(

x− k1

x

)

. (10)

The case δ > 1 is similar except that h(0) = k1δ/(δ − 1) <∞ and then H must be

modified by a constant to allow for the new boundary condition. We find

H(x) =
2

γ(x− k1)
−

2(δ − 1)

γk1
+

(1 + δ)

γk1
ln

(

δ(x− k1)

x

)

. (11)

Recall (1) and observe that for exponential utility, wealth factors out of the

problem. For θ < θ1, and for the optimal threshold, we can now evaluate

Λ(θ) :=

∫ θ

0

C(h(φ), φ)

S(h(φ))
U ′

(

∫ θ

φ

(h(ψ) − k1)dψ

)

dφ

=

∫ θ

0

(h(φ) − k1)

h(φ)δ
e−γ

R

θ

φ
(h(ψ)−k1)dψdφ (12)

and after several lines of algebra this can be shown to give

Λ(θ) = h(θ)−(1+δ) (δk1 + (1 − δ)h(θ)) /γ. (13)

Note that for exponential utility Λ(θ) solves

dΛ

dθ
=
C(h(θ), θ)

S(h(θ))
− γC(h(θ), θ)Λ(θ),

so that in seeking to maximise Λ(θ) it is appropriate to take

h(θ) = argmax
x

{

C(x, θ)
[

S(x)−1 − γΛ(θ)
]}

. (14)

(We have already seen a special case of this result in calculating the threshold at

θ = 0. Furthermore, given the formula for Λ in (13) it is easily checked that this

approach is consistent with previous methods.) In particular, if x̄ = limθ↑θ1 h(θ)

then x̄ = argmax{(x−k1)(x
−δ−γΛ(θ1))}. Note that the explicit value of x̄ is fixed

as the inverse to H in (10) or (11).

The issue is to extend the range of the definition of the optimal threshold h to

include θ ∈ [θ1, θ2]. In the interior of this region h solves (9) with k2 substituted

for k1, and since this can again be solved by considering the inverse function, the

remaining task is to find x̂ := h(θ1+). Using (14) we have

x̄ = argmax
x

[

x− k1

xδ
− Λ(θ1)(x− k1)

]

x̂ = argmax
x

[

x− k2

xδ
− Λ(θ1)(x− k2)

]

This means that x̄ and x̂ are related via

δk1 + (1 − δ)x̄

x̄1+δ
=
δk2 + (1 − δ)x̂

x̂1+δ
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where both sides equal Λ(θ1). Finally then, for θ > θ1, the optimal h is given by

the inverse to H where

H(x) = θ1 +
2

γ(x− k2)
−

2

γ(x̂− k2)
+

(1 + δ)

γk2
ln

(

(x− k2)x̂

x(x̂− k2)

)

.

Since k2 < k1 it follows that x̂ < x̄, and there is a jump in the threshold at θ1.

Further, if for i = 1, 2 we let {hi(θ)}0≤θ≤θ2 be the optimal threshold for a portfolio

consisting of θ2 options, all with strike ki, then a comparison of the appropriate

variants of the defining ordinary differential equations, see (8) and (9) above, shows

that h2(θ) < h(θ) ≤ h1(θ) for 0 < θ ≤ θ2, see Figure 2. Specifically, an agent with

a portfolio of call options, some of which have higher strikes will wait for a higher

asset value before exercising the low strike options than an agent with a portfolio

consisting of the same total quantity of options, each of which has the same low

strike. Put another way, an agent with a mixture of high and low strike options

acts as if the high strike options were replaced with a smaller number of low strike

options, at least until all her low strike options are exercised. Here we make crucial

use of the fact the agent has exponential utility.

4.3 A Model with Price Impact

In our final example we suppose the asset price follows exponential Brownian mo-

tion, but that the act of exercising (or selling) has a permanent impact on the asset

price. Consider an agent with exponential utility and a portfolio of call options.

Let Xt denote the fundamental value of the stock and suppose dXt/Xt = σdBt+

µdt with X0 = x0. We define the traded stock price

Yt = G(Xt,Θt),

where G(x, θ) = xe−p(θ0−θ), and p > 0 is a parameter capturing the permanent price

impact. We have that dYt/Yt = dXt/Xt + pdΘt. The call options give the right to

buy a stock worth Yt in exchange for the strike k, hence C(x, θ) = (xe−p(θ0−θ)−k)+.

(An alternative specification might take G(x, θ) = x/(N + θ0 − θ)) where N is

the initial number of shares, and then Yt models the dilution effect, whereby the

existence of warrants results in an increase in the number of stocks but does not

change the total firm value, as represented by Xt.)

In the notation of Section 3, S(x) = xβ , with β = 1 − 2µ/σ2, c(z, θ) = (z +

k)ep(θ−θ0) and D(z, θ) = (z+k)−βe−βp(θ0−θ), so that ifD(φ) = −
∫ θ0
φ
C(h(ψ), ψ)dψ =

−
∫ θ0
φ

(h(ψ)e−p(θ0−ψ) − k)dψ then the fundamental problem is to maximise (from
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Figure 2: The solid lines are the thresholds for agent with θ1 = 10 options with

strike k1 = 1.5 and θ2 − θ1 = 15 options with strike k2 = 1. Computations give

x̄ = 1.63 and x̂ = 1.3. Also shown (dotted lines) are h1 and h2 which satisfy

h2 ≤ h ≤ h1. Other parameters are δ = 2, γ = 1.
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(3))

e−γw
∫ θ0

0

dφD′(φ)(D′(φ) + k)−βeβp(φ−θ0)eγD(φ). (15)

The integrand in (15) depends on φ, but if we set

E(φ) = D(φ) +
βp

γ
(φ− θ0)

then E′(φ) = D′(φ)+βp/γ and omitting the wealth component e−γw from (15) the

problem reduces to maximising

∫ θ0

0

dφ

(

E′(φ) −
βp

γ

)(

E′(φ) + k −
βp

γ

)−β

eγE(φ).

Now there is no explicit φ dependence, so we deduce (see Arfken [1, Equation 17.18])

that the optimal h is such that

eγE(φ)

(

E′(φ) + k −
βp

γ

)−(β+1) [

E′(φ)2 −
p

γ
(1 + β)E′(φ) −

p

γ

(

k −
βp

γ

)]

is constant.

Write g(ψ) = e−p(θ0−ψ)h(ψ) and abbreviate p/γ to ξ, so that ξ measures the

relative importance of the price impact and the risk aversion. Then E(φ) =

−
∫ θ0
φ

[g(ψ) − k + βξ]dψ. Taking logs and differentiating, after some algebra we

find

g′(θ) =
−γg

(

g2 + g(ξ(β − 1) − 2k) + k(k − βξ)
)

g(1 − β) + (β + 1)k
(16)

with initial condition g(0) = e−pθ0 h̄ where h̄ = argmaxh−β(he−pθ0 − k).

As in Section 4.2, (16) can be solved to give an explicit formula for the inverse.

However, the formula are not compact, and bring little insight beyond the differen-

tial equation formulation, and the study of the stock (k = 0) case below. We will

however plot the solution g(θ) to (16) in Figure 3.

Note that when p = 0 we recover (recall (9))

g′ =
−γg(g − k)2

g(1 − β) + (β + 1)k
.

Conversely, if p > 0 but k = 0, so the agent holds stocks rather than calls, then

(16) simplifies to

g′ = −gγ

(

g

1 − β
− ξ

)

.

In this case, if β ≥ 1, the problem is degenerate in the sense that the stock price

is a supermartingale, and all shares are sold instantly. If 0 < β < 1 then g(θ) =

ξ(1 − β)/(1 − e−pθ). Finally,

h(θ) =
ep(θ0−θ)ξ(1 − β)

(1 − e−pθ)
=

epθ0pθ

(epθ − 1)
h0(θ),

18



where h0(θ) = (1 − β)/(γθ) is the solution in the absence of price impact.

Note that Xt = h(Θt) if and only if Yt = g(Θt) so that g can be considered as

the threshold boundary for the stock Yt. Then g(θ) = h0(θ)pθ/(1 − e−pθ) > h0(θ).

The effect of the price impact is to increase the boundary. The agent waits for a

higher stock price to begin selling in order to counteract the loss due to the price

impact.

An interesting feature of the solution is the fact that

g(∞) := lim
θ↑∞

g(θ) = p
(1 − β)

γ
> 0; 0 < β < 1

so that, unlike in the zero price impact case, it is possible even with arbitrarily

large initial holdings that the agent never sells any stock. (In the case with no

price impact the agent immediately reduces her holdings to (1−β)/γx if her initial

holdings exceed this value).

The story is similar for option holdings. Figure 3 plots the boundary g(θ) for

price impact level p = 0.05 and the equivalent boundary when there is no price

impact. We see the price impact shifts the boundary to the right - reflecting that

the agent waits for higher price levels to exercise than in the absence of price impact.

The large θ limit of g is given by the (largest) positive root3 of F (g) = 0 where

F (g) = g2 + (ξ(β − 1) − 2k) g + k (k − βξ) .

Thus

g(∞) := lim
θ↑∞

g(θ) = k +
ξ

2

[

(

(β − 1)2 +
4k

ξ

)1/2

− (β − 1)

]

.

For the parameter values in Figure 3 we have g(∞) = 1.2 and we note that the

boundary converges quickly to this limit. Indeed, for p > 0, it can be shown

that g converges exponentially fast to the limiting value, whereas when p = 0 the

convergence is at rate θ−1.

In the limit ξ ↓ 0 we find g(∞) = k + (ξk)1/2 + O(ξ). In the limit as ξ ↑ ∞ we

find

g(∞) = ξ(1 − β) + k
(2 − β)

(1 − β)
+O(1/ξ); β < 1

g(∞) =
kβ

(β − 1)
+O(1/ξ); β > 1

Thus, in the case β > 1, as the price impact becomes very large relative to risk

aversion, then the agent waits to exercise at the risk-neutral level k β
β−1 . When

β < 1 the risk neutral agent never exercises, and again this is captured in the large

ξ limit of g(∞).

3It is always the case that F has two real roots, at least one of which is positive.
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Figure 3: Exercise boundaries for options with strike k = 1. Other parameters

are β = 2 and γ = 1. The rightmost boundary uses price impact parameter

p = 0.05 and for these parameters, g(∞) = 1.2. The leftmost boundary has no

price impact and hence g(∞) = k = 1. Both boundaries have g(0) = k β

β−1
= 2.
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5 Conclusion

In this paper we have presented a method for determining the optimal exercise

boundary for a risk-averse agent seeking to liquidate an option portfolio. A key

assumption is that the option portfolio is infinitely divisible. Clearly this assumption

is not satisfied in practice, but may be apprporiate for large portfolios, where it

may bring considerable insight. Apart from a possible initial exercise of a tranche

of options, the optimal behaviour involves liquidating the portfolio in infinitesimal

amounts, but at times which are singular with respect to calendar time.

In the paper we have considered three examples involving CRRA and CARA

utility, stocks, options, and portfolios of different options, and models where the act

of exercising impacts on the price. These examples are not meant to be exhaustive,

but rather to indicate the variety of situations where our approach may be fruitfully

applied.
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