Branching Markov Processes and Evolution Semigroups Introduction to the Theory

Alastair Crossley

Department of Statistics University of Warwick

Reading Group, January 2024

Table of Contents

- 1 Branching Markov Processes
- 2 Non-linear Semigroup Evolution
- Branching Brownian Motion
- 4 Linear Semigroup Evolution and Many-to-One

5 References

The process (ξ, \mathbf{P}) is called a Markov process on the state space *E*, with cemetery state \dagger and lifetime ζ if the following conditions hold:

The process (ξ, \mathbf{P}) is called a Markov process on the state space E, with cemetery state \dagger and lifetime ζ if the following conditions hold: (regularity) For each $B \in \mathcal{F}$, the map $x \mapsto \mathbf{P}_x(B)$ is \mathcal{E}_{\dagger} -measurable.

The process (ξ, \mathbf{P}) is called a Markov process on the state space E, with cemetery state \dagger and lifetime ζ if the following conditions hold: (regularity) For each $B \in \mathcal{F}$, the map $x \mapsto \mathbf{P}_x(B)$ is \mathcal{E}_{\dagger} -measurable. (normality) For all $x \in E_{\dagger}$, $\mathbf{P}_x(\xi_0 = x) = 1$.

The process (ξ, \mathbf{P}) is called a Markov process on the state space E, with cemetery state \dagger and lifetime ζ if the following conditions hold: (regularity) For each $B \in \mathcal{F}$, the map $x \mapsto \mathbf{P}_x(B)$ is \mathcal{E}_{\dagger} -measurable. (normality) For all $x \in E_{\dagger}$, $\mathbf{P}_x(\xi_0 = x) = 1$. (càdlàg paths) For all $x \in E$, the path functions $t \to \xi_t$ are \mathbf{P}_x -almost surely right continuous on $[0, \infty)$ and have left limits on $[0, \zeta)$ where,

$$\zeta = \inf\{t > 0 : \xi_t = \dagger\}.$$

The process (ξ, \mathbf{P}) is called a Markov process on the state space E, with cemetery state \dagger and lifetime ζ if the following conditions hold: (regularity) For each $B \in \mathcal{F}$, the map $x \mapsto \mathbf{P}_x(B)$ is \mathcal{E}_{\dagger} -measurable. (normality) For all $x \in E_{\dagger}$, $\mathbf{P}_x(\xi_0 = x) = 1$. (càdlàg paths) For all $x \in E$, the path functions $t \to \xi_t$ are \mathbf{P}_x -almost surely right continuous on $[0, \infty)$ and have left limits on $[0, \zeta)$ where,

$$\zeta = \inf\{t > 0 : \xi_t = \dagger\}.$$

(Markov property) Let $B(E_{\dagger})$ be the space of bounded measurable functions on E_{\dagger} . For all $x \in E_{\dagger}$, $s, t \ge 0$ and $f \in B(E_{\dagger})$, we have,

$$\mathbf{E}_{x}[f(\xi_{t+s})|\mathcal{F}_{t}] = \mathbf{E}_{y}[f(\xi_{s})],$$

where $y = \xi_t \mathbf{P}_x$ -almost surely.

Expectation Semigroup

Definition

Let $B^+(E)$ be the space of bounded non-negative measurable functions on E. For $s, t \ge 0$, $g \in B^+(E)$ and $x \in E$ define,

 $P_t[g](x) = \mathbf{E}_x[g(\xi_t)\mathbb{1}_{(t<\zeta)}], \text{ for } t \ge 0 \text{ and } g \in B^+(E).$

Let $B^+(E)$ be the space of bounded non-negative measurable functions on E. For $s, t \ge 0$, $g \in B^+(E)$ and $x \in E$ define,

$$P_t[g](x) = \mathbf{E}_x[g(\xi_t)\mathbb{1}_{(t < \zeta)}], \text{ for } t \ge 0 \text{ and } g \in B^+(E).$$

We use the notation $P = (P_t, t \ge 0)$ to denote the associated semigroup to the Markov process (ξ, \mathbf{P}) , accordingly, we later referred to it as a P-Markov process.

Let $B^+(E)$ be the space of bounded non-negative measurable functions on E. For $s, t \ge 0$, $g \in B^+(E)$ and $x \in E$ define,

$$P_t[g](x) = \mathbf{E}_x[g(\xi_t)\mathbb{1}_{(t < \zeta)}], \text{ for } t \ge 0 \text{ and } g \in B^+(E).$$

We use the notation $P = (P_t, t \ge 0)$ to denote the associated semigroup to the Markov process (ξ, \mathbf{P}) , accordingly, we later referred to it as a P-Markov process.

Suppose that $\gamma: E \mapsto \mathbb{R}$, then we can also define

$$\mathrm{P}^{\gamma}[g](x) = \mathbf{E}_{x}\left[e^{\int_{0}^{t}\gamma(\xi_{s})ds}g(\xi_{t})
ight] \quad x \in E, t \geq 0.$$

Suppose that $|\gamma| \in B^+(E)$, $g \in B^+(E)$, and $\sup_{s \le t} |h_s| \in B^+(E)$, for all $t \ge 0$.

< 47 ▶

표 제 표

Suppose that $|\gamma| \in B^+(E)$, $g \in B^+(E)$, and $\sup_{s \le t} |h_s| \in B^+(E)$, for all $t \ge 0$. If $(\chi_t, t \ge 0)$ is represented by

$$\mathrm{P}_t^{\gamma}[g](x) + \int_0^t \mathrm{P}_s^{\gamma}[h_{t-s}](x) ds, \quad t \ge 0, x \in E,$$

Suppose that $|\gamma| \in B^+(E)$, $g \in B^+(E)$, and $\sup_{s \le t} |h_s| \in B^+(E)$, for all $t \ge 0$. If $(\chi_t, t \ge 0)$ is represented by

$$\mathrm{P}_t^{\gamma}[g](x) + \int_0^t \mathrm{P}_s^{\gamma}[h_{t-s}](x) ds, \quad t \ge 0, x \in E,$$

then it also solves

$$\chi_t(x) = \Pr_t[g](x) + \int_0^t \Pr_s[h_{t-s} + \gamma \chi_{t-s}](x) ds, \quad t \ge 0, x \in E.$$
 (1)

< □ > < □ > < □ > < □ >

э

Suppose that $|\gamma| \in B^+(E)$, $g \in B^+(E)$, and $\sup_{s \le t} |h_s| \in B^+(E)$, for all $t \ge 0$. If $(\chi_t, t \ge 0)$ is represented by

$$\mathrm{P}_t^{\gamma}[g](x) + \int_0^t \mathrm{P}_s^{\gamma}[h_{t-s}](x) ds, \quad t \ge 0, x \in E,$$

then it also solves

$$\chi_t(x) = \Pr_t[g](x) + \int_0^t \Pr_s[h_{t-s} + \gamma \chi_{t-s}](x) ds, \quad t \ge 0, x \in E.$$
 (1)

The converse statement is also true if $(\chi_t, t \ge 0)$ solves (1) with $\sup_{s \ge t} |\chi_s| \in B^+(E)$, for all $t \ge 0$.

• A BMP is a collection of particles that evolves according to certain stochastic rules.

- A BMP is a collection of particles that evolves according to certain stochastic rules.
- Given their point of creation, particles move independently according to a P-Markov proces on *E*.

- A BMP is a collection of particles that evolves according to certain stochastic rules.
- Given their point of creation, particles move independently according to a P-Markov proces on *E*.
- In an event, which we refer to as "branching", particles positioned at x die at rate $\gamma(x)$, where $\gamma \in B^+(E)$, and instantaneously, new particles are created in E according to a point process.

- A BMP is a collection of particles that evolves according to certain stochastic rules.
- Given their point of creation, particles move independently according to a P-Markov proces on *E*.
- In an event, which we refer to as "branching", particles positioned at x die at rate $\gamma(x)$, where $\gamma \in B^+(E)$, and instantaneously, new particles are created in E according to a point process.
- We can think of a point process simply as a random variable *N*, representing the number of offspring, and (x_1, \dots, x_N) in *E* representing their locations.

We define the offspring counting measure via random counting measures as follows,

$$\mathbf{Z}(A) = \sum_{i=1}^{N} \delta_{x_i}(A) \quad A \in \mathscr{B}(E),$$

where $\mathscr{B}(E)$ is the collection of Borel sets in E.

We define the offspring counting measure via random counting measures as follows,

$$\mathbf{Z}(A) = \sum_{i=1}^{N} \delta_{x_i}(A) \quad A \in \mathscr{B}(E),$$

where $\mathscr{B}(E)$ is the collection of Borel sets in E.

We denote the law of N by by 𝒫_x, x ∈ E, with associated expectation operator given by 𝔅_x, x ∈ E. Without loss of generality, we assume that 𝒫_x(N = 1) = 0 for all x ∈ E.

We define the offspring counting measure via random counting measures as follows,

$$\mathbf{Z}(A) = \sum_{i=1}^{N} \delta_{x_i}(A) \quad A \in \mathscr{B}(E),$$

where $\mathscr{B}(E)$ is the collection of Borel sets in E.

- We denote the law of N by by 𝒫_x, x ∈ E, with associated expectation operator given by 𝔅_x , x ∈ E. Without loss of generality, we assume that 𝒫_x(N = 1) = 0 for all x ∈ E.
- We also allow the possibility of death of the parent without offspring i.e. $\mathscr{P}_x(N=0) > 0$ for some or all $x \in E$. Note that the law of N can depend on x, the point of death of the parent.

We define the branching mechanism to be

$$\operatorname{G}[f](x) := \gamma(x) \mathscr{E}_{x} \bigg[\prod_{i=1}^{N} f(x_{i}) - f(x) \bigg], \quad x \in E,$$

where

$$f \in B_1^+(E) := \{ f \in B_1^+(E) : ||f|| \le 1 \},$$

and we recall that $\gamma \in B_1^+(E)$. Here, we use $\|\cdot\|$ to be the usual supremum norm on $B_1^+(E)$.

In the case of local branching, we obtain (by letting $f(x_i) = f(x) = s$) for all $i \in \{0, \cdots, N\}$

$$G[f](x) := \gamma(x) \mathscr{E}_x \left[\prod_{i=1}^N f(x_i) - f(x) \right]$$

Image: A matrix and A matrix

æ

In the case of local branching, we obtain (by letting $f(x_i) = f(x) = s$) for all $i \in \{0, \cdots, N\}$

$$G[f](x) := \gamma(x) \mathscr{E}_{x} \left[\prod_{i=1}^{N} f(x_{i}) - f(x) \right]$$
$$= \gamma(x) \mathscr{E}_{x}[s^{N}] - \mathscr{E}_{x}[s]$$

Image: A matrix and A matrix

æ

In the case of local branching, we obtain (by letting $f(x_i) = f(x) = s$) for all $i \in \{0, \dots, N\}$

$$\begin{split} \mathrm{G}[f](x) &:= \gamma(x) \mathscr{E}_{x} \bigg[\prod_{i=1}^{N} f(x_{i}) - f(x) \bigg] \\ &= \gamma(x) \mathscr{E}_{x}[s^{N}] - \mathscr{E}_{x}[s] \\ &= \gamma(x) \sum_{k=1}^{\infty} p_{k}(x) s^{k} - s \end{split}$$

as $\mathscr{E}_x[s^N]$ is the probability generating function of N and where, for $k \ge 1$ and $x \in E$, $p_k(x)$ denotes the probability that a particle branching at site x produces k offspring. In the case of local branching, we obtain (by letting $f(x_i) = f(x) = s$) for all $i \in \{0, \dots, N\}$

$$\begin{split} \mathrm{G}[f](x) &:= \gamma(x) \mathscr{E}_{x} \bigg[\prod_{i=1}^{N} f(x_{i}) - f(x) \bigg] \\ &= \gamma(x) \mathscr{E}_{x}[s^{N}] - \mathscr{E}_{x}[s] \\ &= \gamma(x) \sum_{k=1}^{\infty} p_{k}(x) s^{k} - s \end{split}$$

as $\mathscr{E}_{x}[s^{N}]$ is the probability generating function of N and where, for $k \geq 1$ and $x \in E$, $p_{k}(x)$ denotes the probability that a particle branching at site x produces k offspring. We refer to $(p_{k}(x), k \geq 0)$ as the offspring distribution at site $x \in E$. Let

$$\mathcal{M}_{c}(E) := \{\sum_{i=1}^{n} \delta_{x_{i}} : n \in \mathbb{N}, x_{i} \in E, i = 1, \cdots n\}$$

represents the space of finite counting measures.

Image: A matrix

æ

Branching Markov Process

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

 $\{x_1(t),\cdots,x_{N_t}(t)\},\$

Alastair	Crossley	(UoW)	
----------	----------	-------	--

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

 $\{x_1(t),\cdots,x_{N_t}(t)\},\$

then, on the event that the process has not become extinct or exploded, the branching Markov process can be described as the coordinate process $X = (X_t, t \ge 0)$ in $\mathcal{M}_c(E)$, where

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

$$\{x_1(t),\cdots,x_{N_t}(t)\},\$$

then, on the event that the process has not become extinct or exploded, the branching Markov process can be described as the coordinate process $X = (X_t, t \ge 0)$ in $\mathcal{M}_c(E)$, where

$$X_t(\cdot) = \sum_{i=1}^{N_t} \delta_{x_i(t)}(\cdot), \quad t \ge 0,$$

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

$$\{x_1(t),\cdots,x_{N_t}(t)\},\$$

then, on the event that the process has not become extinct or exploded, the branching Markov process can be described as the coordinate process $X = (X_t, t \ge 0)$ in $\mathcal{M}_c(E)$, where

$$X_t(\cdot) = \sum_{i=1}^{N_t} \delta_{x_i(t)}(\cdot), \quad t \ge 0,$$

In particular, X is Markovian in $\mathcal{M}_{c}(E)$ and its probabilities will be denoted by $\mathbb{P} := (\mathbb{P}_{\mu}, \mu \in \mathcal{M}_{\mu}(E)).$

The functional

$$\mathrm{v}_t[f](x) = \mathbb{E}_{\delta_x}\left[e^{-X_t[f]}
ight], \quad f \in B^+(E), t \ge 0,$$

æ

The functional

$$\mathrm{v}_t[f](x) = \mathbb{E}_{\delta_x}\left[e^{-X_t[f]}
ight], \quad f \in B^+(E), t \ge 0,$$

is the natural analytical object that gives us a complete understanding of the law of our BMP.

The functional

$$\mathrm{v}_t[f](x) = \mathbb{E}_{\delta_x}\left[e^{-X_t[f]}
ight], \quad f\in B^+(E), t\geq 0,$$

is the natural analytical object that gives us a complete understanding of the law of our BMP. We also have the branching Markov property. That is, if we define

$$\mathscr{F}_t = \sigma(x_i(s), i = 1, \cdots, N_s, s \le t), \quad t \ge 0,$$

then

$$\mathbb{E}\left[e^{-Xt+s[f]}\middle|\mathscr{F}_t\right] = \prod_{i=1}^{N_t} v_s[f](x_i(t)).$$

The functional

$$\mathrm{v}_t[f](x) = \mathbb{E}_{\delta_x}\left[e^{-X_t[f]}
ight], \quad f\in B^+(E), t\geq 0,$$

is the natural analytical object that gives us a complete understanding of the law of our BMP. We also have the branching Markov property. That is, if we define

$$\mathscr{F}_t = \sigma(x_i(s), i = 1, \cdots, N_s, s \le t), \quad t \ge 0,$$

then

$$\mathbb{E}\left[e^{-Xt+s[f]}\bigg|\mathscr{F}_t\right] = \prod_{i=1}^{N_t} v_s[f](x_i(t)).$$

From here the semigroup property,

$$\mathbf{v}_{t+s}[f](x) = \mathbf{v}_t[\mathbf{v}_s[f]](x), \quad s,t \ge 0, x \in E, f \in B^+(E),$$

follows.

Alastair Crossley (UoW)

Non-linear Semigroup Evolution

Moreover, for $f \in B^+(E)$ and $x \in E$,

$$v_t[f](x) = \hat{P}_t[e^{-f}](x) + \int_0^t P_s[G[v_{t-s}[f]]](x)ds, \quad t \ge 0,$$
 (2)

where $(\hat{\mathbf{P}}, t \ge 0)$ is the adjusted semigroup which returns a value of 1 on the event of killing, i.e., when the particle is absorbed at the boundary.

Non-linear Semigroup Evolution

Moreover, for $f \in B^+(E)$ and $x \in E$,

$$v_t[f](x) = \hat{P}_t[e^{-f}](x) + \int_0^t P_s[G[v_{t-s}[f]]](x)ds, \quad t \ge 0,$$
 (2)

where $(\hat{P}, t \ge 0)$ is the adjusted semigroup which returns a value of 1 on the event of killing, i.e., when the particle is absorbed at the boundary. For the proof is essentially the same as for the Pál-Bell equation (PBE) which we will explore later.

Non-linear Semigroup Evolution

Moreover, for $f \in B^+(E)$ and $x \in E$,

$$v_t[f](x) = \hat{P}_t[e^{-f}](x) + \int_0^t P_s[G[v_{t-s}[f]]](x)ds, \quad t \ge 0,$$
 (2)

where $(\hat{\mathbf{P}}, t \ge 0)$ is the adjusted semigroup which returns a value of 1 on the event of killing, i.e., when the particle is absorbed at the boundary. For the proof is essentially the same as for the Pál-Bell equation (PBE) which we will explore later. By differentiating (2) with respect to t and letting $t \downarrow 0$, we obtain

$$\frac{\partial}{\partial t} \mathbf{v}_t[f](x) \bigg|_{t=0} = \frac{\partial}{\partial t} \hat{\mathbf{P}}_t[e^{-f}](x) \bigg|_{t=0} + \frac{\partial}{\partial t} \int_0^t \mathbf{P}_s[\mathbf{G}[\mathbf{v}_{t-s}[f]]](x) ds \bigg|_{t=0}$$
$$= \mathscr{L} \mathbf{v}_0[f](x) + \mathbf{G}[\mathbf{v}_0[f]](x)$$

where we have used the Fundamental Theorem of Calculus and the chain rule to achieve the result.

Alastair Crossley (UoW)

$$\frac{\partial}{\partial t} \mathbf{v}_t[f](x) = \frac{\partial}{\partial t} \mathbf{v}_{t+s}[f](x) \bigg|_{s \downarrow 0}$$

$$\frac{\partial}{\partial t} \mathbf{v}_t[f](x) = \frac{\partial}{\partial t} \mathbf{v}_{t+s}[f](x) \Big|_{s \downarrow 0}$$
$$= \frac{\partial}{\partial s} \mathbf{v}_{t+s}[f](x) \Big|_{s \downarrow 0} \text{ (by symmetry)}$$

Image: A matrix and A matrix

$$\frac{\partial}{\partial t} \mathbf{v}_t[f](x) = \frac{\partial}{\partial t} \mathbf{v}_{t+s}[f](x) \Big|_{s \downarrow 0}$$
$$= \frac{\partial}{\partial s} \mathbf{v}_{t+s}[f](x) \Big|_{s \downarrow 0} \text{ (by symmetry)}$$
$$= \frac{\partial}{\partial s} \mathbf{v}_s[\mathbf{v}_t[f]](x) \Big|_{s \downarrow 0}.$$

$$\frac{\partial}{\partial t} \mathbf{v}_t[f](x) = \frac{\partial}{\partial t} \mathbf{v}_{t+s}[f](x) \Big|_{s \downarrow 0}$$
$$= \frac{\partial}{\partial s} \mathbf{v}_{t+s}[f](x) \Big|_{s \downarrow 0} \text{ (by symmetry)}$$
$$= \frac{\partial}{\partial s} \mathbf{v}_s[\mathbf{v}_t[f]](x) \Big|_{s \downarrow 0}.$$

It follows that we can rewrite equation (2) as,

$$\frac{\partial}{\partial t} \mathbf{v}_t[f](x) = \frac{\partial}{\partial t} \mathbf{v}_{t+s}[f](x) \Big|_{s \downarrow 0}$$
$$= \frac{\partial}{\partial s} \mathbf{v}_{t+s}[f](x) \Big|_{s \downarrow 0} \text{ (by symmetry)}$$
$$= \frac{\partial}{\partial s} \mathbf{v}_s[\mathbf{v}_t[f]](x) \Big|_{s \downarrow 0}.$$

It follows that we can rewrite equation (2) as,

$$\frac{\partial}{\partial t} \mathbf{v}_t[f](x) = \mathscr{L} \mathbf{v}_t[f](x) + \mathbf{G}[\mathbf{v}_t[f]](x), \quad t \ge 0, x \in \mathbb{R}^d.$$
(3)

By taking our Markov process to be Brownian motion (in any dimension) on some domain $E = \mathbb{R}^d$ and the branching mechanism is local with no spatial dependence, (3) collapses to

$$\frac{\partial}{\partial t}v_t[f](x) = \frac{1}{2}\Delta v_t[f](x) + \gamma \left[\sum_{i=1}^{\infty} p_k v_t[f](x)^k - v_t[f](x)\right], \quad t \ge 0, x \in \mathbb{R}^d,$$

where $(p_k, k \ge 1)$ is the offspring distribution.

In particular, in one dimension with dyadic branching, we recover the Fisher–Kolmogorov–Petrsovskii–Piscunov (FKPP) equation

$$\frac{\partial}{\partial t}\mathbf{v}_t = \frac{1}{2}\frac{\partial^2}{\partial x^2}\mathbf{v}_t + \gamma\mathbf{v}_t(\mathbf{v}_t - 1), \quad t \ge 0.$$

Dyadic Branching Brownian Motion

Figure: Dyadic Branching Brownian Motion [2]

Alastair Crossley (UoW)

Branching Processes

June 2023

Definition (Mean Semigroup)

We define the mean semigroup of our process to be,

$$\psi[f](x) = \mathbb{E}_{\delta_x}[X_t[f]], \quad x \in E, f \in B^+(E), t \ge 0.$$

Definition (Mean Semigroup)

We define the mean semigroup of our process to be,

$$\psi[f](x) = \mathbb{E}_{\delta_x}[X_t[f]], \quad x \in E, f \in B^+(E), t \ge 0.$$

It can be shown that the mean semigroup is a semigroup.

Definition (Mean Semigroup)

We define the mean semigroup of our process to be,

$$\psi[f](x) = \mathbb{E}_{\delta_x}[X_t[f]], \quad x \in E, f \in B^+(E), t \ge 0.$$

It can be shown that the mean semigroup is a semigroup. Set

$$\operatorname{F}[f](x) = \gamma(x) \mathscr{E}_{x}\left[\sum_{i=1}^{N} f(x_{i}) - f(x)\right] := \gamma(x)(\operatorname{m}[f](x) - f(x)), \quad x \in E.$$

We assume that $\mathscr{E}_{x}[N] < \infty$, call this (G1).

Lemma

Under (G1), the mean semigroup $(\psi_t, t \ge 0)$ satisfies

$$\psi_t[f](x) = \Pr_t[f](x) + \int_0^t \Pr_s[F\psi_{t-s}[f]](x)ds, \quad t \ge 0, x \in E, f \in B^+(E).$$
(4)

As an operator from $B^+(E)$ to itself, $(\psi_t, t \ge 0)$ is uniquely determined by (4)

æ

 Suppose that ξ = (ξ_t, t ≥ 0), with probabilities P = (P_x, x ∈ E), is the Markov process corresponding to the semigroup P.

- Suppose that ξ = (ξ_t, t ≥ 0), with probabilities P = (P_x, x ∈ E), is the Markov process corresponding to the semigroup P.
- Let us introduce a new Markov process ξ̂ = (ξ̂_t, t ≥ 0) which evolves as the process ξ , but at rate γ(x)m[1](x) the process is sent to a new position in E, such that for all Borel A ⊂ E, the new position is in A with probability m[1A](x)/m[1](x).

20 / 25

- Suppose that ξ = (ξ_t, t ≥ 0), with probabilities P = (P_x, x ∈ E), is the Markov process corresponding to the semigroup P.
- Let us introduce a new Markov process ξ̂ = (ξ̂_t, t ≥ 0) which evolves as the process ξ , but at rate γ(x)m[1](x) the process is sent to a new position in E, such that for all Borel A ⊂ E, the new position is in A with probability m[1A](x)/m[1](x).
- We will refer to the latter as *extra jumps*. Note the law of the extra jumps is well defined thanks to the assumption (G1), which we earlier remarked ensures that sup_{x∈E} m[1](x) < ∞.

- Suppose that ξ = (ξ_t, t ≥ 0), with probabilities P = (P_x, x ∈ E), is the Markov process corresponding to the semigroup P.
- Let us introduce a new Markov process ξ̂ = (ξ̂_t, t ≥ 0) which evolves as the process ξ , but at rate γ(x)m[1](x) the process is sent to a new position in E, such that for all Borel A ⊂ E, the new position is in A with probability m[1A](x)/m[1](x).
- We will refer to the latter as *extra jumps*. Note the law of the extra jumps is well defined thanks to the assumption (G1), which we earlier remarked ensures that sup_{x∈E} m[1](x) < ∞.
- We denote the probabilities of $\hat{\xi}$ by $(\hat{\mathbf{P}}_x, x \in E)$.

Lemma (Many-to-One)

Write $B(x) = \gamma(x)(m[1](x) - 1)$, $x \in E$. For $f \in B^+(E)$ and $t \ge 0$, under (G1), we have

$$\psi_t[f](x) = \hat{\mathbf{E}}_x \left[\exp\left(\int_0^t \hat{B}(\hat{\xi}_s) ds\right) f(\hat{\xi}_s) \right]$$
(5)

æ

A (10) × (10)

Proof.

First note that (4) is equivalent to

$$\begin{split} \psi_t[f](x) &= \Pr_t[f](x) + \int_0^t \Pr_s[\gamma(\mathrm{m}[\psi_{t-s}[f]] - \psi_{t-s}[f])](x) ds \\ &= \Pr_t[f](x) + \int_0^t \Pr_s[\gamma\mathrm{m}[1](\frac{\mathrm{m}[\psi_{t-s}[f]]}{\mathrm{m}[1]} - \psi_{t-s}[f])](x) ds \\ &+ \int_0^t \Pr_s[\mathrm{B}\psi_{t-s}[f]](x) ds \end{split}$$

At the same time, suppose we denote the right-hand side of (5) by $\hat{\psi}_t[f](x), t \ge 0.$

Proof of Many-To-One

Proof (Cont.)

By conditioning this expectation on the first extra jump, we get, for $f \in B^+(E)$, $x \in E$ and $t \ge 0$,

$$\begin{split} \hat{\psi}_{t}[f](x) &= \\ \hat{\mathsf{E}}_{x}[e^{-\int_{0}^{t}\gamma(\hat{\xi}_{s})\mathrm{m}[1](\hat{\xi}_{s})ds}e^{\int_{0}^{t}\mathrm{B}(\hat{\xi}_{s})ds}f(\hat{\xi}_{t})] \\ &+ \hat{\mathsf{E}}_{x}\bigg[\int_{0}^{t}\mathrm{m}[1](\hat{\xi}_{s})\gamma(\hat{\xi}_{s})e^{-\int_{0}^{s}\gamma(\hat{\xi}_{u})\mathrm{m}[1](\hat{\xi}_{u})du}e^{\int_{0}^{s}\mathrm{B}(\hat{\xi}_{u})du}\frac{\mathrm{m}[\hat{\psi}_{t-s}[f]](\hat{\xi}_{s})}{\mathrm{m}[1](\hat{\xi}_{s})}ds\bigg] \end{split}$$

Proof of Many-To-One

Proof (Cont.)

By conditioning this expectation on the first extra jump, we get, for $f \in B^+(E)$, $x \in E$ and $t \ge 0$,

Proof.

$$= \hat{\mathbf{E}}_{x}[f(\hat{\xi}_{t})] + \hat{\mathbf{E}}_{x}\left[\int_{0}^{t} \mathrm{m}[1](\hat{\xi}_{s})\gamma(\hat{\xi}_{x})\left(\frac{\mathrm{m}[\hat{\psi}_{t-s}[f]](\hat{\xi}_{s})}{\mathrm{m}[1](\hat{\xi}_{s})} - \hat{\psi}_{t-s}[f](\hat{\xi})\right)ds\right] \\ + \int_{0}^{t} \hat{\mathbf{E}}_{x}[\mathrm{B}(\hat{\xi}_{s})\hat{\psi}_{t-s}[f](x)ds.$$

Notice that $\hat{\psi}$ solves (4), and by the fact that solutions to (4) are unique and ψ solves (4) as well, then $\hat{\psi} = \psi$.

- Emma Horton and Andreas E. Kyprianou. "Stochastic Neutron Transport. And Non-Local Branching Markov Processes". In: Universitext (2023), pp. X, 240.
- [2] Matt Roberts. branching Brownian motion in one dimension. URL: https://people.bath.ac.uk/mir20/index.html.