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The process (&, P) is called a Markov process on the state space E, with
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Markov process

Definition

The process (&, P) is called a Markov process on the state space E, with
cemetery state T and lifetime ( if the following conditions hold:
(regularity) For each B € F, the map x — P,(B) is &;-measurable.
(normality) For all x € E;, Px(§ = x) = 1.

(cadlag paths) For all x € E, the path functions t — &; are Py-almost
surely right continuous on [0, c0) and have left limits on [0, () where,

C=inf{t>0:& =1}
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Markov process

Definition

The process (&, P) is called a Markov process on the state space E, with
cemetery state T and lifetime ( if the following conditions hold:
(regularity) For each B € F, the map x — P,(B) is &;-measurable.
(normality) For all x € E;, Px(§ = x) = 1.

(cadlag paths) For all x € E, the path functions t — &; are Py-almost
surely right continuous on [0, c0) and have left limits on [0, () where,

C=inf{t>0:& =1}

(Markov property) Let B(E;) be the space of bounded measurable
functions on E;. For all x € E;, s,t > 0 and f € B(E;), we have,

Ex{f(§t+s)|ft] = Ey[f(&)]a

where y = &; Py-almost surely.
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Expectation Semigroup

E. Fors,t >0, g € BT(E) and x € E define,

Let BT(E) be the space of bounded non-negative measurable functions on

Pi[g](x) = Ex[g(&:)L(¢<c)], for t > 0 and g € BT (E).
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Expectation Semigroup

Definition
Let BT(E) be the space of bounded non-negative measurable functions on
E. Fors,t >0, g € BT(E) and x € E define,

Pi[g](x) = Ex[g(&:)L(¢<c)], for t > 0 and g € BT (E).

We use the notation P = (P, t > 0) to denote the associated semigroup
to the Markov process (&, P), accordingly, we later referred to it as a
P-Markov process.
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Expectation Semigroup

Definition

Let BT(E) be the space of bounded non-negative measurable functions on
E. Fors,t >0, g € BT(E) and x € E define,

Pi[g](x) = Ex[g(&:)L(¢<c)], for t > 0 and g € BT (E).

We use the notation P = (P, t > 0) to denote the associated semigroup
to the Markov process (&, P), accordingly, we later referred to it as a
P-Markov process.

Suppose that v : E — R, then we can also define

P7[g](x) = Ex [efot%fﬂng(et)} KEEt>0.
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Dynkins Lemma

Suppose that || € BT (E), g € BT(E), and sup,<, |hs| € BY(E), for all
t > 0.
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Dynkins Lemma

Suppose that || € BT (E), g € BT(E), and sup,<, |hs| € BY(E), for all
t > 0. If (x¢,t > 0) is represented by

PY[g](x) + /0 Plhe J(x)ds, t>0.x¢E.
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Dynkins Lemma

Suppose that || € BT (E), g € BT(E), and sup,<, |hs| € BY(E), for all
t > 0. If (x¢,t > 0) is represented by

t
PYlgl(x) + / P{he_s](x)ds, t>0,x € E,
0
then it also solves
t
xe(x) = Pelgl(x) + / Pylhees + 1xrsl(x)ds, t>0,x€E. (1)
0

The converse statement is also true if (xt,t > 0) solves (1) with
sups>t|xs| € BT(E), for all t > 0.
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Branching Regime

o A BMP is a collection of particles that evolves according to certain
stochastic rules.
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to a P-Markov proces on E.
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o A BMP is a collection of particles that evolves according to certain
stochastic rules.

@ Given their point of creation, particles move independently according
to a P-Markov proces on E.

@ In an event, which we refer to as “branching”, particles positioned at
x die at rate y(x), where v € BT (E), and instantaneously, new
particles are created in E according to a point process.
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Branching Regime

o A BMP is a collection of particles that evolves according to certain
stochastic rules.

@ Given their point of creation, particles move independently according
to a P-Markov proces on E.

@ In an event, which we refer to as “branching”, particles positioned at
x die at rate y(x), where v € BT (E), and instantaneously, new
particles are created in E according to a point process.

@ We can think of a point process simply as a random variable N,
representing the number of offspring, and (x1,--+ ,xy) in E
representing their locations.
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Offspring Counting Measure

Definition

We define the offspring counting measure via random counting measures
as follows,

N
Z(A)= 3" 0,(A) Ac B(E),
i=1

where Z(E) is the collection of Borel sets in E.
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Definition
We define the offspring counting measure via random counting measures
as follows,

N
Z(A)= 3" 0,(A) Ac B(E),
i=1

where Z(E) is the collection of Borel sets in E.

o We denote the law of N by by &, x € E, with associated
expectation operator given by & , x € E. Without loss of generality,
we assume that &, (N =1) =0 for all x € E.
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Offspring Counting Measure

Definition

We define the offspring counting measure via random counting measures
as follows,

N
A) = 5,(A) Ac B(E),
i=1

where Z(E) is the collection of Borel sets in E.

o We denote the law of N by by &, x € E, with associated
expectation operator given by & , x € E. Without loss of generality,
we assume that &, (N =1) =0 for all x € E.

@ We also allow the possibility of death of the parent without offspring
i.e. Z(N =0)> 0 for some or all x € E. Note that the law of N
can depend on x, the point of death of the parent.
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Branching Mechanism

Definition

We define the branching mechanism to be

N

GIFI(x) = 1) [_H F(x) — f(x)] . xeE,

i=1

where

f e B (E):={f € Bf (E) : ||f|| < 1},

and we recall that v € B;"(E). Here, we use ||-|| to be the usual supremum
norm on Bj(E).
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Local Branching

In the case of local branching, we obtain (by letting f(x;) = f(x) = s) for
all i €{0,---, N}

G[f](x) [Hf(x, ) — f(x }
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Local Branching

In the case of local branching, we obtain (by letting f(x;) = f(x) = s) for
all i €{0,---, N}

G[f](x) “]fm ) — f(x }

= (x)&x[s"] - &ls]
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Local Branching

In the case of local branching, we obtain (by letting f(x;) = f(x) = s) for
all i €{0,---, N}

G[f](x) [H f(x;) — f(x }
= 7(x)&[s"] - &ls]

=v(x) Z pr(x)sk —s
k=1

as &[sV] is the probability generating function of N and where, for k > 1
and x € E, px(x) denotes the probability that a particle branching at site
x produces k offspring.
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Local Branching

In the case of local branching, we obtain (by letting f(x;) = f(x) = s) for
all i €{0,---, N}

G[f](x) [H f(x;) — f(x }
= 7(x)&[s"] - &ls]

=v(x) Z pr(x)sk —s
k=1

as &[sV] is the probability generating function of N and where, for k > 1
and x € E, px(x) denotes the probability that a particle branching at site
x produces k offspring. We refer to (px(x), k > 0) as the offspring
distribution at site x € E.
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Counting Measures

Let

MAE):={> 6g:neNx;€E i=1--n}
i=1

represents the space of finite counting measures.
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Branching Markov Process

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

{Xl(t)’ T 7XNt(t)}7
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Branching Markov Process

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

{Xl(t)’ T 7XNt(t)}7

then, on the event that the process has not become extinct or exploded,
the branching Markov process can be described as the coordinate process
X = (X¢, t >0) in A(E), where
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Branching Markov Process

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

{Xl(t)’ T 7XNt(t)}7

then, on the event that the process has not become extinct or exploded,
the branching Markov process can be described as the coordinate process
X = (X¢, t >0) in A(E), where

Ne
Xe() = bxin(), t=0,
=i

In particular, X is Markovian in .Z.(E) and its probabilities will be
denoted by P := (P, p € 4, (E)).
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Non-linear Semigroup

The functional

velf](x) = Es, [e—xt[fl], f e BY(E),t>0,
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Non-linear Semigroup

The functional
velf](x) = Es, [e—xt[fl], feBY(E),t>0,

is the natural analytical object that gives us a complete understanding of
the law of our BMP.
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Non-linear Semigroup

The functional
velf](x) = Es, [e—xt[fl], feBY(E),t>0,

is the natural analytical object that gives us a complete understanding of
the law of our BMP. We also have the branching Markov property. That
is, if we define

g\t:U(Xi(s)ai:]-a”')N575§t)7 t207
then
E|:e—Xt+S[f]

4 = [T wel10s(0).
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Non-linear Semigroup

The functional
velf](x) = Es, [e—xt[fl], feBY(E),t>0,

is the natural analytical object that gives us a complete understanding of
the law of our BMP. We also have the branching Markov property. That
is, if we define

g\t:U(Xi(s)ai:]-a”')N575§t)7 t207
then

E [e—msw 4 = [ vl (0)).

From here the semigroup property,
Vers[f](x) = vel[vs[f]](x), s, t>0,x € E,f € BT(E),

follows.
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Non-linear Semigroup Evolution

Moreover, for f € BY(E) and x € E,
ve[f](x) = Pe[e™"](x) +/0 Po[G[ve—s[f]ll(x)ds, t=0, (2

where (f’, t > 0) is the adjusted semigroup which returns a value of 1 on
the event of killing, i.e., when the particle is absorbed at the boundary.
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Non-linear Semigroup Evolution

Moreover, for f € BY(E) and x € E,
ve[f](x) = Pe[e™"](x) +/0 Po[G[ve—s[f]ll(x)ds, t=0, (2

where (f’, t > 0) is the adjusted semigroup which returns a value of 1 on
the event of killing, i.e., when the particle is absorbed at the boundary. For
the proof is essentially the same as for the Pal-Bell equation (PBE) which
we will explore later.
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Non-linear Semigroup Evolution

Moreover, for f € BY(E) and x € E,
ve[f](x) = Pe[e™"](x) +/0 Po[G[ve—s[f]ll(x)ds, t=0, (2

where (f’, t > 0) is the adjusted semigroup which returns a value of 1 on
the event of killing, i.e., when the particle is absorbed at the boundary. For
the proof is essentially the same as for the Pal-Bell equation (PBE) which
we will explore later. By differentiating (2) with respect to t and letting

t J 0, we obtain

L9 /O P,[Glves[f]])(x)ds

=0 Ot
= Zvo[f](x) + G[vo[f]](x)

0 _
= aPt[e f](X)

0
th[f](X)

t=0 t=0

where we have used the Fundamental Theorem of Calculus and the chain
rule to achieve the result.
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Non-linear Semigroup Evolution

Note that by the semigroup property we can obtain the relation,

Dl = Svesslfl)

ot

sl0
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Non-linear Semigroup Evolution

Note that by the semigroup property we can obtain the relation,

Dl = Svesslfl)

sl0

0
= —veslfl(x)|  (by symmetry)

sJ0
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Note that by the semigroup property we can obtain the relation,

Dl = Svesslfl)

= o vesslfx)

sl0

(by symmetry)
sJ0

0
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sl0
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Non-linear Semigroup Evolution

Note that by the semigroup property we can obtain the relation,

Dl = Svesslfl)

sl0

0

= EVH_S[I(](X) (by symmetry)

sJ0

0
= sovalwlfll)

sl0

It follows that we can rewrite equation (2) as
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Non-linear Semigroup Evolution

Note that by the semigroup property we can obtain the relation,

Dl = Svesslfl)

= o vesslfx)

sl0

(by symmetry)
sJ0

0
= sovalwlfll)

sl0
It follows that we can rewrite equation (2) as

gtvt[f](x) — Pflx) 4 Glfl(x), t>0xeR. (3
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Branching Brownian Motion

By taking our Markov process to be Brownian motion (in any dimension)
on some domain E = R and the branching mechanism is local with no

spatial dependence, (3) collapses to
D vif100 = LavdA)+ Zp VA v lf)], ¢ 0.x € BY
ot t t kVt t ) = Y, )

where (pk, k > 1) is the offspring distribution.

Alastair Crossley (UoW) Branching Processes June 2023 15/25



FKPP Equation

In particular, in one dimension with dyadic branching, we recover the
Fisher—Kolmogorov—Petrsovskii—Piscunov (FKPP) equation

0 162

th 2 Ox 2Vt + ")/Vt(Vt — ].) t> 0.
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Dyadic Branching Brownian Motion

Figure: Dyadic Branching Brownian Motion [2]
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Mean Semigroup

Definition (Mean Semigroup)

We define the mean semigroup of our process to be,

Y[f](x) = Es [X:[f]], x € E,f € BY(E),t>0.
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Mean Semigroup

Definition (Mean Semigroup)

We define the mean semigroup of our process to be,

Y[f](x) = Es [X:[f]], x € E,f € BY(E),t>0.

It can be shown that the mean semigroup is a semigroup.
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Mean Semigroup

Definition (Mean Semigroup)

We define the mean semigroup of our process to be,

Y[f](x) = Es [X:[f]], x € E,f € BY(E),t>0.

It can be shown that the mean semigroup is a semigroup. Set

F[f](x) = [Z f(x;) — f(x } v(x)(m[f](x) — f(x)), x€E.

We assume that &[N] < oo, call this (G1).
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Linear Evolution Equation

Under (G1), the mean semigroup (¢, t > 0) satisfies

Ye[f](x) = Pe[f](x) + /OtPS[Fwt_S[f]](x)ds, t>0,x<cE,fec B (E).

As an operator from BT (E) to itself, (¢, t > 0) is uniquely determined by

(4)

(4)
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Regime of the Many-to-One

@ Suppose that £ = (&, t > 0), with probabilities P = (P, x € E), is
the Markov process corresponding to the semigroup P.
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Regime of the Many-to-One

@ Suppose that £ = (&, t > 0), with probabilities P = (P, x € E), is
the Markov process corresponding to the semigroup P.

@ Let us introduce a new Markov process {A: (ét, t > 0) which evolves
as the process £ , but at rate v(x)m[1](x) the process is sent to a
new position in E, such that for all Borel A C E, the new position is
in A with probability m[1A](x)/m[1](x).
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Regime of the Many-to-One

@ Suppose that £ = (&, t > 0), with probabilities P = (P, x € E), is
the Markov process corresponding to the semigroup P.

@ Let us introduce a new Markov process {A: (ét, t > 0) which evolves
as the process £ , but at rate v(x)m[1](x) the process is sent to a
new position in E, such that for all Borel A C E, the new position is
in A with probability m[1A](x)/m[1](x).

o We will refer to the latter as extra jumps. Note the law of the extra

jumps is well defined thanks to the assumption (G1), which we earlier
remarked ensures that sup,g m[1](x) < oo.
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Regime of the Many-to-One

@ Suppose that £ = (&, t > 0), with probabilities P = (P, x € E), is
the Markov process corresponding to the semigroup P.

@ Let us introduce a new Markov process {A: (ét, t > 0) which evolves
as the process £ , but at rate v(x)m[1](x) the process is sent to a
new position in E, such that for all Borel A C E, the new position is
in A with probability m[1A](x)/m[1](x).

o We will refer to the latter as extra jumps. Note the law of the extra
jumps is well defined thanks to the assumption (G1), which we earlier
remarked ensures that sup,g m[1](x) < oo.

o We denote the probabilities of £ by (P, x € E).
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Lemma (Many-to-One)

Write B(x) = v(x)(m[1](x) — 1), x € E. For f € B (E) and t > 0, under
(G1), we have

wdfl) = oo [ BEs) (&) (5)
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Proof of Many-To-One

First note that (4) is equivalent to

De[fl(x) = Pe[f1(x) + /OtPs[v(m[lﬂt—s[f]] — Ye-s[f](x)ds

m[¢es[f]]
m[1]

:Pﬁﬂ@+££ﬂwmm — e—s[f])](x)ds
+ [ PalBiAl)es

AA\t the same time, suppose we denote the right-hand side of (5) by
Pe[f](x), t = 0.

Alastair Crossley (UoW)



Proof of Many-To-One

Proof (Cont.)

By conditioning this expectation on the first extra jump, we get, for
feBY(E), xe Eandt >0,

De[Fl(x) =
Ex[e_ fot 'Y(és)m[l](és)dsefot B(és)dsf'(é.‘t)]

& [ (L Ve S mIN ) g 7 B P51 (Es)
B, [ [ sliEne . i),

— SR
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Proof of Many-To-One

Proof (Cont.)

By conditioning this expectation on the first extra jump, we get, for
feBY(E), xe Eandt >0,

De[Fl(x) =
Ex[e_ fot 'Y(és)m[l](és)dsefot B(és)dsf'(é.‘t)]

+E |:/ m[]_] gs é’ )e I v(éw)m[1](£s)du fo (éu )duM ds

m(1](§)

= E[f(&)] + Ex [/ m[1](&) (gs)m[%[ls][(’;]])() <

+ [ BB (G Imitl e el IENes
(by Dynkins Lemma)

= -
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Proof of Many-To-One

= Ef(€)] + EX[ /0 m[1](§5)7(§x)(fw

~ G (@) ) o
" /0 B [B(E)deslF1()d.

Notice that 1) solves (4), and by the fact that solutions to (4) are unique
and v solves (4) as well, then i) = 1. O
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