Branching Markov Processes and Evolution Semigroups

Introduction to the Theory

Alastair Crossley

Department of Statistics
University of Warwick
Reading Group, January 2024

Table of Contents

(1) Branching Markov Processes
(2) Non-linear Semigroup Evolution
(3) Branching Brownian Motion
(4) Linear Semigroup Evolution and Many-to-One
(5) References

Markov process

Definition

The process (ξ, \mathbf{P}) is called a Markov process on the state space E, with cemetery state \dagger and lifetime ζ if the following conditions hold:

Markov process

Definition

The process (ξ, \mathbf{P}) is called a Markov process on the state space E, with cemetery state \dagger and lifetime ζ if the following conditions hold: (regularity) For each $B \in \mathcal{F}$, the map $x \mapsto \mathbf{P}_{x}(B)$ is \mathcal{E}_{\dagger}-measurable.

Markov process

Definition

The process (ξ, \mathbf{P}) is called a Markov process on the state space E, with cemetery state \dagger and lifetime ζ if the following conditions hold: (regularity) For each $B \in \mathcal{F}$, the map $x \mapsto \mathbf{P}_{x}(B)$ is \mathcal{E}_{\dagger}-measurable. (normality) For all $x \in E_{\dagger}, \mathbf{P}_{x}\left(\xi_{0}=x\right)=1$.

Markov process

Definition

The process (ξ, \mathbf{P}) is called a Markov process on the state space E, with cemetery state \dagger and lifetime ζ if the following conditions hold: (regularity) For each $B \in \mathcal{F}$, the map $x \mapsto \mathbf{P}_{x}(B)$ is \mathcal{E}_{\dagger}-measurable. (normality) For all $x \in E_{\dagger}, \mathbf{P}_{x}\left(\xi_{0}=x\right)=1$. (càdlàg paths) For all $x \in E$, the path functions $t \rightarrow \xi_{t}$ are \mathbf{P}_{x}-almost surely right continuous on $[0, \infty)$ and have left limits on $[0, \zeta)$ where,

$$
\zeta=\inf \left\{t>0: \xi_{t}=\dagger\right\}
$$

Markov process

Definition

The process (ξ, \mathbf{P}) is called a Markov process on the state space E, with cemetery state \dagger and lifetime ζ if the following conditions hold: (regularity) For each $B \in \mathcal{F}$, the map $x \mapsto \mathbf{P}_{x}(B)$ is \mathcal{E}_{\dagger}-measurable. (normality) For all $x \in E_{\dagger}, \mathbf{P}_{x}\left(\xi_{0}=x\right)=1$. (càdlàg paths) For all $x \in E$, the path functions $t \rightarrow \xi_{t}$ are \mathbf{P}_{x}-almost surely right continuous on $[0, \infty)$ and have left limits on $[0, \zeta)$ where,

$$
\zeta=\inf \left\{t>0: \xi_{t}=\dagger\right\}
$$

(Markov property) Let $B\left(E_{\dagger}\right)$ be the space of bounded measurable functions on E_{\dagger}. For all $x \in E_{\dagger}, s, t \geq 0$ and $f \in B\left(E_{\dagger}\right)$, we have,

$$
\mathbf{E}_{x}\left[f\left(\xi_{t+s}\right) \mid \mathcal{F}_{t}\right]=\mathbf{E}_{y}\left[f\left(\xi_{s}\right)\right]
$$

where $y=\xi_{t} \mathbf{P}_{x}$-almost surely.

Expectation Semigroup

Definition

Let $B^{+}(E)$ be the space of bounded non-negative measurable functions on E. For $s, t \geq 0, g \in B^{+}(E)$ and $x \in E$ define,

$$
\mathrm{P}_{t}[g](x)=\mathbf{E}_{x}\left[g\left(\xi_{t}\right) \mathbb{1}_{(t<\zeta)}\right], \text { for } t \geq 0 \text { and } g \in B^{+}(E)
$$

Expectation Semigroup

Definition

Let $B^{+}(E)$ be the space of bounded non-negative measurable functions on E. For $s, t \geq 0, g \in B^{+}(E)$ and $x \in E$ define,

$$
\mathrm{P}_{t}[g](x)=\mathbf{E}_{x}\left[g\left(\xi_{t}\right) \mathbb{1}_{(t<\zeta)}\right], \text { for } t \geq 0 \text { and } g \in B^{+}(E)
$$

We use the notation $\mathrm{P}=\left(\mathrm{P}_{t}, t \geq 0\right)$ to denote the associated semigroup to the Markov process (ξ, \mathbf{P}), accordingly, we later referred to it as a P-Markov process.

Expectation Semigroup

Definition

Let $B^{+}(E)$ be the space of bounded non-negative measurable functions on E. For $s, t \geq 0, g \in B^{+}(E)$ and $x \in E$ define,

$$
\mathrm{P}_{t}[g](x)=\mathbf{E}_{x}\left[g\left(\xi_{t}\right) \mathbb{1}_{(t<\zeta)}\right], \text { for } t \geq 0 \text { and } g \in B^{+}(E)
$$

We use the notation $\mathrm{P}=\left(\mathrm{P}_{t}, t \geq 0\right)$ to denote the associated semigroup to the Markov process (ξ, \mathbf{P}), accordingly, we later referred to it as a P-Markov process.

Suppose that $\gamma: E \mapsto \mathbb{R}$, then we can also define

$$
\mathrm{P}^{\gamma}[g](x)=\mathbf{E}_{x}\left[e^{\int_{0}^{t} \gamma\left(\xi_{s}\right) d s} g\left(\xi_{t}\right)\right] \quad x \in E, t \geq 0
$$

Dynkins Lemma

Theorem

Suppose that $|\gamma| \in B^{+}(E), g \in B^{+}(E)$, and $\sup _{s \leq t}\left|h_{s}\right| \in B^{+}(E)$, for all $t \geq 0$.

Dynkins Lemma

Theorem

Suppose that $|\gamma| \in B^{+}(E), g \in B^{+}(E)$, and $\sup _{s \leq t}\left|h_{s}\right| \in B^{+}(E)$, for all $t \geq 0$. If $\left(\chi_{t}, t \geq 0\right)$ is represented by

$$
\mathrm{P}_{t}^{\gamma}[g](x)+\int_{0}^{t} \mathrm{P}_{s}^{\gamma}\left[h_{t-s}\right](x) d s, \quad t \geq 0, x \in E
$$

Dynkins Lemma

Theorem

Suppose that $|\gamma| \in B^{+}(E), g \in B^{+}(E)$, and $\sup _{s \leq t}\left|h_{s}\right| \in B^{+}(E)$, for all $t \geq 0$. If $\left(\chi_{t}, t \geq 0\right)$ is represented by

$$
\mathrm{P}_{t}^{\gamma}[g](x)+\int_{0}^{t} \mathrm{P}_{s}^{\gamma}\left[h_{t-s}\right](x) d s, \quad t \geq 0, x \in E
$$

then it also solves

$$
\begin{equation*}
\chi_{t}(x)=\mathrm{P}_{t}[g](x)+\int_{0}^{t} \mathrm{P}_{s}\left[h_{t-s}+\gamma \chi_{t-s}\right](x) d s, \quad t \geq 0, x \in E \tag{1}
\end{equation*}
$$

Dynkins Lemma

Theorem

Suppose that $|\gamma| \in B^{+}(E), g \in B^{+}(E)$, and $\sup _{s \leq t}\left|h_{s}\right| \in B^{+}(E)$, for all $t \geq 0$. If $\left(\chi_{t}, t \geq 0\right)$ is represented by

$$
\mathrm{P}_{t}^{\gamma}[g](x)+\int_{0}^{t} \mathrm{P}_{s}^{\gamma}\left[h_{t-s}\right](x) d s, \quad t \geq 0, x \in E
$$

then it also solves

$$
\begin{equation*}
\chi_{t}(x)=\mathrm{P}_{t}[g](x)+\int_{0}^{t} \mathrm{P}_{s}\left[h_{t-s}+\gamma \chi_{t-s}\right](x) d s, \quad t \geq 0, x \in E \tag{1}
\end{equation*}
$$

The converse statement is also true if $\left(\chi_{t}, t \geq 0\right)$ solves (1) with $\sup _{s \geq t}\left|\chi_{s}\right| \in B^{+}(E)$, for all $t \geq 0$.

Branching Regime

- A BMP is a collection of particles that evolves according to certain stochastic rules.

Branching Regime

- A BMP is a collection of particles that evolves according to certain stochastic rules.
- Given their point of creation, particles move independently according to a P-Markov proces on E.

Branching Regime

- A BMP is a collection of particles that evolves according to certain stochastic rules.
- Given their point of creation, particles move independently according to a P-Markov proces on E.
- In an event, which we refer to as "branching", particles positioned at x die at rate $\gamma(x)$, where $\gamma \in B^{+}(E)$, and instantaneously, new particles are created in E according to a point process.

Branching Regime

- A BMP is a collection of particles that evolves according to certain stochastic rules.
- Given their point of creation, particles move independently according to a P-Markov proces on E.
- In an event, which we refer to as "branching", particles positioned at x die at rate $\gamma(x)$, where $\gamma \in B^{+}(E)$, and instantaneously, new particles are created in E according to a point process.
- We can think of a point process simply as a random variable N, representing the number of offspring, and $\left(x_{1}, \cdots, x_{N}\right)$ in E representing their locations.

Offspring Counting Measure

Definition

We define the offspring counting measure via random counting measures as follows,

$$
\mathbf{Z}(A)=\sum_{i=1}^{N} \delta_{x_{i}}(A) \quad A \in \mathscr{B}(E),
$$

where $\mathscr{B}(E)$ is the collection of Borel sets in E.

Offspring Counting Measure

Definition

We define the offspring counting measure via random counting measures as follows,

$$
\mathbf{Z}(A)=\sum_{i=1}^{N} \delta_{x_{i}}(A) \quad A \in \mathscr{B}(E)
$$

where $\mathscr{B}(E)$ is the collection of Borel sets in E.

- We denote the law of N by by $\mathscr{P}_{x}, x \in E$, with associated expectation operator given by $\mathscr{E}_{x}, x \in E$. Without loss of generality, we assume that $\mathscr{P}_{x}(N=1)=0$ for all $x \in E$.

Offspring Counting Measure

Definition

We define the offspring counting measure via random counting measures as follows,

$$
\mathbf{Z}(A)=\sum_{i=1}^{N} \delta_{x_{i}}(A) \quad A \in \mathscr{B}(E)
$$

where $\mathscr{B}(E)$ is the collection of Borel sets in E.

- We denote the law of N by by $\mathscr{P}_{x}, x \in E$, with associated expectation operator given by $\mathscr{E}_{x}, x \in E$. Without loss of generality, we assume that $\mathscr{P}_{x}(N=1)=0$ for all $x \in E$.
- We also allow the possibility of death of the parent without offspring i.e. $\mathscr{P}_{x}(N=0)>0$ for some or all $x \in E$. Note that the law of N can depend on x, the point of death of the parent.

Branching Mechanism

Definition

We define the branching mechanism to be

$$
\mathrm{G}[f](x):=\gamma(x) \mathscr{E}_{x}\left[\prod_{i=1}^{N} f\left(x_{i}\right)-f(x)\right], \quad x \in E
$$

where

$$
f \in B_{1}^{+}(E):=\left\{f \in B_{1}^{+}(E):\|f\| \leq 1\right\}
$$

and we recall that $\gamma \in B_{1}^{+}(E)$. Here, we use $\|\cdot\|$ to be the usual supremum norm on $B_{1}^{+}(E)$.

Local Branching

In the case of local branching, we obtain (by letting $f\left(x_{i}\right)=f(x)=s$) for all $i \in\{0, \cdots, N\}$

$$
\mathrm{G}[f](x):=\gamma(x) \mathscr{E}_{X}\left[\prod_{i=1}^{N} f\left(x_{i}\right)-f(x)\right]
$$

Local Branching

In the case of local branching, we obtain (by letting $f\left(x_{i}\right)=f(x)=s$) for all $i \in\{0, \cdots, N\}$

$$
\begin{aligned}
\mathrm{G}[f](x) & :=\gamma(x) \mathscr{E}_{x}\left[\prod_{i=1}^{N} f\left(x_{i}\right)-f(x)\right] \\
& =\gamma(x) \mathscr{E}_{x}\left[s^{N}\right]-\mathscr{E}_{x}[s]
\end{aligned}
$$

Local Branching

In the case of local branching, we obtain (by letting $f\left(x_{i}\right)=f(x)=s$) for all $i \in\{0, \cdots, N\}$

$$
\begin{aligned}
\mathrm{G}[f](x) & :=\gamma(x) \mathscr{E}_{x}\left[\prod_{i=1}^{N} f\left(x_{i}\right)-f(x)\right] \\
& =\gamma(x) \mathscr{E}_{x}\left[s^{N}\right]-\mathscr{E}_{x}[s] \\
& =\gamma(x) \sum_{k=1}^{\infty} p_{k}(x) s^{k}-s
\end{aligned}
$$

as $\mathscr{E}_{X}\left[s^{N}\right]$ is the probability generating function of N and where, for $k \geq 1$ and $x \in E, p_{k}(x)$ denotes the probability that a particle branching at site x produces k offspring.

Local Branching

In the case of local branching, we obtain (by letting $f\left(x_{i}\right)=f(x)=s$) for all $i \in\{0, \cdots, N\}$

$$
\begin{aligned}
\mathrm{G}[f](x) & :=\gamma(x) \mathscr{E}_{x}\left[\prod_{i=1}^{N} f\left(x_{i}\right)-f(x)\right] \\
& =\gamma(x) \mathscr{E}_{x}\left[s^{N}\right]-\mathscr{E}_{x}[s] \\
& =\gamma(x) \sum_{k=1}^{\infty} p_{k}(x) s^{k}-s
\end{aligned}
$$

as $\mathscr{E}_{X}\left[s^{N}\right]$ is the probability generating function of N and where, for $k \geq 1$ and $x \in E, p_{k}(x)$ denotes the probability that a particle branching at site x produces k offspring. We refer to $\left(p_{k}(x), k \geq 0\right)$ as the offspring distribution at site $x \in E$.

Counting Measures

Let

$$
\mathscr{M}_{c}(E):=\left\{\sum_{i=1}^{n} \delta_{x_{i}}: n \in \mathbb{N}, x_{i} \in E, i=1, \cdots n\right\}
$$

represents the space of finite counting measures.

Branching Markov Process

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

$$
\left\{x_{1}(t), \cdots, x_{N_{t}}(t)\right\}
$$

Branching Markov Process

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

$$
\left\{x_{1}(t), \cdots, x_{N_{t}}(t)\right\}
$$

then, on the event that the process has not become extinct or exploded, the branching Markov process can be described as the coordinate process $X=\left(X_{t}, t \geq 0\right)$ in $\mathscr{M}_{c}(E)$, where

Branching Markov Process

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

$$
\left\{x_{1}(t), \cdots, x_{N_{t}}(t)\right\}
$$

then, on the event that the process has not become extinct or exploded, the branching Markov process can be described as the coordinate process $X=\left(X_{t}, t \geq 0\right)$ in $\mathscr{M}_{c}(E)$, where

$$
X_{t}(\cdot)=\sum_{i=1}^{N_{t}} \delta_{x_{i}(t)}(\cdot), \quad t \geq 0
$$

Branching Markov Process

Definition (Branching Markov Process)

If the configuration of particles at time t is denoted by

$$
\left\{x_{1}(t), \cdots, x_{N_{t}}(t)\right\}
$$

then, on the event that the process has not become extinct or exploded, the branching Markov process can be described as the coordinate process $X=\left(X_{t}, t \geq 0\right)$ in $\mathscr{M}_{c}(E)$, where

$$
X_{t}(\cdot)=\sum_{i=1}^{N_{t}} \delta_{x_{i}(t)}(\cdot), \quad t \geq 0
$$

In particular, X is Markovian in $\mathscr{M}_{c}(E)$ and its probabilities will be denoted by $\mathbb{P}:=\left(\mathbb{P}_{\mu}, \mu \in \mathscr{M}_{\mu}(E)\right)$.

Non-linear Semigroup

The functional

$$
\mathrm{v}_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[e^{-X_{t}[f]}\right], \quad f \in B^{+}(E), t \geq 0
$$

Non-linear Semigroup

The functional

$$
\mathrm{v}_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[e^{-X_{t}[f]}\right], \quad f \in B^{+}(E), t \geq 0
$$

is the natural analytical object that gives us a complete understanding of the law of our BMP.

Non-linear Semigroup

The functional

$$
\mathrm{v}_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[e^{-X_{t}[f]}\right], \quad f \in B^{+}(E), t \geq 0
$$

is the natural analytical object that gives us a complete understanding of the law of our BMP. We also have the branching Markov property. That is, if we define

$$
\mathscr{F}_{t}=\sigma\left(x_{i}(s), i=1, \cdots, N_{s}, s \leq t\right), \quad t \geq 0
$$

then

$$
\mathbb{E}\left[e^{-X t+s[f]} \mid \mathscr{F}_{t}\right]=\prod_{i=1}^{N_{t}} \mathrm{v}_{s}[f]\left(x_{i}(t)\right)
$$

Non-linear Semigroup

The functional

$$
\mathrm{v}_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[e^{-X_{t}[f]}\right], \quad f \in B^{+}(E), t \geq 0
$$

is the natural analytical object that gives us a complete understanding of the law of our BMP. We also have the branching Markov property. That is, if we define

$$
\mathscr{F}_{t}=\sigma\left(x_{i}(s), i=1, \cdots, N_{s}, s \leq t\right), \quad t \geq 0
$$

then

$$
\mathbb{E}\left[e^{-X t+s[f]} \mid \mathscr{F}_{t}\right]=\prod_{i=1}^{N_{t}} \mathrm{v}_{s}[f]\left(x_{i}(t)\right)
$$

From here the semigroup property,

$$
\mathrm{v}_{t+s}[f](x)=\mathrm{v}_{t}\left[\mathrm{v}_{s}[f]\right](x), \quad s, t \geq 0, x \in E, f \in B^{+}(E)
$$

follows.

Non-linear Semigroup Evolution

Moreover, for $f \in B^{+}(E)$ and $x \in E$,

$$
\begin{equation*}
\mathrm{v}_{t}[f](x)=\hat{\mathrm{P}}_{t}\left[e^{-f}\right](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[\mathrm{v}_{t-s}[f]\right]\right](x) d s, \quad t \geq 0 \tag{2}
\end{equation*}
$$

where $(\hat{\mathrm{P}}, t \geq 0)$ is the adjusted semigroup which returns a value of 1 on the event of killing, i.e., when the particle is absorbed at the boundary.

Non-linear Semigroup Evolution

Moreover, for $f \in B^{+}(E)$ and $x \in E$,

$$
\begin{equation*}
\mathrm{v}_{t}[f](x)=\hat{\mathrm{P}}_{t}\left[e^{-f}\right](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[\mathrm{v}_{t-s}[f]\right]\right](x) d s, \quad t \geq 0 \tag{2}
\end{equation*}
$$

where $(\hat{\mathrm{P}}, t \geq 0)$ is the adjusted semigroup which returns a value of 1 on the event of killing, i.e., when the particle is absorbed at the boundary. For the proof is essentially the same as for the Pál-Bell equation (PBE) which we will explore later.

Non-linear Semigroup Evolution

Moreover, for $f \in B^{+}(E)$ and $x \in E$,

$$
\begin{equation*}
\mathrm{v}_{t}[f](x)=\hat{\mathrm{P}}_{t}\left[e^{-f}\right](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[\mathrm{v}_{t-s}[f]\right]\right](x) d s, \quad t \geq 0 \tag{2}
\end{equation*}
$$

where $(\hat{P}, t \geq 0)$ is the adjusted semigroup which returns a value of 1 on the event of killing, i.e., when the particle is absorbed at the boundary. For the proof is essentially the same as for the Pál-Bell equation (PBE) which we will explore later. By differentiating (2) with respect to t and letting $t \downarrow 0$, we obtain

$$
\begin{aligned}
\left.\frac{\partial}{\partial t} \mathrm{v}_{t}[f](x)\right|_{t=0} & =\left.\frac{\partial}{\partial t} \hat{\mathrm{P}}_{t}\left[e^{-f}\right](x)\right|_{t=0}+\left.\frac{\partial}{\partial t} \int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[\mathrm{v}_{t-s}[f]\right]\right](x) d s\right|_{t=0} \\
& =\mathscr{L}_{\mathrm{v}_{0}}[f](x)+\mathrm{G}\left[\mathrm{v}_{0}[f]\right](x)
\end{aligned}
$$

where we have used the Fundamental Theorem of Calculus and the chain rule to achieve the result.

Non-linear Semigroup Evolution

Note that by the semigroup property we can obtain the relation,

$$
\frac{\partial}{\partial t} \mathrm{v}_{t}[f](x)=\left.\frac{\partial}{\partial t} \mathrm{v}_{t+s}[f](x)\right|_{s \downarrow 0}
$$

Non-linear Semigroup Evolution

Note that by the semigroup property we can obtain the relation,

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathrm{v}_{t}[f](x) & =\left.\frac{\partial}{\partial t} \mathrm{v}_{t+s}[f](x)\right|_{s \downarrow 0} \\
& =\left.\frac{\partial}{\partial s} \mathrm{v}_{t+s}[f](x)\right|_{s \downarrow 0} \text { (by symmetry) }
\end{aligned}
$$

Non-linear Semigroup Evolution

Note that by the semigroup property we can obtain the relation,

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathrm{v}_{t}[f](x) & =\left.\frac{\partial}{\partial t} \mathrm{v}_{t+s}[f](x)\right|_{s \downarrow 0} \\
& =\left.\frac{\partial}{\partial s} \mathrm{v}_{t+s}[f](x)\right|_{s \downarrow 0} \text { (by symmetry) } \\
& =\left.\frac{\partial}{\partial s} \mathrm{v}_{s}\left[\mathrm{v}_{t}[f]\right](x)\right|_{s \downarrow 0}
\end{aligned}
$$

Non-linear Semigroup Evolution

Note that by the semigroup property we can obtain the relation,

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathrm{v}_{t}[f](x) & =\left.\frac{\partial}{\partial t} \mathrm{v}_{t+s}[f](x)\right|_{s \downarrow 0} \\
& =\left.\frac{\partial}{\partial s} \mathrm{v}_{t+s}[f](x)\right|_{s \downarrow 0} \text { (by symmetry) } \\
& =\left.\frac{\partial}{\partial s} \mathrm{v}_{s}\left[\mathrm{v}_{t}[f]\right](x)\right|_{s \downarrow 0}
\end{aligned}
$$

It follows that we can rewrite equation (2) as,

Non-linear Semigroup Evolution

Note that by the semigroup property we can obtain the relation,

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathrm{v}_{t}[f](x) & =\left.\frac{\partial}{\partial t} \mathrm{v}_{t+s}[f](x)\right|_{s \downarrow 0} \\
& =\left.\frac{\partial}{\partial s} \mathrm{v}_{t+s}[f](x)\right|_{s \downarrow 0} \text { (by symmetry) } \\
& =\left.\frac{\partial}{\partial s} \mathrm{v}_{s}\left[\mathrm{v}_{t}[f]\right](x)\right|_{s \downarrow 0}
\end{aligned}
$$

It follows that we can rewrite equation (2) as,

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathrm{v}_{t}[f](x)=\mathscr{L}_{\mathrm{v}_{t}}[f](x)+\mathrm{G}\left[\mathrm{v}_{t}[f]\right](x), \quad t \geq 0, x \in \mathbb{R}^{d} \tag{3}
\end{equation*}
$$

Branching Brownian Motion

By taking our Markov process to be Brownian motion (in any dimension) on some domain $E=\mathbb{R}^{d}$ and the branching mechanism is local with no spatial dependence, (3) collapses to
$\frac{\partial}{\partial t} v_{t}[f](x)=\frac{1}{2} \Delta \mathrm{v}_{t}[f](x)+\gamma\left[\sum_{i=1}^{\infty} p_{k} \mathrm{v}_{t}[f](x)^{k}-\mathrm{v}_{t}[f](x)\right], \quad t \geq 0, x \in \mathbb{R}^{d}$,
where $\left(p_{k}, k \geq 1\right)$ is the offspring distribution.

FKPP Equation

In particular, in one dimension with dyadic branching, we recover the Fisher-Kolmogorov-Petrsovskii-Piscunov (FKPP) equation

$$
\frac{\partial}{\partial t} \mathrm{v}_{t}=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \mathrm{v}_{t}+\gamma \mathrm{v}_{t}\left(\mathrm{v}_{t}-1\right), \quad t \geq 0
$$

Dyadic Branching Brownian Motion

Figure: Dyadic Branching Brownian Motion [2]

Mean Semigroup

Definition (Mean Semigroup)

We define the mean semigroup of our process to be,

$$
\psi[f](x)=\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right], \quad x \in E, f \in B^{+}(E), t \geq 0
$$

Mean Semigroup

Definition (Mean Semigroup)

We define the mean semigroup of our process to be,

$$
\psi[f](x)=\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right], \quad x \in E, f \in B^{+}(E), t \geq 0
$$

It can be shown that the mean semigroup is a semigroup.

Mean Semigroup

Definition (Mean Semigroup)

We define the mean semigroup of our process to be,

$$
\psi[f](x)=\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right], \quad x \in E, f \in B^{+}(E), t \geq 0
$$

It can be shown that the mean semigroup is a semigroup. Set

$$
\mathrm{F}[f](x)=\gamma(x) \mathscr{E}_{x}\left[\sum_{i=1}^{N} f\left(x_{i}\right)-f(x)\right]:=\gamma(x)(\mathrm{m}[f](x)-f(x)), \quad x \in E
$$

We assume that $\mathscr{E}_{X}[N]<\infty$, call this (G1).

Linear Evolution Equation

Lemma

Under (G1), the mean semigroup $\left(\psi_{t}, t \geq 0\right)$ satisfies

$$
\psi_{t}[f](x)=\mathrm{P}_{t}[f](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{~F} \psi_{t-s}[f]\right](x) d s, \quad t \geq 0, x \in E, f \in B^{+}(E)
$$

As an operator from $B^{+}(E)$ to itself, $\left(\psi_{t}, t \geq 0\right)$ is uniquely determined by (4)

Regime of the Many-to-One

- Suppose that $\xi=\left(\xi_{t}, t \geq 0\right)$, with probabilities $\mathbf{P}=\left(\mathbf{P}_{x}, x \in E\right)$, is the Markov process corresponding to the semigroup P .

Regime of the Many-to-One

- Suppose that $\xi=\left(\xi_{t}, t \geq 0\right)$, with probabilities $\mathbf{P}=\left(\mathbf{P}_{x}, x \in E\right)$, is the Markov process corresponding to the semigroup P .
- Let us introduce a new Markov process $\hat{\xi}=\left(\hat{\xi}_{t}, t \geq 0\right)$ which evolves as the process ξ, but at rate $\gamma(x) \mathrm{m}[1](x)$ the process is sent to a new position in E, such that for all Borel $A \subset E$, the new position is in A with probability $\mathrm{m}[1 A](x) / \mathrm{m}[1](x)$.

Regime of the Many-to-One

- Suppose that $\xi=\left(\xi_{t}, t \geq 0\right)$, with probabilities $\mathbf{P}=\left(\mathbf{P}_{x}, x \in E\right)$, is the Markov process corresponding to the semigroup P .
- Let us introduce a new Markov process $\hat{\xi}=\left(\hat{\xi}_{t}, t \geq 0\right)$ which evolves as the process ξ, but at rate $\gamma(x) \mathrm{m}[1](x)$ the process is sent to a new position in E, such that for all Borel $A \subset E$, the new position is in A with probability $\mathrm{m}[1 A](x) / \mathrm{m}[1](x)$.
- We will refer to the latter as extra jumps. Note the law of the extra jumps is well defined thanks to the assumption (G1), which we earlier remarked ensures that $\sup _{x \in E} \mathrm{~m}[1](x)<\infty$.

Regime of the Many-to-One

- Suppose that $\xi=\left(\xi_{t}, t \geq 0\right)$, with probabilities $\mathbf{P}=\left(\mathbf{P}_{x}, x \in E\right)$, is the Markov process corresponding to the semigroup P .
- Let us introduce a new Markov process $\hat{\xi}=\left(\hat{\xi}_{t}, t \geq 0\right)$ which evolves as the process ξ, but at rate $\gamma(x) \mathrm{m}[1](x)$ the process is sent to a new position in E, such that for all Borel $A \subset E$, the new position is in A with probability $\mathrm{m}[1 A](x) / \mathrm{m}[1](x)$.
- We will refer to the latter as extra jumps. Note the law of the extra jumps is well defined thanks to the assumption (G1), which we earlier remarked ensures that $\sup _{x \in E} \mathrm{~m}[1](x)<\infty$.
- We denote the probabilities of $\hat{\xi}$ by $\left(\hat{\mathbf{P}}_{x}, x \in E\right)$.

Many-to-One

Lemma (Many-to-One)

Write $\mathrm{B}(x)=\gamma(x)(m[1](x)-1), x \in E$. For $f \in B^{+}(E)$ and $t \geq 0$, under (G1), we have

$$
\begin{equation*}
\psi_{t}[f](x)=\hat{\mathbf{E}}_{x}\left[\exp \left(\int_{0}^{t} \hat{\mathrm{~B}}\left(\hat{\xi}_{s}\right) d s\right) f\left(\hat{\xi}_{s}\right)\right] \tag{5}
\end{equation*}
$$

Proof of Many-To-One

Proof.

First note that (4) is equivalent to

$$
\begin{aligned}
& \psi_{t}[f](x)= \mathrm{P}_{t}[f](x) \\
&=\int_{0}^{t} \mathrm{P}_{s}\left[\gamma\left(\mathrm{~m}\left[\psi_{t-s}[f]\right]-\psi_{t-s}[f]\right)\right](x) d s \\
&+\int_{0}^{t} \mathrm{P}_{s}\left[\gamma \mathrm{~m}[1]\left(\frac{\mathrm{m}\left[\psi_{t-s}[f]\right]}{\mathrm{m}[1]}-\psi_{t-s}[f]\right)\right](x) d s \\
&+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{~B} \psi_{t-s}[f]\right](x) d s
\end{aligned}
$$

At the same time, suppose we denote the right-hand side of (5) by $\hat{\psi}_{t}[f](x), t \geq 0$.

Proof of Many-To-One

Proof (Cont.)

By conditioning this expectation on the first extra jump, we get, for $f \in B^{+}(E), x \in E$ and $t \geq 0$,
$\hat{\psi}_{t}[f](x)=$
$\hat{\mathbf{E}}_{x}\left[e^{-\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{m}[1]\left(\hat{\xi}_{s}\right) d s} e^{\int_{0}^{t} \mathrm{~B}\left(\hat{\xi}_{s}\right) d s} f\left(\hat{\xi}_{t}\right)\right]$

Proof of Many-To-One

Proof (Cont.)

By conditioning this expectation on the first extra jump, we get, for $f \in B^{+}(E), x \in E$ and $t \geq 0$,

$$
\begin{aligned}
& \hat{\psi}_{t}[f](x)= \\
& \hat{\mathbf{E}}_{x}\left[e^{-\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{m}[1]\left(\hat{\xi}_{s}\right) d s} e^{\int_{0}^{t} \mathrm{~B}\left(\hat{\xi}_{s}\right) d s} f\left(\hat{\xi}_{t}\right)\right]
\end{aligned}
$$

$$
+\hat{\mathbf{E}}_{x}\left[\int_{0}^{t} \mathrm{~m}[1]\left(\hat{\xi}_{s}\right) \gamma\left(\hat{\xi}_{s}\right) e^{-\int_{0}^{s} \gamma\left(\hat{\xi}_{u}\right) \mathrm{m}[1]\left(\hat{\xi}_{u}\right) d u} e^{\left.\int_{0}^{s} \mathrm{~B}\left(\hat{\xi}_{u}\right) d u \frac{\mathrm{~m}\left[\hat{\psi}_{t-s}[f]\right]\left(\hat{\xi}_{s}\right)}{\mathrm{m}[1]\left(\hat{\xi}_{s}\right)} d s\right]}\right.
$$

$$
=\hat{\mathbf{E}}_{x}\left[f\left(\hat{\xi}_{t}\right)\right]+\hat{\mathbf{E}}_{x}\left[\int_{0}^{t} \mathrm{~m}[1]\left(\hat{\xi}_{s}\right) \gamma\left(\hat{\xi}_{s}\right) \frac{\mathrm{m}\left[\hat{\psi}_{t-s}[f]\right]\left(\hat{\xi}_{s}\right)}{\mathrm{m}[1]\left(\hat{\xi}_{s}\right)} d s\right]
$$

$$
\left.+\int_{0}^{t} \hat{\mathbf{E}}_{x}\left[\mathrm{~B}\left(\hat{\xi}_{t-s}\right)-\gamma\left(\hat{\xi}_{t-s}\right) \mathrm{m}[1]\left(\hat{\xi}_{t-s}\right)\right) \hat{\psi}_{t-s}[f]\left(\hat{\xi}_{s}\right)\right] d s
$$

(by Dynkins Lemma)

Proof of Many-To-One

Proof.

$$
\begin{aligned}
=\hat{\mathbf{E}}_{x}\left[f\left(\hat{\xi}_{t}\right)\right] & +\hat{\mathbf{E}}_{x}\left[\int_{0}^{t} \mathrm{~m}[1]\left(\hat{\hat{\xi}}_{s}\right) \gamma\left(\hat{\xi}_{x}\right)\left(\frac{\mathrm{m}\left[\hat{\psi}_{t-s}[f]\right]\left(\hat{\xi}_{s}\right)}{\mathrm{m}[1]\left(\hat{\xi}_{s}\right)}-\hat{\psi}_{t-s}[f](\hat{\xi})\right) d s\right] \\
& +\int_{0}^{t} \hat{\mathbf{E}}_{x}\left[\mathrm{~B}\left(\hat{\xi}_{s}\right) \hat{\psi}_{t-s}[f](x) d s .\right.
\end{aligned}
$$

Notice that $\hat{\psi}$ solves (4), and by the fact that solutions to (4) are unique and ψ solves (4) as well, then $\hat{\psi}=\psi$.

References I

[1] Emma Horton and Andreas E. Kyprianou. "Stochastic Neutron Transport. And Non-Local Branching Markov Processes". In: Universitext (2023), pp. X, 240.
[2] Matt Roberts. branching Brownian motion in one dimension. URL: https://people.bath.ac.uk/mir20/index.html.

