Stability and criticality

Emma Horton
6 February 2024

Contents

(1) Recap

(2) Examples

(3) Stability

Recap

- Particles move in E according to a Markov process $\left(\xi, \mathbf{P}_{x}\right)$. The associated semigroup is

$$
\mathbf{P}_{t}[f](x)=\mathbf{E}_{x}\left[f\left(\xi_{t}\right) \mathbb{1}_{(t<\zeta)}\right]
$$

- When at $x \in E$, at rate $\gamma(x)$, the particle is killed and sent to the cemetery state $\dagger \notin E$.
- At this point, new particles are created according to the point process $\left(\mathcal{Z}, \mathcal{P}_{x}\right)$, where

$$
\mathcal{Z}=\sum_{i=1}^{N} \delta_{x_{i}}
$$

For convenience, we define $m[f](x)=\mathcal{E}_{x}\left[\sum_{i=1}^{N} f\left(x_{i}\right)\right]$.

Recap

- The branching process is defined as

$$
X_{t}:=\sum_{i=1}^{N_{t}} \delta_{x_{i}(t)} .
$$

- The law of $\left(X_{t}\right)_{t \geq 0}$ is characterised via the non-linear semigroup

$$
v_{t}[g](x):=\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-x_{t}[g]}\right],
$$

where

$$
X_{t}[g]=\int_{E} g(y) X_{t}(\mathrm{~d} y)=\sum_{i=1}^{N_{t}} g\left(x_{i}(t)\right)
$$

Recap

We are also interested in the mean (linear) semigroup

$$
\psi_{t}[g](x):=\mathbb{E}_{\delta_{x}}\left[X_{t}[g]\right] .
$$

Many-to-one lemma

There exists a Markov process ($\hat{\xi}, \hat{\mathbf{P}}$) taking values in $E \cup\{\dagger\}$ such that

$$
\psi_{t}[g](x)=\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} B\left(\hat{\xi}_{s}\right) \mathrm{d} s} g\left(\hat{\xi}_{t}\right) \mathbf{1}_{(t<\tau)}\right],
$$

where $B(x)=\gamma(x)(m[1](x)-1)$.

Recap

- Recall that $m[f](x)=\mathcal{E}_{x}[\mathcal{Z}[f]]$.
- Recall also that $\left(\hat{\xi}_{t}\right)_{t \geq 0}$ evolves according to ξ and at rate $\gamma(x) m[1](x)$ jumps to a new location in $A \subset E$ with probability $m\left[\mathbf{1}_{A}\right](x) / m[1](x)$.
- How to see this?

Recap

- Recall that $m[f](x)=\mathcal{E}_{x}[\mathcal{Z}[f]]$.
- Recall also that $\left(\hat{\xi}_{t}\right)_{t \geq 0}$ evolves according to ξ and at rate $\gamma(x) m[1](x)$ jumps to a new location in $A \subset E$ with probability $m\left[\mathbf{1}_{A}\right](x) / m[1](x)$.
- How to see this?

Recap

- Recall that $m[f](x)=\mathcal{E}_{x}[\mathcal{Z}[f]]$.
- Recall also that $\left(\hat{\xi}_{t}\right)_{t \geq 0}$ evolves according to ξ and at rate $\gamma(x) m[1](x)$ jumps to a new location in $A \subset E$ with probability $m\left[\mathbf{1}_{A}\right](x) / m[1](x)$.
- How to see this?

$$
\frac{\partial}{\partial t} \psi_{t}[f](x)=\mathcal{L} \psi_{t}[f](x)+\gamma(x)\left(m\left[\psi_{t}[f]\right](x)-\psi_{t}[f](x)\right)
$$

Recap

- Recall that $m[f](x)=\mathcal{E}_{x}[\mathcal{Z}[f]]$.
- Recall also that $\left(\hat{\xi}_{t}\right)_{t \geq 0}$ evolves according to ξ and at rate $\gamma(x) m[1](x)$ jumps to a new location in $A \subset E$ with probability $m\left[\mathbf{1}_{A}\right](x) / m[1](x)$.
- How to see this?

$$
\begin{aligned}
\frac{\partial}{\partial t} \psi_{t}[f](x) & =\mathcal{L} \psi_{t}[f](x)+\gamma(x)\left(m\left[\psi_{t}[f]\right](x)-\psi_{t}[f](x)\right) \\
& =\mathcal{L} \psi_{t}[f](x)+\gamma(x) m[1](x) \frac{m\left[\psi_{t}[f]\right](x)}{m[1](x)}-\gamma(x) \psi_{t}[f](x)
\end{aligned}
$$

Recap

- Recall that $m[f](x)=\mathcal{E}_{x}[\mathcal{Z}[f]]$.
- Recall also that $\left(\hat{\xi}_{t}\right)_{t \geq 0}$ evolves according to ξ and at rate $\gamma(x) m[1](x)$ jumps to a new location in $A \subset E$ with probability $m\left[\mathbf{1}_{A}\right](x) / m[1](x)$.
- How to see this?

$$
\begin{aligned}
\frac{\partial}{\partial t} \psi_{t}[f](x)= & \mathcal{L} \psi_{t}[f](x)+\gamma(x)\left(m\left[\psi_{t}[f]\right](x)-\psi_{t}[f](x)\right) \\
= & \mathcal{L} \psi_{t}[f](x)+\gamma(x) m[1](x) \frac{m\left[\psi_{t}[f]\right](x)}{m[1](x)}-\gamma(x) \psi_{t}[f](x) \\
= & \mathcal{L} \psi_{t}[f](x)+\gamma(x) m[1](x) \frac{m\left[\psi_{t}[f]\right](x)}{m[1](x)}-\gamma(x) m[1](x) \psi_{t}[f](x) \\
& \quad+\gamma(x) m[1](x) \psi_{t}[f](x)-\gamma(x) \psi_{t}[f](x)
\end{aligned}
$$

Recap

- Recall that $m[f](x)=\mathcal{E}_{x}[\mathcal{Z}[f]]$.
- Recall also that $\left(\hat{\xi}_{t}\right)_{t \geq 0}$ evolves according to ξ and at rate $\gamma(x) m[1](x)$ jumps to a new location in $A \subset E$ with probability $m\left[\mathbf{1}_{A}\right](x) / m[1](x)$.
- How to see this?

$$
\begin{aligned}
\frac{\partial}{\partial t} \psi_{t}[f](x)= & \mathcal{L} \psi_{t}[f](x)+\gamma(x)\left(m\left[\psi_{t}[f]\right](x)-\psi_{t}[f](x)\right) \\
= & \mathcal{L} \psi_{t}[f](x)+\gamma(x) m[1](x) \frac{m\left[\psi_{t}[f]\right](x)}{m[1](x)}-\gamma(x) \psi_{t}[f](x) \\
= & \mathcal{L} \psi_{t}[f](x)+\gamma(x) m[1](x) \frac{m\left[\psi_{t}[f]\right](x)}{m[1](x)}-\gamma(x) m[1](x) \psi_{t}[f](x) \\
& +\gamma(x) m[1](x) \psi_{t}[f](x)-\gamma(x) \psi_{t}[f](x) \\
= & \mathcal{L} \psi_{t}[f](x)+\gamma(x) m[1](x)\left(\frac{m\left[\psi_{t}[f]\right](x)}{m[1](x)}-\psi_{t}[f](x)\right) \\
& +\gamma(x)(m[1](x)-1) \psi_{t}[f](x)
\end{aligned}
$$

Contents

(1) Recap
(2) Examples

(3) Stability

Example: continuous time Galton Watson process

Example: continuous time Galton Watson process

Many-to-one: $\mathbb{E}\left[N_{t}\right]=\mathrm{e}^{(m-1) t}$.

Example: BBM

Example: BBM

Many-to-one: $\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]=\mathrm{e}^{\beta t} \hat{\mathbf{E}}_{\chi}\left[f\left(B_{t}\right)\right]$

三

Example: growth-fragmentation

Example: growth-fragmentation

Many-to-one: $\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]=\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(Y_{s}\right) \mathrm{ds}} f\left(Y_{t}\right) \mathbf{1}_{(t<\tau)}\right]$.

Example: neutron transport

Example: neutron transport

Many-to-one: $\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]=\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} \sigma_{f}\left(R_{s}, \Upsilon_{s}\right)\left(m\left[[1]\left(R_{s}, \gamma_{s}\right)-1\right) \mathrm{ds}\right.} f\left(R_{t}, \Upsilon_{t}\right) \mathbf{1}_{(t<\tau)}\right]$.

Observations

- The quantity $B(x)=\gamma(x)(m[1](x)-1)$ "keeps track" of the mass in the branching process, i.e.

$$
\mathbb{E}_{\delta_{x}}\left[N_{t}\right]=\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} B\left(\hat{\xi}_{s}\right) \mathrm{d} s} \mathbf{1}_{t<\tau}\right]
$$

- If $\sup _{x \in E} B(x)<0$, then we can interpret $|B|$ as a killing rate:

$$
\hat{\mathbf{P}}_{x}\left(t<T \mid \sigma\left(\hat{\xi}_{s, s} \leq t\right)\right)=\mathrm{e}^{-\int_{0}^{t}\left|B\left(\xi_{s}\right)\right| d s} .
$$

Observations

- The quantity $B(x)=\gamma(x)(m[1](x)-1)$ "keeps track" of the mass in the branching process, i.e.

$$
\mathbb{E}_{\delta_{x}}\left[N_{t}\right]=\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} B\left(\hat{\xi}_{s}\right) \mathrm{d} s} \mathbf{1}_{t<\tau}\right]
$$

- If $\sup B(x)<0$, then we can interpret $|B|$ as a killing rate: $x \in E$

$$
\hat{\mathbf{P}}_{x}\left(t<T \mid \sigma\left(\hat{\xi}_{s}, s \leq t\right)\right)=\mathrm{e}^{-\int_{0}^{t}\left|B\left(\xi_{s}\right)\right| \mathrm{d} s} .
$$

Contents

(1) Recap

(2) Examples
(3) Stability

Stability

Aim: to find

- $\lambda_{*} \in \mathbb{R}$,
- a positive function $\varphi \in B^{+}(E)$,
- a probability measure η on E
such that

$$
\psi_{t}[\varphi]=\mathrm{e}^{\lambda_{*} t} \varphi, \quad \eta\left[\psi_{t}[g]\right]=\mathrm{e}^{\lambda_{*} t} \eta[g],
$$

and

$$
\psi_{t}[g](x) \sim \mathrm{e}^{\lambda_{*} t} \varphi(x) \eta[g], \quad \text { as } t \rightarrow \infty .
$$

Stability

$$
\psi_{t}[g](x) \sim \mathrm{e}^{\lambda_{*} t} \varphi(x) \eta[g], \quad \text { as } t \rightarrow \infty
$$

- Subcritical: if $\lambda_{*}<0$, the average mass decays at rate $-\lambda_{*}$.
- Critical: if $\lambda_{*}=0$, the average mass remains constant.
- Supercritical: if $\lambda_{*}>0$, the average mass in the system grows at rate λ_{*}.

Example: branching Markov chains

- Consider the case where $\left(\xi_{t}, t \geq 0\right)$ is a continuous time Markov chain on $E=\{1, \ldots, n\}$ with transition matrix $\left(P_{i, j}(t)\right)_{i, j \in E}$
- At rate γ, particles produce two offspring locally.
- What is the long-term average behaviour of the branching process?
- The key to answering this is the many-to-one:

$$
\psi_{t}[g](i)=\mathrm{e}^{\gamma t} \mathbf{E}_{i}\left[g\left(\xi_{t}\right)\right]
$$

Example: branching Markov chains

- Consider the case where $\left(\xi_{t}, t \geq 0\right)$ is a continuous time Markov chain on $E=\{1, \ldots, n\}$ with transition matrix $\left(P_{i, j}(t)\right)_{i, j \in E}$
- At rate γ, particles produce two offspring locally.
- What is the long-term average behaviour of the branching process?
- The key to answering this is the many-to-one:

Example: branching Markov chains

- Consider the case where $\left(\xi_{t}, t \geq 0\right)$ is a continuous time Markov chain on $E=\{1, \ldots, n\}$ with transition matrix $\left(P_{i, j}(t)\right)_{i, j \in E}$
- At rate γ, particles produce two offspring locally.
- What is the long-term average behaviour of the branching process?
- The key to answering this is the many-to-one:

Example: branching Markov chains

- Consider the case where $\left(\xi_{t}, t \geq 0\right)$ is a continuous time Markov chain on $E=\{1, \ldots, n\}$ with transition matrix $\left(P_{i, j}(t)\right)_{i, j \in E}$
- At rate γ, particles produce two offspring locally.
- What is the long-term average behaviour of the branching process?
- The key to answering this is the many-to-one:

$$
\psi_{t}[g](i)=\mathrm{e}^{\gamma t} \mathbf{E}_{i}\left[g\left(\xi_{t}\right)\right]=\mathrm{e}^{\gamma t} \sum_{j=1}^{n} P_{i, j}(t) g(j)
$$

Example: branching Markov chains

Perron Frobenius theorem

Let A be a non-negative, irreducible square matrix. Then the following hold.

- There is a simple positive real eigenvalue λ and such that all other eigenvalues have absolute value less than or equal to λ.
- The (unique up to scaling) left- and right-eigenvectors, φ and η resp., corresponding to λ are positive.
- $\lim _{n \rightarrow \infty} A^{n} / \lambda^{n}=\varphi \eta^{T}$ where the left and right eigenvectors for A are normalized so that $\eta^{\top} \varphi=1$.

Example: branching Markov chains

Assuming the chain is irreducible, Perron Frobenius theory tells us that there exist $\lambda_{c} \leq 0$ and vectors φ, η such that

$$
P(t) \varphi=\mathrm{e}^{\lambda_{c} t} \varphi, \quad \eta^{T} P(t)=\mathrm{e}^{\lambda_{c} t} \eta^{T},
$$

and

$$
P_{i, j}(t) \sim \mathrm{e}^{\lambda_{c} t} \varphi(i) \eta(j)+o\left(\mathrm{e}^{\lambda_{c} t}\right), \quad t \rightarrow \infty .
$$

Example: branching Markov chains

Using the fact that $\psi_{t}=\mathrm{e}^{\gamma t} P(t)$, we have

- $P(t) \varphi=\mathrm{e}^{\lambda_{c} t} \varphi \quad \Longrightarrow \quad \psi_{t}[\varphi]=\mathrm{e}^{\left(\gamma+\lambda_{c}\right) t} \varphi$;
- $\eta^{\top} P(t)=\mathrm{e}^{\lambda_{c} t} \eta^{\top}$
- $P_{i, j}(t) \sim \mathrm{e}^{\lambda_{c} t} \varphi(i) \eta(j)$

Example: branching Markov chains

Using the fact that $\psi_{t}=\mathrm{e}^{\gamma t} P(t)$, we have

- $P(t) \varphi=\mathrm{e}^{\lambda_{c} t} \varphi \quad \Longrightarrow \quad \psi_{t}[\varphi]=\mathrm{e}^{\left(\gamma+\lambda_{c}\right) t} \varphi$;
- $\eta^{T} P(t)=\mathrm{e}^{\lambda_{c} t} \eta^{T} \quad \Longrightarrow \quad \eta^{T} \psi_{t}=\mathrm{e}^{\left(\gamma+\lambda_{c}\right) t} \eta^{T}$;

Example: branching Markov chains

Using the fact that $\psi_{t}=\mathrm{e}^{\gamma t} P(t)$, we have

- $P(t) \varphi=\mathrm{e}^{\lambda_{c} t} \varphi \quad \Longrightarrow \quad \psi_{t}[\varphi]=\mathrm{e}^{\left(\gamma+\lambda_{c}\right) t} \varphi$;
- $\eta^{T} P(t)=\mathrm{e}^{\lambda_{c} t} \eta^{T} \quad \Longrightarrow \quad \eta^{T} \psi_{t}=\mathrm{e}^{\left(\gamma+\lambda_{c}\right) t} \eta^{T}$;
- $P_{i, j}(t) \sim \mathrm{e}^{\lambda_{c} t} \varphi(i) \eta(j) \Longrightarrow \psi_{t}[g](i) \sim \mathrm{e}^{\left(\gamma+\lambda_{c}\right) t} \varphi(i) \eta^{T} g$.

Example: BBM

- Consider BBM on a domain $D \subset \mathbb{R}^{d}$ with branching rate β, mean offspring m and where particles are killed on ∂D.
- The mean semigroup $\psi_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]$ satisfies

$$
\frac{\partial \psi_{t}}{\partial t}=\frac{1}{2} \Delta \psi_{t}+\beta(m-1) \psi_{t} .
$$

- What is the long-term average behaviour of the branching process?
- Again, the key is the many-to-one formula:

$$
\psi_{t}[f](x)=e^{B(m-1) t} \hat{E}_{x}\left[f\left(B_{t}\right) 1_{t<\tau}\right] .
$$

Example: BBM

- Consider BBM on a domain $D \subset \mathbb{R}^{d}$ with branching rate β, mean offspring m and where particles are killed on ∂D.
- The mean semigroup $\psi_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]$ satisfies

$$
\frac{\partial \psi_{t}}{\partial t}=\frac{1}{2} \Delta \psi_{t}+\beta(m-1) \psi_{t} .
$$

- What is the long-term average behaviour of the branching process?
- Again, the key is the many-to-one formula:

$$
\psi_{t}[f](x)=c^{\beta(m-1) t} \hat{\underline{E}}_{x}\left[f\left(B_{t}\right) 1_{t<t}\right] .
$$

Example: BBM

- Consider BBM on a domain $D \subset \mathbb{R}^{d}$ with branching rate β, mean offspring m and where particles are killed on ∂D.
- The mean semigroup $\psi_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]$ satisfies

$$
\frac{\partial \psi_{t}}{\partial t}=\frac{1}{2} \Delta \psi_{t}+\beta(m-1) \psi_{t} .
$$

- What is the long-term average behaviour of the branching process?
- Again, the key is the many-to-one formula:

$$
\psi_{t}[f](x)=c^{\beta(m-1) t} \hat{E}_{X}\left[f\left(B_{t}\right) 1_{t<\tau}\right] .
$$

Example: BBM

- Consider BBM on a domain $D \subset \mathbb{R}^{d}$ with branching rate β, mean offspring m and where particles are killed on ∂D.
- The mean semigroup $\psi_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]$ satisfies

$$
\frac{\partial \psi_{t}}{\partial t}=\frac{1}{2} \Delta \psi_{t}+\beta(m-1) \psi_{t} .
$$

- What is the long-term average behaviour of the branching process?
- Again, the key is the many-to-one formula:

$$
\psi_{t}[f](x)=\mathrm{e}^{\beta(m-1) t} \hat{\mathbf{E}}_{x}\left[f\left(B_{t}\right) \mathbf{1}_{t<\tau}\right] .
$$

Example: BBM

- Under certain assumptions, the eigenvalues of $-\frac{1}{2} \Delta$ are all real and can be written $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots$. The associated eigenfunctions $\left\{\varphi_{i}\right\}_{i \geq 1}$ form an orthonormal basis of $L^{2}(D)$ and the first eigenfunction is strictly positive.
- Letting $p_{t}^{D}(x, y)$ denote the transition density of $\left(B_{t}\right)_{t<\tau_{D}}$, we have

- This implies that

Example: BBM

- Under certain assumptions, the eigenvalues of $-\frac{1}{2} \Delta$ are all real and can be written $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots$. The associated eigenfunctions $\left\{\varphi_{i}\right\}_{i \geq 1}$ form an orthonormal basis of $L^{2}(D)$ and the first eigenfunction is strictly positive.
- Letting $p_{t}^{D}(x, y)$ denote the transition density of $\left(B_{t}\right)_{t<\tau_{D}}$, we have

$$
p_{t}^{D}(x, y)=\sum_{i \geq 1} \mathrm{e}^{-\lambda_{i} t} \varphi_{i}(x) \varphi_{i}(y)
$$

- This implies that

Example: BBM

- Under certain assumptions, the eigenvalues of $-\frac{1}{2} \Delta$ are all real and can be written $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots$. The associated eigenfunctions $\left\{\varphi_{i}\right\}_{i \geq 1}$ form an orthonormal basis of $L^{2}(D)$ and the first eigenfunction is strictly positive.
- Letting $p_{t}^{D}(x, y)$ denote the transition density of $\left(B_{t}\right)_{t<\tau_{D}}$, we have

$$
p_{t}^{D}(x, y)=\sum_{i \geq 1} \mathrm{e}^{-\lambda_{i} t} \varphi_{i}(x) \varphi_{i}(y) \sim \mathrm{e}^{-\lambda_{1} t} \varphi_{1}(x) \varphi_{1}(y)
$$

- This implies that
$\mathbf{E}_{x}\left[f\left(B_{t}\right) \mathbf{1}_{t<\tau}\right]=\int_{D} f(y) p_{t}^{D}(x, y) \mathrm{d} y \sim \mathrm{e}^{-\lambda_{1} t} \varphi(x) \eta[f]$

Example: BBM

- Under certain assumptions, the eigenvalues of $-\frac{1}{2} \Delta$ are all real and can be written $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots$. The associated eigenfunctions $\left\{\varphi_{i}\right\}_{i \geq 1}$ form an orthonormal basis of $L^{2}(D)$ and the first eigenfunction is strictly positive.
- Letting $p_{t}^{D}(x, y)$ denote the transition density of $\left(B_{t}\right)_{t<\tau_{D}}$, we have

$$
p_{t}^{D}(x, y)=\sum_{i \geq 1} \mathrm{e}^{-\lambda_{i} t} \varphi_{i}(x) \varphi_{i}(y) \sim \mathrm{e}^{-\lambda_{1} t} \varphi_{1}(x) \varphi_{1}(y)=: \mathrm{e}^{-\lambda_{1} t} \varphi(x) \eta(y)
$$

- This implies that
$\mathbf{E}_{x}\left[f\left(B_{t}\right) 1_{t<\tau}\right]=\int_{D} f(y) p_{t}^{D}(x, y) \mathrm{d} y \sim \mathrm{e}^{-\lambda_{1} t} \varphi(x) \eta[f]$.

Example: BBM

- Under certain assumptions, the eigenvalues of $-\frac{1}{2} \Delta$ are all real and can be written $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots$. The associated eigenfunctions $\left\{\varphi_{i}\right\}_{i \geq 1}$ form an orthonormal basis of $L^{2}(D)$ and the first eigenfunction is strictly positive.
- Letting $p_{t}^{D}(x, y)$ denote the transition density of $\left(B_{t}\right)_{t<\tau_{D}}$, we have

$$
p_{t}^{D}(x, y)=\sum_{i \geq 1} \mathrm{e}^{-\lambda_{i} t} \varphi_{i}(x) \varphi_{i}(y) \sim \mathrm{e}^{-\lambda_{1} t} \varphi_{1}(x) \varphi_{1}(y)=: \mathrm{e}^{-\lambda_{1} t} \varphi(x) \eta(y)
$$

- This implies that

$$
\mathbf{E}_{x}\left[f\left(B_{t}\right) \mathbf{1}_{t<\tau}\right]=\int_{D} f(y) p_{t}^{D}(x, y) \mathrm{d} y \sim \mathrm{e}^{-\lambda_{1} t} \varphi(x) \eta[f]
$$

Example: BBM

- Since $\frac{1}{2} \Delta \varphi_{i}=-\lambda_{i} \varphi_{i}$, it follows that

$$
\left(\frac{1}{2} \Delta+\beta(m-1)\right) \varphi_{i}=\left(-\lambda_{i}+\beta(m-1)\right) \varphi_{i}
$$

- Similarly,

$$
\psi_{t}[f](x)=\mathrm{e}^{\beta(m-1) t} \mathbf{E}_{x}\left[f\left(B_{t}\right) \mathbf{1}_{t<\tau_{D}}\right] \sim \mathrm{e}^{\left(\beta(m-1)-\lambda_{1}\right) t} \varphi(x) \eta[f] .
$$

Stability in the general case

- Again, the key will be the many-to-one formula:

$$
\psi_{t}[f](x)=\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} B\left(\hat{\xi}_{s}\right) \mathrm{d} s} g\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\tau}\right] .
$$

- Since $\gamma, m[1] \in B^{+}(E)$, it follows that $\bar{B}:=\sup B(x)<\infty$.
- Hence, we may define

$$
\begin{aligned}
\psi_{t}^{\dagger}[f](x):=\mathrm{e}^{-\bar{B} t} \psi_{t}[f](x) & =\hat{\mathbf{E}}_{x}\left[\mathrm{e} \int_{0}^{t}\left(B\left(\hat{\xi}_{s}\right)-\bar{B}\right) \mathrm{d} s\right. \\
& \left.\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\tau}\right] \\
& =: \hat{\mathbf{E}}_{x}\left[g\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\kappa}\right]
\end{aligned}
$$

Stability in the general case

- Again, the key will be the many-to-one formula:

$$
\psi_{t}[f](x)=\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} B\left(\hat{\xi}_{s}\right) \mathrm{d} s} g\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\tau}\right] .
$$

- Since $\gamma, m[1] \in B^{+}(E)$, it follows that $\bar{B}:=\sup _{x \in E} B(x)<\infty$.
- Hence, we may define

Stability in the general case

- Again, the key will be the many-to-one formula:

$$
\psi_{t}[f](x)=\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} B\left(\hat{\xi}_{s}\right) \mathrm{d} s} g\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\tau}\right] .
$$

- Since $\gamma, m[1] \in B^{+}(E)$, it follows that $\bar{B}:=\sup _{x \in E} B(x)<\infty$.
- Hence, we may define

$$
\begin{aligned}
\psi_{t}^{\dagger}[f](x):=\mathrm{e}^{-\bar{B} t} \psi_{t}[f](x) & =\hat{\mathbf{E}}_{x}\left[\mathrm{e} \int_{0}^{t}\left(B\left(\hat{\xi}_{s}\right)-\bar{B}\right) \mathrm{d} s\right. \\
& \left.\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\tau}\right] \\
& =: \hat{\mathbf{E}}_{x}\left[g\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\kappa}\right]
\end{aligned}
$$

QSDs

- Let $\left(Y_{t}\right)_{t \geq 0}$ be a time-homogeneous Markov process on $E \cup\{\dagger\}$ with probabilities $\left(\mathbf{P}_{x}^{\dagger}, x \in E\right)$ and semigroup $\left(\psi_{t}^{\dagger}\right)_{t \geq 0}$.
- Assume that $\kappa:=\inf \left\{t>0: X_{t}=\dagger\right\}<\infty, \mathbf{P}_{x}^{\dagger}$-almost surely for all $x \in E$.
- Assume further that for all $x \in E, \mathbf{P}_{x}^{\dagger}(t<\kappa)>0$.

QSDs

Definition

A quasi-stationary distribution (QSD) is a probability measure η on E such that

$$
\eta=\lim _{t \rightarrow \infty} \mathbf{P}_{\mu}^{\dagger}\left(X_{t} \in \cdot \mid t<\kappa\right)
$$

for some initial probability measure μ on E.

QSDs

Definition

A quasi-stationary distribution (QSD) is a probability measure η on E such that

$$
\eta=\lim _{t \rightarrow \infty} \mathbf{P}_{\mu}^{\dagger}\left(X_{t} \in \cdot \mid t<\kappa\right)
$$

for some initial probability measure μ on E.

Proposition

A probability measure η is a QSD if and only if, for any $t \geq 0$,

$$
\eta=\mathbf{P}_{\eta}^{\dagger}\left(Y_{t} \in \cdot \mid t<\kappa\right) .
$$

QSDs

- Méléard, S., \& Villemonais, D. (2012). Quasi-stationary distributions and population processes.
- van Doorn, E. A., \& Pollett, P. K. (2011). Quasi-stationary distributions. Memorandum 1945.
- Collet, P., Martínez, S., \& San Martín, J. (2013). Quasi-stationary distributions: Markov chains, diffusions and dynamical systems (Vol. 1). Berlin: Springer.
- Champagnat, Dobrushin, Doeblin, Harris, Meyn, Nummelin, Tweedie, ...

QSDs

Theorem (Champagnat, Villemonais)

Under Assumption A, there exists a constant $\lambda_{c}<0$, a function $\varphi \in B^{+}(E)$ and a probability measure η on E such that

$$
\psi_{t}^{\dagger}[\varphi]=\mathrm{e}^{\lambda_{c} t} \varphi, \quad \eta\left[\psi_{t}^{\dagger}[g]\right]=\mathrm{e}^{\lambda_{c} t} \eta[g] .
$$

Moreover, there exist constants $C, \varepsilon>0$ such that

$$
\sup _{x \in E, g \in B_{1}^{+}(E)}\left|\mathrm{e}^{-\lambda_{c} t} \varphi(x)^{-1} \psi_{t}^{\dagger}[g]-\eta[g]\right| \leq C \mathrm{e}^{-\epsilon t}
$$

QSDs

Theorem (Champagnat, Villemonais)

Under Assumption A, there exists a constant $\lambda_{c}<0$, a function $\varphi \in B^{+}(E)$ and a probability measure η on E such that

$$
\psi_{t}^{\dagger}[\varphi]=\mathrm{e}^{\lambda_{c} t} \varphi, \quad \eta\left[\psi_{t}^{\dagger}[g]\right]=\mathrm{e}^{\lambda_{c} t} \eta[g] .
$$

Moreover, there exist constants $C, \varepsilon>0$ such that

$$
\sup _{x \in E, g \in B_{1}^{+}(E)}\left|\mathrm{e}^{-\lambda_{c} t} \varphi(x)^{-1} \psi_{t}^{\dagger}[g]-\eta[g]\right| \leq C \mathrm{e}^{-\epsilon t} .
$$

Since $\psi_{t}=\mathrm{e}^{\bar{B} t} \psi_{t}^{\dagger}$, the same conclusion then holds for ψ_{t} with λ_{c} replaced by $\lambda_{*}=\lambda_{c}+\bar{B}$.

QSDs

Assumption A

There exists a probability measure ν on E such that
(A1) there exists $t_{0}, c_{1}>0$ such that for all $x \in E$,

$$
\mathbf{P}_{x}^{\dagger}\left(Y_{t_{0}} \in \cdot \mid t_{0}<\kappa\right) \geq c_{1} \nu(\cdot) ;
$$

(A2) there exists $c_{2}>0$ such that for all $x \in E$ and $t \geq 0$,

$$
\mathbf{P}_{\nu}^{\dagger}(t<\kappa) \geq c_{2} \mathbf{P}_{x}^{\dagger}(t<\kappa) .
$$

Thank you!

