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Recap

Particles move in E according to a Markov process (ξ,Px ). The associated
semigroup is

Pt [f ](x) = Ex [f (ξt)1(t<ζ)]

When at x ∈ E , at rate γ(x), the particle is killed and sent to the cemetery
state † /∈ E .

At this point, new particles are created according to the point process
(Z,Px ), where

Z =
N∑

i=1
δxi .

For convenience, we define m[f ](x) = Ex

[ N∑
i=1

f (xi )
]

.

Stability and criticality Emma Horton 6 February 2024 3 / 29



Recap

The branching process is defined as

Xt :=
Nt∑
i=1

δxi (t).

The law of (Xt)t≥0 is characterised via the non-linear semigroup

vt [g ](x) := Eδx

[
e−Xt [g ]],

where

Xt [g ] =
∫

E
g(y)Xt(dy) =

Nt∑
i=1

g(xi (t)).
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Recap

We are also interested in the mean (linear) semigroup

ψt [g ](x) := Eδx [Xt [g ]] .

Many-to-one lemma
There exists a Markov process (ξ̂, P̂) taking values in E ∪ {†} such that

ψt [g ](x) = Êx

[
e
∫ t

0
B(ξ̂s )dsg(ξ̂t)1(t<τ)

]
,

where B(x) = γ(x)(m[1](x)− 1).
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Recap
Recall that m[f ](x) = Ex [Z[f ]].

Recall also that (ξ̂t)t≥0 evolves according to ξ and at rate γ(x)m[1](x) jumps
to a new location in A ⊂ E with probability m[1A](x)/m[1](x).

How to see this?

∂

∂t ψt [f ](x) = Lψt [f ](x) + γ(x)
(
m[ψt [f ]](x)− ψt [f ](x)

)
= Lψt [f ](x) + γ(x)m[1](x)m[ψt [f ]](x)

m[1](x) − γ(x)ψt [f ](x)

= Lψt [f ](x) + γ(x)m[1](x)m[ψt [f ]](x)
m[1](x) − γ(x)m[1](x)ψt [f ](x)

+ γ(x)m[1](x)ψt [f ](x)− γ(x)ψt [f ](x)

= Lψt [f ](x) + γ(x)m[1](x)
(

m[ψt [f ]](x)
m[1](x) − ψt [f ](x)

)
+ γ(x)(m[1](x)− 1)ψt [f ](x)
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Example: continuous time Galton Watson process

Many-to-one: E[Nt ] = e(m−1)t .
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Example: BBM

Many-to-one: Eδx [Xt [f ]] = eβt Êx [f (Bt)]
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Example: growth-fragmentation

Many-to-one: Eδx [Xt [f ]] = Êx

[
e
∫ t

0
γ(Ys )ds f (Yt)1(t<τ)

]
.
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Example: neutron transport

Many-to-one: Eδx [Xt [f ]] = Êx

[
e
∫ t

0
σf (Rs ,Υs )(m[1](Rs ,Υs )−1)ds f (Rt ,Υt)1(t<τ)

]
.
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Observations

The quantity B(x) = γ(x)(m[1](x)− 1) “keeps track” of the mass in the
branching process, i.e.

Eδx [Nt ] = Êx

[
e
∫ t

0
B(ξ̂s )ds1t<τ

]
.

If sup
x∈E

B(x) < 0, then we can interpret |B| as a killing rate:

P̂x (t < T |σ(ξ̂s , s ≤ t)) = e−
∫ t

0
|B(ξs )|ds

.
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Stability

Aim: to find
λ∗ ∈ R,
a positive function ϕ ∈ B+(E ),
a probability measure η on E

such that

ψt [ϕ] = eλ∗tϕ, η[ψt [g ]] = eλ∗tη[g ],

and

ψt [g ](x) ∼ eλ∗tϕ(x)η[g ], as t →∞.

Stability and criticality Emma Horton 6 February 2024 14 / 29



Stability

ψt [g ](x) ∼ eλ∗tϕ(x)η[g ], as t →∞.

Subcritical: if λ∗ < 0, the average mass decays at rate −λ∗.

Critical: if λ∗ = 0, the average mass remains constant.

Supercritical: if λ∗ > 0, the average mass in the system grows at rate λ∗.
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Example: branching Markov chains

Consider the case where (ξt , t ≥ 0) is a continuous time Markov chain on
E = {1, . . . , n} with transition matrix (Pi,j(t))i,j∈E

At rate γ, particles produce two offspring locally.

What is the long-term average behaviour of the branching process?

The key to answering this is the many-to-one:

ψt [g ](i) = eγtEi [g(ξt)]

= eγt
n∑

j=1
Pi,j(t)g(j).
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Example: branching Markov chains

Perron Frobenius theorem
Let A be a non-negative, irreducible square matrix. Then the following hold.

There is a simple positive real eigenvalue λ and such that all other eigenvalues
have absolute value less than or equal to λ.

The (unique up to scaling) left- and right-eigenvectors, ϕ and η resp.,
corresponding to λ are positive.

lim
n→∞

An/λn = ϕηT where the left and right eigenvectors for A are normalized
so that ηTϕ = 1.
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Example: branching Markov chains

Assuming the chain is irreducible, Perron Frobenius theory tells us that there exist
λc ≤ 0 and vectors ϕ, η such that

P(t)ϕ = eλc tϕ, ηT P(t) = eλc tηT ,

and
Pi,j(t) ∼ eλc tϕ(i)η(j) + o(eλc t), t →∞.
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Example: branching Markov chains

Using the fact that ψt = eγtP(t), we have

P(t)ϕ = eλc tϕ =⇒ ψt [ϕ] = e(γ+λc )tϕ;

ηT P(t) = eλc tηT =⇒ ηTψt = e(γ+λc )tηT ;

Pi,j(t) ∼ eλc tϕ(i)η(j) =⇒ ψt [g ](i) ∼ e(γ+λc )tϕ(i)ηT g .
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Example: BBM

Consider BBM on a domain D ⊂ Rd with branching rate β, mean offspring m
and where particles are killed on ∂D.

The mean semigroup ψt [f ](x) = Eδx [Xt [f ]] satisfies

∂ψt
∂t = 1

2 ∆ψt + β(m − 1)ψt .

What is the long-term average behaviour of the branching process?

Again, the key is the many-to-one formula:

ψt [f ](x) = eβ(m−1)t Êx [f (Bt)1t<τ ].
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Example: BBM

Under certain assumptions, the eigenvalues of − 1
2 ∆ are all real and can be

written 0 < λ1 < λ2 < λ3 < . . . . The associated eigenfunctions {ϕi}i≥1 form
an orthonormal basis of L2(D) and the first eigenfunction is strictly positive.

Letting pD
t (x , y) denote the transition density of (Bt)t<τD , we have

pD
t (x , y) =

∑
i≥1

e−λi tϕi (x)ϕi (y)

∼ e−λ1tϕ1(x)ϕ1(y)

=: e−λ1tϕ(x)η(y)

This implies that

Ex [f (Bt)1t<τ ] =
∫

D
f (y)pD

t (x , y)dy ∼ e−λ1tϕ(x)η[f ].
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Example: BBM

Since 1
2 ∆ϕi = −λiϕi , it follows that

( 1
2 ∆ + β(m − 1))ϕi = (−λi + β(m − 1))ϕi .

Similarly,

ψt [f ](x) = eβ(m−1)tEx [f (Bt)1t<τD ] ∼ e(β(m−1)−λ1)tϕ(x)η[f ].
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Stability in the general case

Again, the key will be the many-to-one formula:

ψt [f ](x) = Êx

[
e
∫ t

0
B(ξ̂s )dsg(ξ̂t)1t<τ

]
.

Since γ,m[1] ∈ B+(E ), it follows that B̄ := sup
x∈E

B(x) <∞.

Hence, we may define

ψ†t [f ](x) := e−B̄tψt [f ](x) = Êx

[
e
∫ t

0
(B(ξ̂s )−B̄)dsg(ξ̂t)1t<τ

]
=: Êx

[
g(ξ̂t)1t<κ

]
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[
e
∫ t

0
B(ξ̂s )dsg(ξ̂t)1t<τ

]
.

Since γ,m[1] ∈ B+(E ), it follows that B̄ := sup
x∈E

B(x) <∞.

Hence, we may define

ψ†t [f ](x) := e−B̄tψt [f ](x) = Êx

[
e
∫ t

0
(B(ξ̂s )−B̄)dsg(ξ̂t)1t<τ

]
=: Êx
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Hence, we may define

ψ†t [f ](x) := e−B̄tψt [f ](x) = Êx

[
e
∫ t

0
(B(ξ̂s )−B̄)dsg(ξ̂t)1t<τ

]
=: Êx

[
g(ξ̂t)1t<κ

]
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QSDs

Let (Yt)t≥0 be a time-homogeneous Markov process on E ∪ {†} with
probabilities (P†x , x ∈ E ) and semigroup (ψ†t )t≥0.

Assume that κ := inf{t > 0 : Xt = †} <∞, P†x -almost surely for all x ∈ E .

Assume further that for all x ∈ E , P†x (t < κ) > 0.

Stability and criticality Emma Horton 6 February 2024 24 / 29



QSDs

Definition
A quasi-stationary distribution (QSD) is a probability measure η on E such that

η = lim
t→∞

P†µ(Xt ∈ ·|t < κ)

for some initial probability measure µ on E .

Proposition
A probability measure η is a QSD if and only if, for any t ≥ 0,

η = P†η(Yt ∈ ·|t < κ).
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QSDs
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QSDs

Theorem (Champagnat, Villemonais)
Under Assumption A, there exists a constant λc < 0, a function ϕ ∈ B+(E ) and a
probability measure η on E such that

ψ†t [ϕ] = eλc tϕ, η[ψ†t [g ]] = eλc tη[g ].

Moreover, there exist constants C , ε > 0 such that

sup
x∈E ,g∈B+

1 (E)
|e−λc tϕ(x)−1ψ†t [g ]− η[g ]| ≤ Ce−εt .

Since ψt = eB̄tψ†t , the same conclusion then holds for ψt with λc replaced by
λ∗ = λc + B̄.
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QSDs

Assumption A
There exists a probability measure ν on E such that

(A1) there exists t0, c1 > 0 such that for all x ∈ E ,

P†x (Yt0 ∈ ·|t0 < κ) ≥ c1ν(·);

(A2) there exists c2 > 0 such that for all x ∈ E and t ≥ 0,

P†ν(t < κ) ≥ c2P†x (t < κ).
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Thank you!
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