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Recap

The branching process is defined as

Xt :=
Nt∑
i=1

δxi (t).

The law of (Xt)t≥0 is characterised via the non-linear semigroup

vt [g ](x) := Eδx

[ Nt∏
i=1

g(xi(t))
]
,

where

Xt [g ] =
∫

E
g(y)Xt(dy) =

Nt∑
i=1

g(xi(t)).

The mean semigroup is given by

ψt [g ](x) := Eδx [Xt [g ]] .
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Recap

Recall the Perron Frobenius asymptotic

ψt [g ](x) ∼ eλ∗tφ(x)η[g ], t → ∞.

When λ∗ = 0, the expected population size remains constant but we have
extinction almost surely.

What happens to Xt if we condition on survival?
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Yaglom limit for BGW processes
Suppose (Zn)n≥0 is a BGW process,

Zn+1 =
Zn∑

i=1
ξi , ξi ∼iid ξ.

Assume E[ξ] = 1 so that the process is critical.
Further assume that σ2 := E[ξ2] − E[ξ] < ∞.

Kolmogorow limit (Kolmogorov ’38):

lim
n→∞

nP(Zn > 0) = 2
σ2

Yaglom limit (Yaglom ’48):

lim
n→∞

E
[
exp

(
−θZn

n

) ∣∣∣Zn > 0
]

= 1
1 + θσ2/2 .
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Yaglom limit for BBM on a compact domain
Let D ⊂ Rd be compact.
Let (Xt)t≥0 denote a branching process where, given their point of creation,
particles move independently according to a diffusion with generator L.
Particles are killed on ∂D and at rate β > 0, they branch into a random
number of particles with distribution A.

Let λ denote the first eigenvalue of −L on D.
Assume m := E[A] > 1, E[A2] < ∞ and λ = β(m − 1).

Kolmogorov result (Powell ’19):

lim
t→∞

tPx (Nt > 0) = C1(x).

Yaglom limit (Powell ’19):

lim
t→∞

Ex

[
exp

(
−θ

t

Nt∑
i=1

f (X i
t )
)∣∣∣Nt > 0

]
= 1

1 + θC2(f ) .
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General setting

Define

V[g ](x) := Ex

[ N∑
i,j=1
i ̸=j

g(yi)g(yj)
]
, x ∈ E , f ∈ B+(E ).

and
Σ = η[βV[φ]].

Theorem (Kolmogorov survival probability)
Under certain assumptions, we have

lim
t→∞

sup
x∈E

∣∣∣ tPδx (Nt > 0)
φ(x) − 2

Σ

∣∣∣ = 0,

i.e. Pδx (Nt > 0) ∼ C1(x)
t .
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General setting

Theorem (Yaglom limit)
Under the same assumptions, for each f ∈ B+(E ),(

Xt [f ]
t

∣∣∣∣Nt > 0
)

→ Y , as t → ∞,

in distribution, where Y is an exponential random variable with mean η[f ]Σ/2.
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Kolmogorov survival probability

Note that

Pδx (Nt > 0) = 1 − Pδx (Nt = 0) = 1 − vt [0](x) = 1 − Eδx

[
0Nt
]

Recall that
vt [f ](x) = P̂t [f ](x) +

∫ t

0
Ps [G[vt−s [f ]]] (x)ds,

where P̂t [f ](x) = Ex [f (ξt∧τ∂
)].

However, this is not the right evolution equation to work with.

Limit theorems for critical branching processes 10 / 39



Kolmogorov survival probability

Note that

Pδx (Nt > 0) = 1 − Pδx (Nt = 0) = 1 − vt [0](x) = 1 − Eδx

[
0Nt
]

Recall that
vt [f ](x) = P̂t [f ](x) +

∫ t

0
Ps [G[vt−s [f ]]] (x)ds,

where P̂t [f ](x) = Ex [f (ξt∧τ∂
)].

However, this is not the right evolution equation to work with.

Limit theorems for critical branching processes 10 / 39



Kolmogorov survival probability

Note that

Pδx (Nt > 0) = 1 − Pδx (Nt = 0) = 1 − vt [0](x) = 1 − Eδx

[
0Nt
]

Recall that
vt [f ](x) = P̂t [f ](x) +

∫ t

0
Ps [G[vt−s [f ]]] (x)ds,

where P̂t [f ](x) = Ex [f (ξt∧τ∂
)].

However, this is not the right evolution equation to work with.

Limit theorems for critical branching processes 10 / 39



Kolmogorov survival probability

For f ∈ B+
1 (E ) and x ∈ E , set

ut [f ](x) = 1 − vt [f ](x), t ≥ 0

and

A[f ](x) = γ(x)Ex

[ N∏
i=1

(1 − f (xi)) − 1 +
N∑

i=1
f (xi)

]
.

Lemma
For all g ∈ B+

1 (E ), x ∈ E and t ≥ 0, ut [g ](x) satisfies

ut [g ](x) = ψt [1 − g ](x) −
∫ t

0
ψs [A[ut−s [g ]]] (x)ds.
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Yaglom limit

Three possible approaches:

Spine decomposition

Method of moments

Laplace transforms/non-linear semigroup
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Yaglom limit

Know that exponential distribution is characterised by its moments.

Let us consider the moments of t−1Xt [f ] under Pδx (·|Nt > 0):

Eδx

[(
Xt [f ]

t

)k ∣∣∣∣Nt > 0
]

=
1

tk−1 Eδx [Xt [f ]k1Nt >0]
tPδx (Nt > 0)

Recall that

Eδx [Xt [f ]k ] = (−1)k ∂
k

∂θk Eδx [e−θXt [f ]]
∣∣∣∣
θ=0

= (−1)k+1 ∂
k

∂θk ut [e−θf ]
∣∣∣∣
θ=0

.
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Yaglom limit

Recall
ut [g ](x) = ψt [1 − g ](x) −

∫ t

0
ψs [A[ut−s [g ]]] (x)ds,

so that

ut [e−θg ](x) = ψt [1 − e−θg ](x) −
∫ t

0
ψs
[
A[ut−s [e−θg ]]

]
(x)ds,

where

A[f ](x) = γ(x)Ex

[ N∏
i=1

(1 − f (xi)) − 1 +
N∑

i=1
f (xi)

]
.

Limit theorems for critical branching processes 14 / 39



Yaglom limit

Differentiating k times with respect to θ and setting θ = 0 gives

ψ
(k)
t [f ](x) = ψt [f k ](x) +

∫ t

0
ψs

[
βη

(k−1)
t−s [f ]

]
(x) ds, t ≥ 0, (1)

where

η
(k−1)
t−s [f ](x) = Ex

 ∑
[k1,...,kN ]2k

(
k

k1, . . . , kN

) ∏
j:kj >0

ψ
(kj )
t−s [f ](xj)

 ,
and [k1, . . . , kN ]2k is the set of all non-negative N-tuples (k1, . . . , kN) such that

N∑
i=1

ki = k and at least two of the ki are strictly positive.
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Yaglom limit

Proceed by induction. Base case: ψt [f ](x) ∼ φ(x)η[f ].

Inductive step:

ψ
(k+1)
t [f ](x) = ψt [f k+1](x) +

∫ t

0
ψs

[
βη

(k)
t−s [f ]

]
(x) ds.

Recall that from (H1), ψt [f ](x) → φ(x)η[f ] so that, for k ≥ 2,

lim
t→∞

t−kψt [f k+1](x) = 0.
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Yaglom limit

Hence

lim
t→∞

t−kψ
(k+1)
t [f ](x)

= lim
t→∞

t−k
∫ t

0
ψs

E·

 ∑
[k1,...,kN ]2k+1

(
k + 1

k1, . . . , kN

) ∏
j:kj >0

ψ
(kj )
t−s [f ](xj)

 (x)ds

= 1
t

∫ t

0
ψs

E·

 ∑
[k1,...,kN ]2k+1

(
k + 1

k1, . . . , kN

)
(t − s)k+1−#{j:kj >0}

tk−1

∏
j:kj >0

ψ
(kj )
t−s [f ](xj)

(t − s)kj −1

 (x)ds
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Yaglom

The inductive proof yields

ψ
(k)
t ∼ tk−1φ(x)k!η[f ]k(Σ/2)k−1, t → ∞.

Then, we have

Eδx

[(
Xt [f ]

t

)k ∣∣∣∣Nt > 0
]

=
1

tk−1 Eδx [Xt [f ]k1Nt >0]
tPδx (Nt > 0)

= φ(x)k!η[f ]k(Σ/2)k−1

φ(x)(2/Σ)
= k!η[f ]k(Σ/2)k .
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Why the 2nd moments?

Probabilistic explanation: asymptotically, two children of the MRCA, each with at
least 1 descendant alive at time t.

Recall the operator

A[h](x) = γ(x)Ex

[
1 −

N∏
i=1

(1 − h(xi)) −
N∑

i=1
h(xi)

]

= γ(x)Ex

∑
i ̸=j

h(xi)h(xj) − . . .


= V[h](x) + h.o.t
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Why the exponential distribution?

There are asymptotically two children of the MRCA, each with at least 1
descendant alive at time t.

Distribution of the time of the MRCA of the particles alive at time t is
uniform.

Therefore, under Pδx (·|Nt > 0),

Xt
t ≈ U

(
X (1)

Ut
Ut + X (2)

Ut
Ut

)
.
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Many-to-few

Recall the moment evolution equation:

ψ
(k)
t [f ](x) = ψt [f k ](x) +

∫ t

0
ψs

[
βη

(k−1)
t−s [f ]

]
(x) ds.
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Genealogical structure: ancestral trees

Let (X ,P) denote a Markov branching process.

Let T > 0. On the event {NT ≥ k}, choose k distinct particles U1, . . . ,Uk
uniformly from those alive at time T .

What does the ancestral tree formed from these k particles look like?

Limit theorems for critical branching processes 23 / 39



Genealogical structure: ancestral trees

Let (X ,P) denote a Markov branching process.

Let T > 0. On the event {NT ≥ k}, choose k distinct particles U1, . . . ,Uk
uniformly from those alive at time T .

What does the ancestral tree formed from these k particles look like?

Limit theorems for critical branching processes 23 / 39



Genealogical structure: ancestral trees

Let (X ,P) denote a Markov branching process.

Let T > 0. On the event {NT ≥ k}, choose k distinct particles U1, . . . ,Uk
uniformly from those alive at time T .

What does the ancestral tree formed from these k particles look like?

Limit theorems for critical branching processes 23 / 39



Genealogical structure: ancestral trees

Let (X ,P) denote a Markov branching process.

Let T > 0. On the event {NT ≥ k}, choose k distinct particles U1, . . . ,Uk
uniformly from those alive at time T .

What does the ancestral tree formed from these k particles look like?

Limit theorems for critical branching processes 23 / 39



Ancestral trees

Equivalently, define the equivalence relation ∼t on {1, . . . , k} by

i ∼t j ⇔ Ui and Uj share a common ancestor alive at time t.

Let πk,T
t denote the random partition of {1, . . . , k} corresponding to this

equivalence relation. What is the law of (πk,T
t ) conditional on NT ≥ k?
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Genealogical structure: convergence to the BCRT

Aim is to look at the scaling limit of the continuous planar tree associated
with a MBP.

Ulam Harris notation:

Ω =
∞⋃

n=0
Nn.

The label ∅ denotes the initial ancestor.

Labels are of the form u = ∅u1u2 . . . un, e.g. label ∅215 means the particle is
the 5th child of the 1st child of the 2nd child of the initial ancestor.
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Convergence to the Brownian CRT
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Convergence to the CRT
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Convergence to the CRT
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Convergence to the Brownian CRT
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Convergence to the Brownian CRT
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Convergence to the Brownian CRT
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Thank you!
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