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Two important functions describing branching processes (X;):>o

For a measure-valued process (X;)¢>, we define X¢[g] := [ gdX;.
If X¢ = Zéx,-(t)axt[g] = Z,-g(x,-(t)).

Ye[g](r, v) ve[g](r, v)
Definition Es, ,[Xt[g]] [E(;r’v[e—Xt[g]]
Describes First Moment Moment generating function
Semi-group | Ye+s[g] = ¥¢(¢¥sg]) Virslg] = ve(vs[gl])

Table: Two important functions



Two important functions describing branching processes (X;):>o WarhRad

First moment from moment generating function:

vulgl(r,v) = —S5vil0g](r,v) (1)
6=0

Similarly, one can derive all moments of X;[g] given an evolution equation of
velg](r, v).



Evolution of v;[g]

To derive the evolution of v¢[g], we condition on the first event (fission / scatter) for
our neutron transport process until time t.

Event Probability Contribution
D
tAHr,v
No event / Exit | e Jo " olrtviv)de e‘g(r“"’t"’)lKnpv + 100,
Scatter at s lscro(r+ vs,v) % [vi_s(r + vs,v)ms(r + vs, v,V )dv’
Fission at s x e~ Jo o(rtvev)de +ZErtvs,y [H,N:l Vi_s(r + vs, v,-)]

Table: Probability Tables



Evolution of v;[g]

Event Probability Contribution

D
tAKL
No event / Exit | e~ Jo "~ olriviv)dl | g—g(rivtv)y

t<rD, + 1t>an
Scatter at s lscro(r+ vs,v) Us {Svt,s

Fission at s x e~ Jo o(rtvtv)de +G [vt_s]-‘

Table: Probability Tables

Combining terms and defining the operators appropriately (in particular subsuming the
potential terms e~ Jo - into the operators), we have

velg] = Uc[e™®] +/0 Us [Svi-s[g] + Glve—s[g]l] ds. (2)
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» If g =14, v¢[g] helps us understand all the moments, and thus the law of X;(A).
» How about spatial correlation E[X¢(A)X:(B)]?

» Characterised by correlation of non-local branching, i.e,
VI, gl(r,v) = E[> i f(r; vi)g(r; vi)l



Spatial Correlation

Note that
2E[X:[f1Xe[g]] = E[X:[f + g]*] — E[X:[f]°] — E[X:[g]?], (3)

so it suffices to consider expressions for w:[g](r,v) := Es, ,[X¢[g]?] in general.
Again we condition on first fission / scattering event.

Event Probability Contribution
No event / Exit ftmr Y o(r+vi,v)de g2(r+vt,v)1, o
Scatter at s 15<Na(r + vs, v) % [wi_s(r 4 vs,v')ms(r + vs, v, v/)dv'
Fission at s xe~Joolrivbvde | yorg o []E [(Ef\l_l X[_s[g]>2]]

Table: Probability Tables
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r+vs v [

<ZX4 s[g]> ” Ertusy { [ZXt’ Jelxi s[g]+ZXt’ Jlel ”

i#j
= e s[g](r + vs, vi)ihes[gl(r + vs, v))
i#i
N

+ ) wes[gl(r + vs, vi)

i=1
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Combining the terms above, we have that w;[g](r, v) must solve

MMMW=%MWHW+ALH@+HMWMWHW$+ALHWWMSMWH0$

—%anﬂ+énquwﬂﬁkﬂ5+Hmﬂﬁkﬂﬂﬁ
(5)

One could interpret the term o¢V[¢):—s[g]] as independent masses / contribution
immigrated into the system at time s. Therefore,

welg](r,v) = ¥elg®](r, V)+/ Vs [JfV[%ﬁts[g]]}(f, v)ds. (6)
0
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Interpretation: The variance of the system at time t, given by,

Wt[g](rv V) - ¢t[g2](fa V):

is the sum (') of the mean evolution (1s) of the local branching correlation
(ofV[1+—s[g]]) along the process.
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If A >0, for welg](r, v) = ¥elg?](r, v) + Jo ¥s [ofth_s[g]]} (r,v)ds,

t—o0

im e P tulgl(r.v) = (g2 [ e P ulo A v)s (7)
0

Heuristics: By Perron-Frobenius results, 1/:[g?] ~ e*f, so first term goes to zero.
Furthermore, v;:_[g] = e*(t=5)(3, g)p + o(e?t), V is symmetric bilinear form, so
VIveslgl] = e09(3, g)*VIg] + o(e*+*). Therefore

e [ o tvedell] (nv)as = [ g guaMAlas + o)
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If A\ < 0, we write [} s {afv[wt_s[g]]} (r,v)ds = [{ thes [afvws[g]@ (r,v)ds, ceR

e | s [o—fvws[gn] (. v)ds
= [l B o VIl + ol s
- /0 Do) (o Vislgll ds + o(1) (8)

Finally, e+t [g2](r, v) = ©($, g2), so

e M wilgl(r,v) = (3. 8%) + /Ot e 5p(r,v) (@, orVI[vs[gll) ds.
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If A, =0, first term goes to 0 after rescaling by 1/¢t, and

¢ [ oecovtvdel] (e

-1 o V) (B, VIp(B. £)]) + o(1)} d

_! / (1, V), )3, or VIl ds + o(1)
0

t
= o(r,v)(?,8)%(@. o VIl (9)



What about k-th moment?

k
K d
Hlgl(r,v) = (~1) e vlbel(r.v) (10)
9=0

The evolution equation of the k-th moment can be written in terms of that for
lower moments through applying product rule k-times
Moral of the story: Growth of k-th moment is e**t for supercritical, e+t for
subcritical, t—* for critical processes.
More exotic results for the occupational measure: e*+t for supercritical, O(1) for
subcritical, O(t=2k~1) for critical
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Optional Extra Discussion - Applications in Nuclear Engineering
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Terminology:

» | precursors, neutron source of strength Sy(s)

Description: The Pal-Bell equation is a system of PDEs on the PGF
G(z, t|s) = E[zN9)], Gyi(z, t|s), Gs(z, t|s).
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Terminology:
» | precursors, neutron source of strength Sy(s)
» N(t|s): active neutrons at t from a neutron born at s < t

» Nyi(t|s): delayed neutrons at t from a neutron born at s < t

Description: The Pal-Bell equation is a system of PDEs on the PGF
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Pal-Bell equations

Terminology:
» | precursors, neutron source of strength Sy(s)
» N(t|s): active neutrons at t from a neutron born at s < t
» Nyi(t|s): delayed neutrons at t from a neutron born at s < t

» Ns(t|s): descendent neutrons at t from immigrated neutrons at s

Description: The Pal-Bell equation is a system of PDEs on the PGF
G(z, t|s) = E[zN9)], Gyi(z, t|s), Gs(z, t|s).
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Perron-Frobenius:
» There exists a R-valued Z, and p > 0 such that Ns(t|s) — e”'Z

Operation Requirement: For some threshold n*, and ¢ = 1078, find appropriate
Sq4(s) such that
inf P[Ns(t|s) < n*]>1-—e.

t<tmat
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Perron-Frobenius:
» There exists a R-valued Z, and p > 0 such that Ns(t|s) — e”'Z
> for large t > tmae, P[Ns(t|s) < n] = P[Zs < ]

Operation Requirement: For some threshold n*, and ¢ = 1078, find appropriate
Sq4(s) such that
inf P[Ns(t|s) < n*]>1-—e.
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Pal-Bell equations

Perron-Frobenius:
» There exists a R-valued Z, and p > 0 such that Ns(t|s) — e”'Z
> for large t > tmae, P[Ns(t|s) < n] = P[Zs < ]

» The maturity time t,a: defined when for all t > t;,

Var[Ns(t|s)]

ENs(ds)] Ot

Operation Requirement: For some threshold n*, and ¢ = 1078, find appropriate
Sq4(s) such that
inf P[Ns(t|s) < n*]>1-—e.

t<tmat
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_ 3G(;’St|5) = 2c(S) = (4c(S) + 4¢(5))G(z, ts)
I
+ () (G2, ts)] IFi(Galz. 119)) (7)
_%: —)LiGdi(z,t|S) +}~EG(27t‘s)7 i=12,...1 (8)
acsgs 15) _ s,()1f, Gz, tls)) — 1]Gs(z. t]s) (9)

Pal-Bell equation [WE17]
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Operation Requirement: In [WE17], one can show that

P[Ns(t|s) < ]_Z 3! aaznn Gs(z, t[s)

z=0

L 7{ Gs(z. t|s e (11)

j{Gszﬂ

which can be calculated with numerical methods (saddle point methods).

p 1( Z)Z" (1 — S\ n*+1
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OPEN PROBLEMS



Spatial Pal-Bell equation MaThRad

There is a similar Pal-Bell equation for the spatial case, with the PGF
G(z,t, R|R, Vb, S)-
Problems solved:

» Characterising spatial variations (achieved only through diffusion approximation)
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Spatial Pal-Bell equation MaThRad

There is a similar Pal-Bell equation for the spatial case, with the PGF

G(z,t, R|R, Vb, S)-

Problems solved:
» Characterising spatial variations (achieved only through diffusion approximation)
> Mean and Variance calculation

» Establishing Perron-Frobenius limiting results
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General theory of BPS with Immigration
» Construct general multi-type spatial branching process with immigration (DONE)
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Branching Particle System theory WarhRrad

General theory of BPS with Immigration
» Construct general multi-type spatial branching process with immigration (DONE)
» Moment calculations of system (Partial Done)
» Doob's LP-inequality to control running supremum
» Calculate spatial clustering by computing E[(f, 1) (g, 11)]
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What about Monte Carlo methods? (TT+MK+VR)

» Implementation of simulations in SCONE
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What about Monte Carlo methods? (TT+MK+VR)
» Implementation of simulations in SCONE
» Identify realistic physical benchmark to study
» Similar Njmm vs RSD plots
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Monte Carlo methods WarhRrad

What about Monte Carlo methods? (TT+MK+VR)
» Implementation of simulations in SCONE
» Identify realistic physical benchmark to study
» Similar Njmm vs RSD plots

» Characterise spatial variations
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Ultimate Goal: Replicate the results observed from a physical experiment (Godiva
experiment), by

» Numerical Analysis of Spatial Pal-Bell
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Ultimate Goal WarhRrad

Ultimate Goal: Replicate the results observed from a physical experiment (Godiva
experiment), by

» Numerical Analysis of Spatial Pal-Bell
» Theoretical justification from BPS with immigration model
» Monte Carlo verficiations with SCONE



