Branching Processes Reading Group Spatial Pal-Bell Equation and Moment Asymptotic

H.L. Tsui Department of Statistics, University of Warwick

MaTHRad PostDoc Retreat Workshop

For a measure-valued process $(X_t)_{t\geq}$, we define $X_t[g]:= \int g dX_t$. If $X_t := \sum \delta_{x_i(t)}, X_t[g] = \sum_i g(x_i(t)).$

Table: Two important functions

Two important functions describing branching processes $(X_t)_{t\geq0}$

First moment from moment generating function:

$$
\psi_t[g](r,v) = -\frac{d}{d\theta} v_t[\theta g](r,v)\Big|_{\theta=0} \tag{1}
$$

 \mathbf{I}

,
AaThRad

Similarly, one can derive all moments of $X_t[g]$ given an evolution equation of $v_t[g](r, v)$.

Evolution of $v_t[g]$

To derive the evolution of $v_t[g]$, we condition on the first event (fission / scatter) for our neutron transport process until time t.

aThRad

Table: Probability Tables

Evolution of $v_t[g]$

Event	Probability	Contribution
No event / Exit	$e^{-\int_0^{t\wedge\kappa_{r,\nu}^D}\sigma(r+v\ell,v)}d\ell}$	$e^{-g(r+vt,v)}1_{t<\kappa^D_{r,v}}+1_{t>\kappa^D_{r,v}}$
Scatter at s	$1_{s<\kappa}\sigma(r+\nu s,\nu)$	U_s Sv_{t-s}
Fission at s	$\times e^{-\int_0^s \sigma(r+v\ell,v) d\ell}$	$+G[v_{t-s}]$

Table: Probability Tables

Combining terms and defining the operators appropriately (in particular subsuming the potential terms $e^{-\int_0^s \cdots}$ into the operators), we have

$$
v_t[g] = \hat{U}_t[e^{-g}] + \int_0^t U_s[Sv_{t-s}[g]] + G[v_{t-s}[g]]] ds.
$$
 (2)

- If $g = 1_A$, $v_t[g]$ helps us understand all the moments, and thus the law of $X_t(A)$.
- \blacktriangleright How about spatial correlation $\mathbb{E}[X_t(A)X_t(B)]$?
- \triangleright Characterised by correlation of non-local branching, i.e, $V[f, g](r, v) = \mathbb{E}[\sum_{i \neq j} f(r, v_i)g(r, v_j)]$

Note that

$$
2\mathbb{E}[X_t[f]X_t[g]] = \mathbb{E}[X_t[f+g]^2] - \mathbb{E}[X_t[f]^2] - \mathbb{E}[X_t[g]^2],
$$
 (

so it suffices to consider expressions for $w_t[g](r, v) := \mathbb{E}_{\delta_{r, v}}[X_t[g]^2]$ in general. Again we condition on first fission / scattering event.

Table: Probability Tables

$$
\mathcal{E}_{r+vs,v} \left[\mathbb{E} \left[\left(\sum_{i=1}^{N} X_{t-s}^{i}[g] \right)^{2} \right] \right] = \mathcal{E}_{r+vs,v} \left[\mathbb{E} \left[\sum_{i \neq j} X_{t-s}^{i}[g] X_{t-s}^{j}[g] + \sum_{i=1}^{N} X_{t-s}^{i}[g]^{2} \right] \right]
$$

$$
= \sum_{i \neq j} \psi_{t-s}[g] (r+vs,v_i) \psi_{t-s}[g] (r+vs,v_j)
$$

$$
+ \sum_{i=1}^{N} w_{t-s}[g] (r+vs,v_i)
$$
 (4)

Combining the terms above, we have that $w_t[g](r, v)$ must solve

$$
w_{t}[g](r, v) = U_{t}[g^{2}](r, v) + \int_{0}^{t} U_{s}[(S + F)w_{t-s}[g]](r, v)ds + \int_{0}^{t} U_{s}[\sigma_{f}V[\psi_{t-s}[g]]](r, v)ds
$$

$$
= U_{t}[g^{2}](r, v) + \int_{0}^{t} U_{s}[\sigma_{f}V[\psi_{t-s}[g]] + (S + F)w_{t-s}[g]](r, v)ds.
$$

(5)

One could interpret the term $\sigma_f \mathcal{V}[\psi_{t-s}[g]]$ as independent masses $/$ contribution immigrated into the system at time s. Therefore,

$$
w_t[g](r,v) = \psi_t[g^2](r,v) + \int_0^t \psi_s\bigg[\sigma_f \mathcal{V}[\psi_{t-s}[g]]\bigg](r,v)ds.
$$
 (6)

Interpretation: The variance of the system at time t , given by,

 $w_t[g](r, v) - \psi_t[g^2](r, v),$

is the sum (\int) of the mean evolution $(\psi_\mathbf{s})$ of the local branching correlation $(\sigma_f \mathcal{V}[\psi_{t-s}[g]])$ along the process.

Asymptotic of 2nd Moments

If
$$
\lambda_* > 0
$$
, for $w_t[g](r, v) = \psi_t[g^2](r, v) + \int_0^t \psi_s \left[\sigma_f \mathcal{V}[\psi_{t-s}[g]] \right](r, v) ds$,

$$
\lim_{t\to\infty} e^{-2\lambda_* t} w_t[g](r,v) = \langle \tilde{\varphi}, g \rangle^2 \int_0^\infty e^{-2\lambda_* s} \psi_s[\sigma_f \mathcal{V}[\varphi]](r,v) ds \tag{7}
$$

Heuristics: By Perron-Frobenius results, $\psi_t[g^2] \sim e^{\lambda_* t}$, so first term goes to zero. Furthermore, $\psi_{t-s}[g]=e^{\lambda_*(t-s)}\langle\tilde\varphi,g\rangle\varphi+o(e^{\lambda_*t}),\,\mathcal V$ is symmetric bilinear form, so $\mathcal{V}[\psi_{t-s}[g]] = e^{2\lambda_*(t-s)}\langle\tilde{\varphi},g\rangle^2 \mathcal{V}[\varphi] + o(e^{2\lambda_* t}).$ Therefore

$$
e^{-2\lambda_* t} \int_0^t \psi_s \bigg[\sigma_f \mathcal{V}[\psi_{t-s}[g]] \bigg](r, v) ds = \int_0^t e^{2\lambda_* (-s)} \langle \tilde{\varphi}, g \rangle^2 \psi_s[\mathcal{V}[\varphi]] ds + o(1)
$$

Asymptotic of 2nd Moments

If
$$
\lambda_* < 0
$$
, we write $\int_0^t \psi_s \left[\sigma_f \mathcal{V}[\psi_{t-s}[g]] \right] (r, v) ds = \int_0^t \psi_{t-s} \left[\sigma_f \mathcal{V}[\psi_s[g]] \right] (r, v) ds$, then

MaThRad

$$
e^{-\lambda_* t} \int_0^t \psi_{t-s} \Big[\sigma_f \mathcal{V}[\psi_s[g]] \Big] (r, v) ds
$$

= $e^{-\lambda_* t} \int_0^t e^{\lambda_* (t-s)} \varphi(r, v) \langle \tilde{\varphi}, \sigma_f \mathcal{V}[\psi_s[g]] \rangle + o(e^{\lambda_* (t-s)}) ds$
= $\int_0^t e^{\lambda_* (-s)} \varphi(r, v) \langle \tilde{\varphi}, \sigma_f \mathcal{V}[\psi_s[g]] \rangle ds + o(1)$ (8)

Finally, $e^{-\lambda_* t}\psi_t[g^2](r,v) \to \varphi \langle \tilde{\varphi}, g^2 \rangle$, so

$$
e^{-\lambda_* t}w_t[g](r,v) \to \varphi \langle \tilde{\varphi}, g^2 \rangle + \int_0^t e^{-\lambda_* s} \varphi(r,v) \langle \tilde{\varphi}, \sigma_f \mathcal{V}[\psi_s[g]] \rangle ds.
$$

Asymptotic of 2nd Moments

If $\lambda_* = 0$, first term goes to 0 after rescaling by $1/t$, and

$$
\frac{1}{t} \int_0^t \psi_{t-s} \left[\sigma_f \mathcal{V}[\psi_s[g]] \right] (r, v) ds
$$
\n
$$
= \frac{1}{t} \int_0^t \{ \varphi(r, v) \langle \tilde{\varphi}, \sigma_f \mathcal{V}[\varphi(\tilde{\varphi}, g)] \rangle + o(1) \} ds
$$
\n
$$
= \frac{1}{t} \int_0^t \varphi(r, v) \langle \tilde{\varphi}, g \rangle^2 \langle \tilde{\varphi}, \sigma_f \mathcal{V}[\varphi] \rangle ds + o(1)
$$
\n
$$
= \varphi(r, v) \langle \tilde{\varphi}, g \rangle^2 \langle \tilde{\varphi}, \sigma_f \mathcal{V}[\varphi] \rangle. \tag{9}
$$

What about k -th moment?

▶

$$
\psi_t^{(k)}[g](r,v) = (-1)^k \frac{d^k}{d\theta^k} v_t[\theta g](r,v)\Big|_{\theta=0}
$$
\n(10)

- \blacktriangleright The evolution equation of the k-th moment can be written in terms of that for lower moments through applying product rule k-times
- ▶ Moral of the story: Growth of k-th moment is e^{λ_*kt} for supercritical, $e^{-\lambda_*t}$ for subcritical, t^{-k} for critical processes.
- ▶ More exotic results for the occupational measure: $e^{\lambda_* k t}$ for supercritical, $O(1)$ for subcritical, $O(t^{-2k-1})$ for critical

Optional Extra Discussion - Applications in Nuclear Engineering

 \blacktriangleright I precursors, neutron source of strength $S_d(s)$

- \blacktriangleright I precursors, neutron source of strength $S_d(s)$
- \triangleright $N(t|s)$: active neutrons at t from a neutron born at $s < t$

- \blacktriangleright I precursors, neutron source of strength $S_d(s)$
- \triangleright $N(t|s)$: active neutrons at t from a neutron born at $s < t$
- $\triangleright N_{di}(t|s)$: delayed neutrons at t from a neutron born at $s < t$

- \blacktriangleright I precursors, neutron source of strength $S_d(s)$
- \triangleright $N(t|s)$: active neutrons at t from a neutron born at $s < t$
- $\triangleright N_{di}(t|s)$: delayed neutrons at t from a neutron born at $s < t$
- \triangleright $N_S(t|s)$: descendent neutrons at t from immigrated neutrons at s

Perron-Frobenius:

▶ There exists a $\mathbb R$ -valued Z_∞ and $\rho > 0$ such that $N_S(t|s) \to e^{\rho t} Z_\infty$

Operation Requirement: For some threshold n^* , and $\epsilon = 10^{-8}$, find appropriate $S_d(s)$ such that

$$
\inf_{t\leq t_{mat}}\mathbb{P}[N_S(t|s)\leq n^*]\geq 1-\epsilon.
$$

Perron-Frobenius:

- ▶ There exists a $\mathbb R$ -valued Z_∞ and $\rho > 0$ such that $N_S(t|s) \to e^{\rho t} Z_\infty$
- ▶ for large $t \geq t_{mat}$, $\mathbb{P}[N_S(t|s) \leq n] \approx \mathbb{P}[Z_{\infty} < \frac{n}{e^{n}}]$ $\frac{n}{e^{\rho t}}$

Operation Requirement: For some threshold n^* , and $\epsilon = 10^{-8}$, find appropriate $S_d(s)$ such that

$$
\inf_{t\leq t_{mat}}\mathbb{P}[N_S(t|s)\leq n^*]\geq 1-\epsilon.
$$

Perron-Frobenius:

- ▶ There exists a $\mathbb R$ -valued Z_∞ and $\rho > 0$ such that $N_S(t|s) \to e^{\rho t} Z_\infty$
- ▶ for large $t \geq t_{mat}$, $\mathbb{P}[N_S(t|s) \leq n] \approx \mathbb{P}[Z_{\infty} < \frac{n}{e^{n}}]$ $\frac{n}{e^{\rho t}}$
- ▶ The maturity time t_{mat} defined when for all $t > t_{\text{mat}}$.

$$
\frac{\sqrt{\text{Var}[N_{\mathcal{S}}(t|s)]}}{\mathbb{E}[N_{\mathcal{S}}(t|s)]} < 0.001
$$

Operation Requirement: For some threshold n^* , and $\epsilon = 10^{-8}$, find appropriate $S_d(s)$ such that

$$
\inf_{t\leq t_{mat}}\mathbb{P}[N_S(t|s)\leq n^*]\geq 1-\epsilon.
$$

$$
-\frac{\partial G(z,t|s)}{\partial s} = \lambda_c(s) - (\lambda_c(s) + \lambda_f(s))G(z,t|s)
$$

$$
+ \lambda_f(s)f(G(z,t|s))\prod_{i=1}^l f_i(G_{di}(z,t|s))
$$
(7)

$$
-\frac{\partial G_{di}(z,t|s)}{\partial s}=-\lambda_i G_{di}(z,t|s)+\lambda_i G(z,t|s), \quad i=1,2,\ldots I\qquad \qquad (8)
$$

$$
-\frac{\partial G_S(z,t|s)}{\partial s} = S_d(s)[f_q(G(z,t|s)) - 1]G_S(z,t|s)
$$
\n(9)

Pal-Bell equation [\[WE17\]](#page-0-0)

Operation Requirement: In [\[WE17\]](#page-0-0), one can show that

$$
\mathbb{P}[N_S(t|s) \le n^*] = \sum_{k=1}^{n^*} \frac{1}{n!} \frac{\partial^n}{\partial z^n} G_S(z, t|s) \Big|_{z=0}
$$

$$
= \frac{1}{2\pi i} \oint G_S(z, t|s) \sum_{k=1}^{n^*} \frac{1}{z^{k+1}} dz
$$

$$
= \frac{1}{2\pi i} \oint G_S(z, t|s) \sum_{k=1}^{n^*} \frac{z}{(1-z)z^{n^*+1}} dz,
$$
 (11)

which can be calculated with numerical methods (saddle point methods).

OPEN PROBLEMS

There is a similar Pal-Bell equation for the spatial case, with the PGF $G(z, t, R|\vec{r}_0, \vec{v}_0, s).$ Problems solved:

▶ Characterising spatial variations (achieved only through diffusion approximation)

There is a similar Pal-Bell equation for the spatial case, with the PGF $G(z, t, R|\vec{r}_0, \vec{v}_0, s).$ Problems solved:

- ▶ Characterising spatial variations (achieved only through diffusion approximation)
- ▶ Mean and Variance calculation

There is a similar Pal-Bell equation for the spatial case, with the PGF $G(z, t, R|\vec{r}_0, \vec{v}_0, s).$ Problems solved:

- \triangleright Characterising spatial variations (achieved only through diffusion approximation)
- ▶ Mean and Variance calculation
- ▶ Establishing Perron-Frobenius limiting results

General theory of BPS with Immigration

▶ Construct general multi-type spatial branching process with immigration (DONE)

General theory of BPS with Immigration

- \triangleright Construct general multi-type spatial branching process with immigration (DONE)
- ▶ Moment calculations of system (Partial Done)

General theory of BPS with Immigration

- \triangleright Construct general multi-type spatial branching process with immigration (DONE)
- ▶ Moment calculations of system (Partial Done)
- \blacktriangleright Doob's L^p -inequality to control running supremum

General theory of BPS with Immigration

- \triangleright Construct general multi-type spatial branching process with immigration (DONE)
- ▶ Moment calculations of system (Partial Done)
- \blacktriangleright Doob's L^p -inequality to control running supremum
- \blacktriangleright Calculate spatial clustering by computing $\mathbb{E}[\langle f,\mu\rangle\langle g,\mu\rangle]$

▶ Implementation of simulations in SCONE

- ▶ Implementation of simulations in SCONE
- \blacktriangleright Identify realistic physical benchmark to study

- ▶ Implementation of simulations in SCONE
- \blacktriangleright Identify realistic physical benchmark to study
- \triangleright Similar N_{imm} vs RSD plots

- ▶ Implementation of simulations in SCONE
- \blacktriangleright Identify realistic physical benchmark to study
- \triangleright Similar N_{imm} vs RSD plots
- \blacktriangleright Characterise spatial variations

Ultimate Goal: Replicate the results observed from a physical experiment (Godiva experiment), by

▶ Numerical Analysis of Spatial Pal-Bell

Ultimate Goal: Replicate the results observed from a physical experiment (Godiva experiment), by

- ▶ Numerical Analysis of Spatial Pal-Bell
- ▶ Theoretical justification from BPS with immigration model

Ultimate Goal: Replicate the results observed from a physical experiment (Godiva experiment), by

- ▶ Numerical Analysis of Spatial Pal-Bell
- ▶ Theoretical justification from BPS with immigration model
- ▶ Monte Carlo verficiations with SCONE