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The setting

We take the general setting as given in Section 8 of the book.

- A non-local branching process X := (X;,t > 0) is an atomic
measure-valued process whose atoms evolve on EU {t}, where E
is a locally compact Hausdorff space and { is a cemetery
(absorbing) state.

- Particles at x € E evolve according to a Markov process (&, Py).

- When aty € E, particles branch at rate y(y).

- If a particle branches at y € E, then it is replaced by y1, ..., ¥,
where the number and law of these particles is given by Py.



Important examples

Motivating example - Neutron branching processes:

- E = Space x Velocity.
- (&, Py) - linear motion with absorption at the boundary.
- ~vand P - Absorption, scattering, and fission events.

Useful example - Multitype branching processes:

- The state space is finite, E = {x1, ..., X4}

- The Markov process has no movement.



Fundamental assumptions - Irreducibility, Moment control, and

Supercriticality

To obtain a SLLN and CLT for the branching process, we require the
following assumptions on X.

(G2) There exists a real number \,, a bounded function ¢ € B¥(E)
and a probability measure ¢ on E, such that @[¢] = 1 and, for any
x e E t>0andfe B(E),

Yell(x) = Es, [Xelell = eMo(x), and  @[welf]] = e*@[f].

Moreover,

sup e M) TlfI(x) — Bf| — 0, ast— oco.
XEE,fEB(E)

(G3) For a given k > 1

sup &[NF] < oo.
XeE

(GS) A\, > 0.



The SLLN - a martingale convergence result

For X with initial state x € E, define the martingale
—/\*tXt[%O]J > 0.
@(x)
Assuming (G3), this martingale has k > 1 moments for all t > 0.

Theorem (121 in book)

Under assumptions (G2) and (G3) for k = 2, the martingale W
satisfies the following:

Wt:e

1. If A > 0, then W is L%(P) convergent (and so has non-trivial
limit).

2. If Xy <0, then the limit of W, W, = 0 almost surely.

3. If A\, = 0, and additionally

(G8) For all t sufficiently large, supPs,(t < ¢) < 1,
XEE

then the limit of W, W, = 0 almost surely. P



SLLN - Kesten and Stigum type result

(G6) There exists 0 < Npax < 00, Such that supyee Px(N < Npax) = 1.

Theorem (12.2 in book)

Under assumptions (G2), (G6), and (G8), we have that the events
{Ws = 0} and {¢ < oo} almost surely agree under P.

Theorem 12.2 implies that, under assumptions (G2), (G6), and (G8), in
the case of A\, > 0, we have X[p] ~ e*<t, P(-|¢ = oo)-almost surely.

Theorem (Athreya and Karlin)

Assume (G2) and (GS). For the multitype branching process,

supPs (Wo > 0) > 0,
X€E

if and only if
sup Es, [N log(N)] < co.
XEE



SLLN - Main results

We can rewrite the martingale limit as

Can we extend this result to a more general function f in place of ©?
Yesl!!

Theorem (12.4 in book)

Assume that (G2), (G3) for k = 2 (second moments), and (GS) hold.
Then, for any f € B*(E), 6 > 0, and x € E,

X
fim e~ reno sl _ Woo3lf], Ps —a.s.

o)



SLLN - Main results

Theorem (12.4 in book)

Assume that (G2), (G3) for k = 2 (second moments), and (GS) hold.
Moreover, assume that, for all open Q compactly embedded subsets
of E,
lim inf P[1](x) > 1a(x),
t—0

where (P2[1],t > 0) is the movement semigroup Rilled on exiting €,
for (X,P). Then, for any f € B*(E) such that, f\ ¢ € BT(E), and x € E

lim e*>‘*tm

— Waoglfl, Ps, —as.
e g — WeofUWl: Po —as



SLLN - Proof sketch lattice times

In the lattice time setting, the proof is split into two steps:

- The first step is to show that
lim le™MXp5[f] — Ele™"Xns[f]| Fns ol = 0, Ps, —a.s.
—00
- The second step is to show that

im. |E[e™**"Xns[f]| Fns /2] — Was@lflo(x)] =0, Ps, —a.s.

Finally, we can apply the martingale limit to obtain the theorem.



SLLN - Proof sketch lattice times

To show the first step, we have by the branching property that

e_/\*néxné[f] — ]E[e—’\*”ang[]‘]|fn5/2]

né/z

e—Aen3/2 Z —Aund/2 ( — E[oX], 5/2m|fn5/2])

where conditionally on Fs 5, the X() are indepedent copies of X
initiated from x;, the ith particle alive at time ng /2. Conditionally on
Fns /2, the right-hand side is a sum of mean-zero independent
random variables. Therefore, its second moment is given by

Nns /2

o= Axnd Z Vialle . N5/2X(Ib/2|fﬂ5/2) < Ce—2+n9/2

as n — oo, for some constant C.



SLLN - Proof sketch lattice times

The second step is shown using a similar technique. Again by the
branching property, we have that

Ele™**"Xns[f1| Fns 2] — Was@[fle(x)
Nns /2

= e 19/2 Y &Rt/ (X 1 Fas o] — Blfle () (x) )

i=1

By (G2), the summands tend to 0 as n — oco. Note, this is why having
uniform convergence over £ in (G2) is extremely useful.



SLLN - Why irreducibility (G2) is important

Let Y be the following multitype branching process. Let E = {r, b},
v(r) = v(b) = 1, and whenever a type r (resp. b) branches it is
replaced by two particles of type r (resp. b).

Theorem (Polya and Eggenberger)

Assume that at time 0, Y has « > 1 particles of type r and g > 1
particles of type b, then

%{ﬁ[w%(z,w—z),

where Z ~ Beta(c, f).
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SLLN - Why irreducibility is important
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Figure 1: Proportion of red particles in Y with initial condition (1,1) up to the
first 10000 branches.



SLLN - Why irreducibility is important
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Figure 2: Proportion of red particles in a multitype branching process with
varying initial conditions. Each red particle is replaced by 2 red and 3 blue,
each blue particle is replaced by 2 red and 2 blue.



The CLT - Additional assumptions required

As in the SLLN, we require (G2), (G6), and (GS). We also need the
following further assumption.

(G2b) There exists a constant A\; < A, a function ¢, € B(E) and a
probability measure @, such that, @;[p,] = 1and, foranyx € E,t >0
and f € B(E),

Yele2](X) = eMpp(x), and  Glwlfl] = ™[
Moreover,

sup e fl(x) — Balflpa(x)| = 0, ast— oo,
x€E feker (@)

where
ker(p) :={f € B(E) : ¢[f] = 0}, keri(®) := {f € ker(@) : [If <1}
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The CLT - Three regimes

The behaviour of the second order fluctuations depends on whether
Az is larger, equal to, or smaller than A./2.

We call these the large, critical, and small regimes. The 2nd moment
evolution equation gives us some insight as to why these three
regimes appear. Recall that, for f € ker(3) and x € E,

W0 = 10+ [ s [ e0ds. tz0, )

where,



The CLT - Large regime X\, > \,/2

Assume that (G2), (G2b), (G6), and (GS) hold. Furthermore, assume
that A\, > A\./2. Then, for any f € ker(@) and x € E, as t — oo

e X[ B BaflWso,

where W, is the almost sure limit of the martingale e~*X;[,].

Furthermore, under additional tightness assumptions, this result
holds almost surely.
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The CLT - Small regime )\, < ). /2

Assume that (G2), (G2b), (G6), and (GS) hold. Furthermore, assume
that A; > A./2. Then, under additional tightness assumptions, for
any f € ker(g) and x € E,as n — oo

e /2K, 1lf] S ()2 WLZs(1) in D[o, ),

where Zs is @ mean-zero Gaussian process independent of W..
Furthermore, if X is a multitype branching process, then Zs is an
Ornstein-Uhlenbeck process.

Without additional tightness assumptions, this result still holds in
distribution in a non-functional setting.



The CLT - Critical regime \; = \,/2

Assume that (G2), (G2b), (G6), and (GS) hold. Furthermore, assume
that A; = \./2. Then, under additional tightness assumptions, for
any f € ker(g) and x € E,as n — o

n=2e=Xm/2x 1 S Co(x)2W2Z () in D[0, 00),

where Z¢ is a standard Brownian motion independent of W, and

1/2
N

= 95 ’yg Z (p(Xm)gD(sz) QEZU]
Ry,ky=1
Ri#R;

Without additional tightness assumptions, this result still holds in
distribution in a non-functional setting.



The CLT - Example of Small and Large regime
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Figure 3: Both lines correspond to the fluctuations in the first type of a
2-type multitype branching process. When a particle branches in the process
corresponding to the blue line, the particle is replaced by 2 of its own type
and 9 of the opposite. These values are reversed for the red line.
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The CLT - Sketch of the proof

In each regime, the proof is split into three steps:

- The first step is to show the asymptotic behaviour of the kth
moment evolution equation when f € ker(@). This is done using
a similar argument to that used for the general f.

- The second step is to show the convergence along lattice times
(Large regime) and the convergence of the finite dimensional
distributions (Small and Critical regime).

- The final step is to show tightness of the processes to obtain
functional convergence.
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