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@ Particles move in E according to a Markov process (£,Py). The associated
semigroup is
Pe[f](x) = Ex[f(&e)L(e<)]

e When at x € E, at rate (x), the particle is killed and sent to the cemetery
state | ¢ E.

@ At this point, new particles are created according to the point process
(Z,Py), where

N
For convenience, we define m[f](x) = & {Z f(x,-)} .

i=1
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@ The branching process is defined as

N
Xt = Z(Sxi(t)'
i=1
@ The law of (X¢)¢>0 is characterised via the non-linear semigroup

ve[g](x) = Es, [e*le],
where

X.[g] = / g)X(dy) = 3 g(xi(1)).

i=1
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Recap

We are also interested in the mean (linear) semigroup

elg](x) = Es, [Xe[g]] -

Many-to-one lemma

There exists a Markov process (£, P) taking values in E U {{} such that

belgl(x) = B [ef €M (E) L eery } |

where B(x) = v(x)(m[1](x) — 1).
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@ Recall that m[f](x) = &J[Z][f]].

o Recall also that (£;);0 evolves according to & and at rate y(x)m[1](x) jumps
to a new location in A C E with probability m[14](x)/m[1](x).
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Example: continuous time Galton Watson process

X
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Example: continuous time Galton Watson process

Many-to-one: E[N,] = (™1,

o

X
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Example: BBM
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Example: BBM

Many-to-one: Es [X:[f]] = ¢”*E,[f(B:)]
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Example: growth-fragmentation

a0
/.plm ,,,,, . \"O
\ .

(1=p)z(t) rate D(-)

X
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Example: growth-fragmentation

Many-to-one: Es [X:[f]] = E. [efo V(s g Yt)l(t<7)].

(1=p)a(t) rate D(-)
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Example: neutron transport
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Example: neutron transport

Many-to-one: Es. [Xe[f]] = £ [efo o‘f(Rs,Ts)(m[l](Rs,Ts)—l)dsf(RhTt)l(t<T):|-

B ..‘%-L_.H /
‘-“-——__
i

g X
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@ The quantity B(x) = vy(x)(m[1](x) — 1) “keeps track” of the mass in the
branching process, i.e.

E(SX[Nt] = IAEx [eﬁ’ B(és)dleT] .
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@ The quantity B(x) = vy(x)(m[1](x) — 1) “keeps track” of the mass in the
branching process, i.e.

E(SX[Nt] = IAEx [eﬁ’ B(és)dleT] .

@ If sup B(x) < 0, then we can interpret |B| as a killing rate:
x€E

Bt < Tlo(és,s < 1)) = e Jo BENs,
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© Stability
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Aim: to find
o M\, €R,
e a positive function ¢ € BT (E),
@ a probability measure 7 on E
such that
belel = M, nlvelgl] = e nlgl,

and

Velg](x) ~ eMtp(x)nlg], ast — oco.
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Velg](x) ~ eMtp(x)ng], ast — oco.

@ Subcritical: if A\, < 0, the average mass decays at rate —\,.
o Critical: if A, = 0, the average mass remains constant.

@ Supercritical: if A\, > 0, the average mass in the system grows at rate \,.
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Example: branching Markov chains

@ Consider the case where (&;,t > 0) is a continuous time Markov chain on
E ={1,..., n} with transition matrix (P;;(t)); jce
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Example: branching Markov chains

o Consider the case where (&;,t > 0) is a continuous time Markov chain on
E ={1,..., n} with transition matrix (P;;(t)); jce

@ At rate v, particles produce two offspring locally.
@ What is the long-term average behaviour of the branching process?

@ The key to answering this is the many-to-one:

Velg](i) = € Eilg ()] = Y Pij(t)g (i)

j=1
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Example: branching Markov chains

Perron Frobenius theorem

Let A be a non-negative, irreducible square matrix. Then the following hold.

@ There is a simple positive real eigenvalue A and such that all other eigenvalues
have absolute value less than or equal to A.

@ The (unique up to scaling) left- and right-eigenvectors, ¢ and 7 resp.,
corresponding to A are positive.

o lim A"/A" = on' where the left and right eigenvectors for A are normalized
n— o0

so that T =1.
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Example: branching Markov chains

Assuming the chain is irreducible, Perron Frobenius theory tells us that there exist
Ac < 0 and vectors ¢, 7 such that

P(t)p = e o, nTP(t) =e*inT,

and
P, j(t) ~ e o (i)n(j) + o(e™?), t— oc.
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Example: branching Markov chains

Using the fact that v, = €"*P(t), we have

o P(t)p=ep = yplp] =Py,
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Example: branching Markov chains

Using the fact that v, = €"*P(t), we have
o P(t)p=ep = yplp] =Py,

° nTP(t) _ e)\ct,r]T — Uth — e(’Y+)\c)tT]T;
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Example: branching Markov chains

Using the fact that v, = €"*P(t), we have
o P(tp=erto = fp] = Ay,
o ) P(t)=eMtyT = Ty, = (AL, T

o Pij(t) ~ e tp(im() = elg](i) ~ e (i g.
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Example: BBM

e Consider BBM on a domain D  RY with branching rate 3, mean offspring m
and where particles are killed on 9D.
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oY 1
ot §A1/)t + B(m — 1)¢;.
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Example: BBM

e Consider BBM on a domain D  RY with branching rate 3, mean offspring m
and where particles are killed on 9D.
@ The mean semigroup ¥:[f](x) = Es [X:[f]] satisfies

oy 1
o §A’¢)t + B(m — 1)ay.

@ What is the long-term average behaviour of the branching process?

@ Again, the key is the many-to-one formula:

Pe[Fl(x) = M DEL[F(B)1e<r].
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Example: BBM

@ Under certain assumptions, the eigenvalues of f%A are all real and can be
written 0 < A; < A2 < A3 < .... The associated eigenfunctions {;};>1 form
an orthonormal basis of L?(D) and the first eigenfunction is strictly positive.
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Example: BBM

@ Under certain assumptions, the eigenvalues of f%A are all real and can be
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Example: BBM

@ Under certain assumptions, the eigenvalues of f%A are all real and can be
written 0 < A; < A2 < A3 < .... The associated eigenfunctions {;};>1 form
an orthonormal basis of L?(D) and the first eigenfunction is strictly positive.

o Letting p°(x,y) denote the transition density of (B;):<-,, we have

pL(xy) = e Mpi(x)pi(y) ~ e Mpr(x)er(y) =: e Mp(x)n(y)

i>1

@ This implies that

EL[f(Bo)Lecs] = / F()PP(x, y)dy ~ et p()mlf].
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Example: BBM

e Since 1Ap; = —\;p;, it follows that

(38 + B(m = 1))pi = (=i + B(m — 1))e.

o Similarly,

el f(x) = PTEL[F(Be)Lewrp] ~ P () ],
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Stability in the general case

@ Again, the key will be the many-to-one formula:

De[Fl(x) = Ex [ef (s (ft)1t<T]
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@ Again, the key will be the many-to-one formula:
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e Since v, m[1] € BY(E), it follows that B := sup B(x) < ooc.
x€E
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Stability in the general case

@ Again, the key will be the many-to-one formula:

De[Fl(x) = Ex [ef (s (ft)1t<T]

e Since v, m[1] € BY(E), it follows that B := sup B(x) < ooc.
x€E

@ Hence, we may define

BHAG) = o B F(x) = B, [eﬁt(g@ﬁé)dsg(ét)lt@]
= Ex [g(ét)1t<rci|
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@ Let (Yi)e>o be a time-homogeneous Markov process on E U {{} with
probabilities (P], x € E) and semigroup (1] )¢>o.

o Assume that s :=inf{t > 0: X, = 1} < oo, Pl-almost surely for all x € E.

o Assume further that for all x € E, PI(t < k) > 0.
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Definition

A quasi-stationary distribution (QSD) is a probability measure n on E such that
— T
n= tILrgo Pl (X: €|t <k)

for some initial probability measure p on E.
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A quasi-stationary distribution (QSD) is a probability measure n on E such that
— T
n= tILrgo Pl (X: €|t <k)

for some initial probability measure p on E.

| A\

Proposition
A probability measure 7 is a QSD if and only if, for any t > 0,

n= PL(Yt € |t < K).
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e Méléard, S., & Villemonais, D. (2012). Quasi-stationary distributions and
population processes.

@ van Doorn, E. A., & Pollett, P. K. (2011). Quasi-stationary distributions.
Memorandum 1945.

o Collet, P., Martinez, S., & San Martin, J. (2013). Quasi-stationary
distributions: Markov chains, diffusions and dynamical systems (Vol. 1).
Berlin: Springer.

@ Champagnat, Dobrushin, Doeblin, Harris, Meyn, Nummelin, Tweedie, ...
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QSDs

Theorem (Champagnat, Villemonais)

Under Assumption A, there exists a constant A\, < 0, a function p € B"(E) and a
probability measure i on E such that

Yilel = tp,  nlyilgl] = e nlgl.

Moreover, there exist constants C,e > 0 such that

sup  le 7 p(x) T yf[g] — nlg]l < Cem .
x€E geB] (E)
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QSDs

Theorem (Champagnat, Villemonais)

Under Assumption A, there exists a constant A\, < 0, a function p € B"(E) and a
probability measure i on E such that

Yilel = tp,  nlyilgl] = e nlgl.

Moreover, there exist constants C,e > 0 such that

sup  [e™ < p(x) " f[g] — nlg]l < Cem<t.
x€E geB] (E)

Since zgétqlzz, the same conclusion then holds for ¥; with A replaced by
A = Ac + B.
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There exists a probability measure v on E such that
(A1) there exists ty, ¢; > 0 such that for all x € E,

PL(Y, € -to < K) > av();
(A2) there exists ¢, > 0 such that for all x € E and t > 0,

Pl (t < x) > oPlL(t < k).
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Thank you!
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