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Motivating example: target tracking

x  Nolsy measurements

Path of target
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Motivating example: target tracking

x  Nolsy measurements

Path of target

~+ What is the best way to combine the model and measurements to estimate the
path of the target?
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Motivating example: radiotherapy

o

Photon
Gantry

Photon Beam (x-ray)
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Motivating example: radiotherapy

o

Photon
Gantry

Photon Beam (x-ray)
il N
Exit Dose .

~> What is the best way to combine the model and measurements to estimate the
dose?
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The problem

Consider the following one-dimensional model,
Xnt1 = AXy, + BW,11, n>1,
with noisy measurements
Y,=CX,+DV,, n>0,

where
o Xo~N(Xy,Py),
e V,, W,1 ~N(0,1) are independent,
o A,B,C,D +#0.
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The problem

Consider the following one-dimensional model,
Xnt1 = AXy, + BW,11, n>1,
with noisy measurements
Y,=CX,+DV,, n>0,

where
o Xo~N(Xy,Py),
e V,, W,1 ~N(0,1) are independent,
o A,B,C,D +#0.

~» Aim: to compute the distribution of X, given the measurements, Yp,..., Y,.
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Some observations

o Write xq., for the tuple (xg,...,x,) and similarly for y.

o From Bayes' rule, the Markov property and the fact that the errors are
independent, we have

p(XO:n|y0:n) X p(yO:n|X0:n)p(X0:n)
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Some observations

o Write xq., for the tuple (xg,...,x,) and similarly for y.

o From Bayes' rule, the Markov property and the fact that the errors are
independent, we have

p(XO:n|y0:n) X p(yO:n|X0:n)p(XO:n)

n

= [T p(ulx)p(x0) T pOxklxi—1)

k=1
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Some observations

o Write xq., for the tuple (xg,...,x,) and similarly for y.

o From Bayes' rule, the Markov property and the fact that the errors are
independent, we have

p(XO:n|y0:n) X p(yO:n|X0:n)p(X0:n)

= H p(y«lxk)p(x0) H P (X[ x—1)

= p(x0)p(yolx0) | [ P(yilxi)p(xelxc—1)
k=1
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Some observations

o Write xq., for the tuple (xg,...,x,) and similarly for y.

o From Bayes' rule, the Markov property and the fact that the errors are
independent, we have

p(XO:n|y0:n) X p(yO:n|X0:n)p(X0:n)

= H p(y«lxk)p(x0) H P (X[ x—1)

= p(x0)p(yolx0) | [ P(yilxi)p(xelxc—1)
k=1

= p(x0)p(¥o — Cx0) [ [ POk — Cxi)p(xklxe—1)
k=1
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Some observations

@ Recall that Xp NN()A((;, IADO’) and the model

Y, = CX, + DV,,
Xn+1 - AXn + BW,,+1,
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Some observations

@ Recall that Xp NN()A((;, IADO’) and the model

Y, = CX, + DV,,
Xn+1 - AXn + BWn—}—l,

e Then X,| Vo1 ~ N(X;, P;), where

n

Xy =E[XoYna], Py =E[(X, — X;)%]

o Similarly X,|V, ~ N()?,,, I?’,,) where

~

Xp = E[Xa| Vo], Pn=E[(X, — X,)2-
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Some observations

@ Recall that Xp NN()A((;, IADO’) and the model

Y, = CX, + DV,,
Xn+1 - AXn + BWn—}—l,

e Then X,| Vo1 ~ N(X;, P;), where

n

Xy =E[XoYna], Py =E[(X, — X;)%]

o Similarly X,|V, ~ N()?,,, I?’,,) where

~

Xp = E[Xa| Vo], Pn=E[(X, — X,)2-
@ ~ Just need to know how to calculate the mean and covariance.
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The Kalman filter

The Kalman filter consists of two steps (update and predict)

Xy, Py) — (Xay Pa) — (Xii1y Po)-
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The Kalman filter

The Kalman filter consists of two steps (update and predict)

Xy, Py) — (Xay Pa) — (Xii1y Po)-

@ Update
Xo = (1= GoO)Xy + Go Yo = Xy + Go(Yo — CX;)
P,=(1-G,C)P;,
where G, = CP;(C2P; + D)~ 1.
@ Predict
5\<r1_+1 = A;(,,

~

P, = AP, + B2
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The Kalman filter
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The Kalman gain

@ The quantity R R
G, = CP (C*P; + D*)!

is called the Kalman gain.
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The Kalman gain

@ The quantity R R
Gn= CP;(C°P, +D*)!

is called the Kalman gain.

@ It represents the relative importance of the errors Y, — C)A<n_ with respect to
the prior estimate X .
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The Kalman gain

@ The quantity R R
Gn= CP;(C°P, +D*)!

is called the Kalman gain.

@ It represents the relative importance of the errors Y, — C)A<n_ with respect to
the prior estimate X .

e As D — 0, G, — C~! and the update step becomes

Xy =X+ C Y Y,— CX;)=C1Y,.

o As IAD,,_ — 0, G, — 0 and the update step converges to )A(,, = )A<n_.
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e Kalman, R.E. (1960). A new approach to linear filtering and prediction
problems. Journal of Basic Engineering. 82 (1): pp. 35-45

e Kalman, R.E., Bucy, R.S. (1961). New Results in Linear Filtering and
Prediction Theory. Journal of Basic Engineering. 83: pp. 95-108

@ Evensen, G., Vossepoel, F. C., & van Leeuwen, P. J. (2022). Data
assimilation fundamentals: A unified formulation of the state and parameter
estimation problem. Springer Nature.

@ Simon, D. (2006). Optimal State Estimation: Kalman, Hoo, and Nonlinear
Approaches. John Wiley & Sons.
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The Kalman filter is BLUE

@ The Kalman filter is the Best Linear Unbiased Estimator.
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The Kalman filter is BLUE

@ The Kalman filter is the Best Linear Unbiased Estimator.

@ Best = the estimator that minimises the MSE amongst all unbiased linear
estimators.
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The Kalman filter is BLUE

@ The Kalman filter is the Best Linear Unbiased Estimator.

@ Best = the estimator that minimises the MSE amongst all unbiased linear
estimators.

@ To prove this, consider the following estimator

X = Ha X + G, Y.
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The Kalman filter is BLUE: unbiasedness

Consider the bias

E[X, — Xo] = E[Ha X + G Yy — Xa]
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The Kalman filter is BLUE: unbiasedness

Consider the bias

E[Xy — Xu] = E[Ho X, + G, Yo — X,
= E[Ho(Xo + X; — Xp) + Ga(CX, + DV,) — X,
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The Kalman filter is BLUE: unbiasedness

Consider the bias

E[X, — Xo] = E[H Xy + Gy Y — Xa]
= E[Ho(Xo + X; — Xp) + Ga(CX, + DV,) — X,
= (G,C + H, — 1)E[X,] + G,DE[V,] + H,E[X; — X,]
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The Kalman filter is BLUE: unbiasedness

Consider the bias

E[Xo — Xa] = E[HoX; + G Yo — X,
= E[Hn(Xo + Xy — Xa) + Ga(CXy + DV3y) — X,
= (GoC + Hp — 1)E[X,] + G,DE[V,] + H,E[X; — X
= (GoC + Hp — D)E[X,] 4+ G,DE[V,] + HaAE[Xp_1 — Xp_1]
— H,BE[W,].
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The Kalman filter is BLUE: unbiasedness

Consider the bias
E[X, — Xo] = E[Ha X + G Yy — Xa]
= E[Hp(Xn + X, — Xp) + Go(CX,, + DV,)) — X,]
= (G,C + Hy — 1)E[X,] + G,DE[V,] + H.E[X; — X,]
= (G,C+ H, — DE[X,] + G,DE[V,] + H,,A]E[)A(,,_l — Xp_1]
— H,BE[W,].
In order for the estimator to be unbiased, need
H,=(1- G,0),

which yields R R
X=X, + Go(Yn— CX,)).

n
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The Kalman filter is BLUE: optimality

First note that

(Xo = Xn)2 = (Xo = Xy = Go( Yo — CX;))?
=[(1 = G,C)(Xn — X;) — G,DV,.]2.
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The Kalman filter is BLUE: optimality

First note that

(Xo = Xn)2 = (Xo = Xy = Go( Yo — CX;))?
=[(1 = G,C)(Xn — X;) — G,DV,.]2.

Expanding and taking expectations yields

P,=(1- G,C)?P; + G2D>.

Emma Horton 20 June 2023 14 /55



The Kalman filter is BLUE: optimality

First note that
(Xo = Xo)2 = (Xo — Xy — Ga(Ya — CX;)))?
= [(1 = G O)(Xn = X, ) = GuDV, %,
Expanding and taking expectations yields
P, =(1- G,C)?P; + G2D>.
Minimise w.r.t. Gp:

0

D o o D— 2
8G,,P"_ 2C(1 - G,C)P, +2D%G,,

0=
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The Kalman filter is BLUE: optimality

First note that
(Xo = Xo)2 = (Xo — Xy — Ga(Ya — CX;)))?
= [(1 = G O)(Xn = X, ) = GuDV, %,
Expanding and taking expectations yields
P, =(1- G,C)?P; + G2D>.
Minimise w.r.t. Gp:

0

D o o D— 2
8G,,P"_ 2C(1 - G,C)P, +2D%G,,

0=

which implies R R
G, = CP,(CP, +D*) 1,
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Stability of the Kalman filter
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Stability of the Kalman filter

o We may write

Xot1 — X7y = A(L = G,C)( Xy — X7 ) + BWpy1 — AG,DV,.
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Stability of the Kalman filter

o We may write

Xot1 — X7y = A(L = G,C)( Xy — X7 ) + BWpy1 — AG,DV,.

@ Can't hope to obtain a result of the form || X, — 5\<,f|| — 0 unless the
measurement noise vanishes.
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Stability of the Kalman filter

o We may write

Xot1 — X7y = A(L = G,C)( Xy — X7 ) + BWpy1 — AG,DV,.

@ Can't hope to obtain a result of the form || X, — 5\<,f|| — 0 unless the
measurement noise vanishes.

@ However, we can study the homogeneous part of the above recursion:

Zni1 = A(l = G,C)Z, (1)
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Stability of the Kalman filter

Theorem (Deyst & Price '68, Jazwinski '70)

If A,B,C,D # 0 and ﬁo_ > 0 then there exist constants K > 0, v € (0,1), ng > 0
such that
1Zall < Ky )| Z |-
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Stability of the Kalman filter

Theorem (Deyst & Price '68, Jazwinski '70)

If A,B,C,D # 0 and ﬁo_ > 0 then there exist constants K > 0, v € (0,1), ng > 0
such that

1Znll < KY""™| Zgo |-

Many criteria for proving exponential stability but we will focus on Lyapunov-type
criteria.
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Stability of the Kalman filter

Lyapunov Stability Theorem

The system (1) is exponentially stable if there exists a continuous scalar function
such that

e V(0) =0 and V(x) > 0 for x # 0,
@ V(x) — oo as ||x|| = oo, and
o V(Zy1) — V(Z,) < 0.
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Stability of the Kalman filter

Lyapunov Stability Theorem

The system (1) is exponentially stable if there exists a continuous scalar function
such that

e V(0) =0 and V(x) > 0 for x # 0,

@ V(x) — oo as ||x|| = oo, and

o V(Z,11) — V(Z,) <O. )

@ A Lyapunov function is a non-negative function of a system'’s state that
decreases as the state changes.
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Stability of the Kalman filter

Lyapunov Stability Theorem

The system (1) is exponentially stable if there exists a continuous scalar function
such that

e V(0) =0 and V(x) > 0 for x # 0,
@ V(x) — oo as ||x|| = oo, and
o V(Zy1) — V(Z,) < 0.

@ A Lyapunov function is a non-negative function of a system'’s state that
decreases as the state changes.

o If a system is described by a set of differential equations and we can find a
Lyapunov function for these equations, then local minima of the Lyapunov
function are stable.
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Stability of the Kalman filter

Lyapunov Stability Theorem

The system (1) is exponentially stable if there exists a continuous scalar function
such that

e V(0) =0 and V(x) > 0 for x # 0,
@ V(x) — oo as ||x|| = oo, and
o V(Zy1) — V(Z,) < 0.

@ A Lyapunov function is a non-negative function of a system'’s state that
decreases as the state changes.

o If a system is described by a set of differential equations and we can find a
Lyapunov function for these equations, then local minima of the Lyapunov
function are stable.

@ A Lyapunov function V is an analogue of the energy of a physical system.
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Stability of the Kalman filter

@ What about the covariance?
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Stability of the Kalman filter

@ What about the covariance?

@ We have the following recursion for IAD,,_

P, =A%1-G,C)P, + B
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Stability of the Kalman filter

@ What about the covariance?

@ We have the following recursion for IAD,,_

P, =A%1-G,C)P, + B

@ Again, we can't hope for a result of the form ||I3,,_|| — 0.
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Stability of the Kalman filter

@ What about the covariance?
@ We have the following recursion for IAD,,_

P, =A%1-G,C)P, + B

@ Again, we can't hope for a result of the form ||.B,,_|| — 0.

Theorem (West & Harris '97)

For time-invariant systems, there exists P > 0 such that

||I3,,’ — Pl =0, asn— occ.

In addition, there exists G, such that

Gy — Goo|| = 0, as n— .
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Riccati rational difference equation

@ The evolution equation for P, can equivalently be written as

aP +b

— &(P~) =
n+1 ¢() P+d

where a, b, ¢, d are determined by A, B, C, D.
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Riccati rational difference equation

@ The evolution equation for P, can equivalently be written as

aP +b

— &(P~) =
n+1 ¢() P+d

where a, b, ¢, d are determined by A, B, C, D.

@ The function ¢ is known as a Riccati map and the above equation as a Riccati
rational difference equation.
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Riccati rational difference equation

@ The evolution equation for P, can equivalently be written as

aP +b

— &(P~) =
n+1 ¢() P+d

where a, b, ¢, d are determined by A, B, C, D.

@ The function ¢ is known as a Riccati map and the above equation as a Riccati
rational difference equation.

@ More on these maps later...
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Recall the original system:

Y, = CX, + DV,,
X,1+1 = AXn + BWn+]_.
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Recall the original system:

Y, = CX, + DV,,
X,1+1 = AX,, + BWn+]_.

Definition (Kalman '60)

The system is said to be observable if
[C,CA, CA? ... CA 1T

has rown rank d, where d is the dimension of the state space.
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@ Observability says that any state x can be inferred from a sufficient number of
observations.
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@ Observability says that any state x can be inferred from a sufficient number of
observations.

@ Suppose now the state space has dimension d, so that X, € RY, for example
and consider the average behaviour of the system:

Yo = CX,,,
Xoi1 = AXp.
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@ Observability says that any state x can be inferred from a sufficient number of
observations.

@ Suppose now the state space has dimension d, so that X, € RY, for example
and consider the average behaviour of the system:

Yo = CX,,,
Xoi1 = AXp.

o If we knew X, then the second equation would give us complete knowledge of
the state at any time n ~~ just need to determine Xj.
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@ Since Xy has d unknowns, we expect to need d observations in order to
determine Xg:

Yo = CXo
Y, = CX; = CAX,

Yo_1=CXy_1 =+ = CAd71X0.
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@ Since Xy has d unknowns, we expect to need d observations in order to
determine Xg:

Yo = CXo
Y, = CX; = CAX,

Yo_1=CXy_1 =+ = CAd71X0.

o Writing this in vector form,
[Yo,..., Yo1]" =[C,CA CA?% ... CA T X,

we see that this has a unique solution iff [C, CA, CA?,..., CAY" 1T is
invertible.
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@ Since Xy has d unknowns, we expect to need d observations in order to
determine Xg:

Yo = CXo
Y, = CX; = CAX,

Yo_1=CXy_1 =+ = CAd71X0.

o Writing this in vector form,
[Yo,..., Yo1]" =[C,CA CA?% ... CA T X,

we see that this has a unique solution iff [C, CA, CA?,..., CAY" 1T is
invertible.

@ In one dimension, this implies that C # 0.
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Recall the original system:

Y, = CX, + DV,,
X,1+1 = AX,, + BWn+]_.

Definition (Kalman '60)

The system is said to be controllable if
[B,AB,A’B, ..., A°1B]

has column rank d where d is the dimension of the state space.
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Recall the original system:

Y, = CX, + DV,,
X,1+1 = AX,, + BWn+]_.

Definition (Kalman '60)

The system is said to be controllable if
[B,AB,A’B, ..., A°1B]

has column rank d where d is the dimension of the state space.

@ Controllability says that any state x can be reached from any initial condition
Xp in a finite number of steps.
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Recall the original system:

Y, = CX, + DV,,
X,1+1 = AX,, + BWn+]_.

Definition (Kalman '60)

The system is said to be controllable if
[B,AB,A’B, ..., A°1B]

has column rank d where d is the dimension of the state space.

@ Controllability says that any state x can be reached from any initial condition
Xp in a finite number of steps.

@ In one dimension, this implies that B # 0, i.e. it means that the state is
affected by the noise W,,.
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The parameters A, B, C, D are non-zero.

@ The parameters A, B, C, D are independent of the time step.

@ The source is Gaussian.

The errors are Gaussian

The system is one-dimensional.

The system is linear...
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Example: Numerical weather prediction

Horizontal Grid
(Latitude-Longitude)

CONTINENT

Emma Horton



A nonlinear problem

Now suppose we are given the following dynamics

Xn+1 = f(Xn) + BWn«Hv
Y, = h(X,) + DV,,

where B,D # 0, V,,, W, are i.i.d. N'(0,1) and the functions f, h are C'.
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A nonlinear problem

Now suppose we are given the following dynamics

Xn+1 = f(Xn) + BWn«Hv
Y, = h(X,) + DV,,

where B,D # 0, V,,, W, are i.i.d. N'(0,1) and the functions f, h are C'.

~> Can we still estimate the distribution of X,, given measurements Yi,..., Y,?

Emma Horton 20 June 2023 26 /55



Extended Kalman filter

The EKF is given by the following update-predict steps:

@ Update
X = Xi + Go(Yn — h(X;))
Po= ( Hn)Py
where H, = 81(2;) and G, = H,P; (H2P; + D*)*
X
@ Predict
Xy = (%)
P, = F2P,+ B2,
where F, = g()?,,)
X
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Further reading

@ Tine Lefebvre and Herman Bruyninckx. Kalman Filters for Nonlinear Systems:
A Comparison of Performance.

o K.Reif, S.Gunther, E.Yaz, and R.Unbehauen. Stochastic Stability of the
Discrete-Time Extended Kalman Filter. IEEE Trans.Automatic Control, 1999.

@ John M. Lewis and S.Lakshmivarahan. Dynamic Data Assimilation, a Least
Squares Approach. 2006.

@ R. van der Merwe. Sigma-Point Kalman Filters for Probabilistic Inference in
Dynamic State-Space Models. Technical report, 2003.
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@ The EKF is not optimal.

o If the initial estimate is wrong, the filter quickly diverges. (However, this is
still the “go to” filter for navigation systems and GPS... &)

@ Further errors due to linearising the model.

@ Computationally expensive in high dimensions...
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Part Il : The Ensemble Kalman
filter!

!Based on joint work with Pierre Del Moral (Inria, Bordeaux)
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@ The EnKF is a Monte Carlo implementation of the Kalman filter.

@ Idea is to evolve the ensemble forward in time and estimate the mean and
covariance from the evolved sample.
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@ The EnKF is a Monte Carlo implementation of the Kalman filter.

@ Idea is to evolve the ensemble forward in time and estimate the mean and
covariance from the evolved sample.

o Fix N>1andlet & ;, i=1,...,N beiid. copies ofXONN()A(O_,/ADO_).

@ Forn>1,let W/, i=1,... N bei.id. copies of W, ~ N(0,1). Similarly for
V,.
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The EnKF algorithm is given by the following update-predict sequence:

Eni=&qi+8n(Ya+DVy — CE, ), (update)
Enrri = Alni + BW,’;, (predict)

where
g = Cp, (C?p, + D*)7 1,

is the sample Kalman gain, and

1 & 1
- _ - - _ - —\2
m, = N;gn,i and bn = m;( n,i_mn)

are the prior sample mean and covariance, respectively.
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Similarly, we can define the posterior sample mean and covariance

N

N
1 Z 1
mpy = N i=1 én’i and p, = m E (gn,i - mn)z'

i=1

Thus, we have the following update-predict steps of the EnKF

(my Py ) — (Mnypn) — (M, 1, Ppie)-
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@ G. Evensen. Sequential data assimilation with a non-linear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. J Geophys Res
99(C5): vol.10 pp. 143-162 (1994)

o G. Burgers, P. J. van Leeuwen, and G. Evensen. Analysis scheme in the
ensemble Kalman filter. Monthly Weather Review, 126:1719-1724, (1998)

o F. Le Gland, V. Monbet, V.D. Tran. Large sample asymptotics for the
ensemble Kalman filter The Oxford Handbook of Nonlinear Filtering, chapter
22, pp. 598-631 (2011).

@ J. Mandel, L. Cobb, J. D. Beezley. On the convergence of the ensemble
Kalman filter Applications of Mathematics, vol. 56, no. 6, pp. 533-541
(2011).

o A. J. Majda, X. T. Tong. Performance of ensemble Kalman filters in large
dimensions. Communications on Pure and Applied Mathematics, vol. 71, no.
5, pp. 892-937 (2018).
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@ G. Evensen. Sequential data assimilation with a non-linear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. J Geophys Res
99(C5): vol.10 pp. 143-162 (1994)

o G. Burgers, P. J. van Leeuwen, and G. Evensen. Analysis scheme in the
ensemble Kalman filter. Monthly Weather Review, 126:1719-1724, (1998)

o F. Le Gland, V. Monbet, V.D. Tran. Large sample asymptotics for the
ensemble Kalman filter The Oxford Handbook of Nonlinear Filtering, chapter
22, pp. 598-631 (2011).

@ J. Mandel, L. Cobb, J. D. Beezley. On the convergence of the ensemble
Kalman filter Applications of Mathematics, vol. 56, no. 6, pp. 533-541
(2011).

o A. J. Majda, X. T. Tong. Performance of ensemble Kalman filters in large
dimensions. Communications on Pure and Applied Mathematics, vol. 71, no.
5, pp- 892-937 (2018).

“Why the EnKF works well with a small ensemble has remained a complete
mystery.”
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EnKF: First results

Theorem (Le Gland et. al., '11, Mandel et. al. '11)

For each n >0, as N — oo,

m, — X, and p, — P,,

in LP at rate 1/\/N and almost surely.

Theorem (Le Gland et. al. '11)

The EnKF does not converge to the optimal filter for non-linear or non-Gaussian
filtering problems.
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Local perturbations

Theorem (Del Moral, H., '22)
With initial conditions,

X d g B
my = vg an = —
0 0 \/m 0 p() 0 \/N 0,
the ensemble Kalman filter update-predict transitions are as follows:
@ Update 1

my,=m, + g,(Yn— Cm, ) + ——v,

1
n — 1— nC ;‘i_ an
pn=(1-g,C)p i

@ Predict 1
M1 = Amy + N1

_ 1
Pnt1 = Alp, + B + ﬁ”n+1~

v
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Local perturbations

@ The previous result implies that the sample variance, p,, , of the EnKF
satisfies the stochastic Riccati rational difference equation

_ _ 1
Pri1 = 0Py ) + ﬁ5n+lv

where d,1 = Ay, + Vpi1-
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Local perturbations

@ The previous result implies that the sample variance, p,, , of the EnKF
satisfies the stochastic Riccati rational difference equation

_ _ 1
Pri1 = 0Py ) + ﬁ5n+lv

where d,1 = Ay, + Vpi1-

o Let P(p,dq) denote the Markov transitions associated with the Markov chain
(Pn )n>0. i-e. P(p,dq) = Plp, ., € dqlp, = pl.
For suitable test functions, we write P(f)(p) = E[f(p,1)IP» = p]
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Local perturbations

@ The previous result implies that the sample variance, p,, , of the EnKF
satisfies the stochastic Riccati rational difference equation

_ _ 1
Pri1 = 0Py ) + ﬁ5"+17

where d,1 = Ay, + Vpi1-
o Let P(p,dq) denote the Markov transitions associated with the Markov chain

(P )n>0. i-e. P(p,dq) = Plp,,, € dqlp, = p].
For suitable test functions, we write P(f)(p) = E[f(p,1)IP» = p]

@ For a locally finite signed measure px on R and functions f : R, — R,
V . RJ’_ — R+, deﬁne

f(p)
[fllv = sup |T+———
p>0|3 + V(p)

| and - ||pl == sup{[u(F)] - [Ifllv < 1}.
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Stability results

Theorem (Del Moral, H., 2022)

There exists a unique invariant measure 7 such that 7P = m, a function U/ and a
constant 5 € (0, 1) such that for any function f satisfying |||,y < 1 and for any
p € Ry, we have

[P"(F)(p) — 7 (f) < B°(1 + U(p) + m(U)).
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Stability results: idea of proof

For a function V, define

., IP(p,) —P(q, )llv
pu(P) = pamo 1+ V(p) + V(q)
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Stability results: idea of proof

For a function V, define

., IP(p,) —P(q, )llv
pulP) = pavo 1+ V(p)+ V(q)

Now suppose we can first prove the following result.

Proposition

There exists a function & : R, — R such that 3;(P) < 1 and for any two
probability measures p1, 2, we have

111 P™ — p2P lu < Bu(P) " lpa — pzllu-
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Stability results: idea of proof

@ The existence of a unique invariant (probability) measure 7 follows from the
fixed point theorem.
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Stability results: idea of proof

@ The existence of a unique invariant (probability) measure 7 follows from the
fixed point theorem.

o From the definition of 3;(P), we have

[P"(£)(p) = P"(F)(a)l < Bu(P")(1+U(p) +U(q)).
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Stability results: idea of proof

@ The existence of a unique invariant (probability) measure 7 follows from the
fixed point theorem.

o From the definition of 3;(P), we have

[P"(£)(p) = P"(F)(a)l < Bu(P")(1+U(p) +U(q)).

@ Then
PP(F)(p) — 7(F)] = [P"(F)(p) — =P(F)|
/O =(dg) (P"(F)(p) — P"(F)())

< / T 2 (dQ)P"(F)(p) — P"(F)(q)]
0

< Bu(PT)( +U(p) + =(U))
< Pu(P)"(1+U(p) + =(U))




Stability results: idea of proof

To prove the auxiliary result, it is sufficient to prove the following.

@ For any compact set K C R, there exists a constant e € (0,1] and a
probability measure vk on R, such that for all p € K,

P(p,dq) > ekvk(dq).

@ There exists a non-negative function U : Ry — [1,00) with compact level

sets, such that
PU) <eUd +c,

for come € € [0,1) and ¢ < oc.
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Uniform mean-error estimates

Theorem (Del Moral, H., 2022)

For any k > 1, there exists an integer Ny > 1 such that for any N > Ny and
n >0, we have

1/k
/ = Ck(].\/Po)'

E {Ipn‘ - f?’n‘lk] Ve [Ipn - ﬁn|k] M VE [Ign - an|k} <=5
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Central Limit Theorem

Define the collection of stochastic processes (Qy, ,, Qn,n+1)n>0 defined via

Qn,n = \/N(p,,_ - IAD,,_) and Qu,,:= \/N(pn _ ,3")

Theorem (Del Moral, H., 2022)

The stochastic processes (Qu,n, Q,T,)nﬂ) converge in law in the sense of f.d.d., as
the number of particles N — oo, to a sequence of centred stochastic processes
(Qn, Q1) with initial condition Q, = Vj and update-predict transitions given by
Qn = (1 - GnC)Q; +Vn
@;Jrl =AQ, + V;Jrl'
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Idea behind the proofs

@ Let us consider p, — IAD,,_. The idea is to write this difference as a telescoping
sum involving the increments of the Markov chain (p, )s>1 and show that we
can control these increments nicely.

Emma Horton 20 June 2023 44 /55



Idea behind the proofs

@ Let us consider p, — IAD,,_. The idea is to write this difference as a telescoping
sum involving the increments of the Markov chain (p, )s>1 and show that we
can control these increments nicely.

@ Recall from the evolution equation for p, , the increments are related to the

Riccati map
ax+b

cx+d’

P(x) =

x> 0.
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Idea behind the proofs

@ Let us consider p, — IAD,,_. The idea is to write this difference as a telescoping
sum involving the increments of the Markov chain (p, )s>1 and show that we
can control these increments nicely.

@ Recall from the evolution equation for p, , the increments are related to the

Riccati map
ax+b

cx+d’

x> 0.

P(x) =

@ Thus, we first need to look at the behaviour of these maps...
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Idea behind proofs : Riccati maps

Lemma (Del Moral, H., 2022)
(i) Forany n>1, b/d < ¢"(x) < a/c.

(i) We have the Lipschitz estimates
[6"(x) = ¢"()| < GA"x —y| and  [94"(x) — 09" (y)| < GA"|x =y,

where G, G; > 0 and A € (0,1).

(i) Finally, we have the second order estimate
[9"(x) = 9"(y) = 96" (y)(x — ¥)| < GA"|x — y[?,

where C3 > 0.
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Idea behind proofs : Riccati maps

@ A.N. Bishop and P. Del Moral. On the stability of Kalman-Bucy diffusion
processes. SIAM Journal on Control and Optimization. vol. 55, no. 6. pp
4015-4047 (2017); arxiv e-print arXiv:1610.04686.

@ A.N. Bishop and P. Del Moral. An explicit Floquet-type representation of

Riccati aperiodic exponential semigroups. International Journal of Control,
pp. 1-9 (2019).

@ P. Del Moral and E. Horton. A note on Riccati matrix difference equations.
SIAM J. Control Optim., 60(3), pp. 1393-1409 (2022).
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Idea behind proofs

@ Consider the following decomposition

pr = Pr = 0"(ps) = 0"(Pe) + 3 (0" (i) — 0" i)

k=1
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Idea behind proofs

@ Consider the following decomposition

pr = Pr = 0"(ps) = 0"(Pe) + 3 (0" (i) — 0" i)

k=1

@ Use the Lipschitz estimates for ¢" to obtain bounds on the summands for the
moment estimates.
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Idea behind proofs

@ Consider the following decomposition

P =Py = 0(e0) = 9"(Po) + 3 (67 (o) = 0" leiy)

k=1

@ Use the Lipschitz estimates for ¢" to obtain bounds on the summands for the
moment estimates.

@ The CLT requires more delicate treatment: need to use the second order
Taylor expansion type bounds and then the Lipschitz estimates for the first
derivative.
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Stability of the sample means

@ Now define M,, := m, — X,,.

Emma Horton 20 June 2023 48 /55



Stability of the sample means

@ Now define M,, := m, — X,,.

@ Observe that
A

1+(C/Dyp,

where T, is a conditionally centred Gaussian random variable.

Mn+1 = M, + Tn+1>
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Stability of the sample means

@ Now define M,, := m, — X,,.

@ Observe that
A

1+(C/Dyp,

where T, is a conditionally centred Gaussian random variable.

Mn+1 = M, + Tn+1>

@ Understanding the stability of the sample means thus reduces to
understanding the behaviour of the products

L A
gl,n = kr:[l 1 + (7C/D)2pk .
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Stability of the sample means

@ Now define M,, := m, — X,,.

@ Observe that
A

1+(C/Dyp,

where T, is a conditionally centred Gaussian random variable.

Mn+1 = M, + Tn+1>

@ Understanding the stability of the sample means thus reduces to
understanding the behaviour of the products

L A
5I,n = kr:[l 1 + (7C/D)2pk .

@ Similar theorems to those presented for the sample covariances and the
corresponding Kalman gain hold for M,,.
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Problem: filter divergence
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Problem: filter divergence

@ In geophysical models, the state dimension is (9(108) but in the EnKF, the
ensemble size is O(107).
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Problem: filter divergence

@ In geophysical models, the state dimension is (9(108) but in the EnKF, the
ensemble size is O(107).

@ This means that the spread of the particles is not sufficient and can lead to
underestimation of the covariance.
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Problem: filter divergence

@ In geophysical models, the state dimension is (9(108) but in the EnKF, the
ensemble size is O(107).

@ This means that the spread of the particles is not sufficient and can lead to
underestimation of the covariance.

@ This can causes filter divergence.
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Solution: Covariance inflation

@ One solution to this problem is covariance inflation.
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Solution: Covariance inflation

@ One solution to this problem is covariance inflation.

@ The most common form of this is to make the following replacement

5/1,’ —m, r(ﬁ/v,,' —my),

where r is the inflation factor. Similarly for &y ;.
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Solution: Covariance inflation

@ One solution to this problem is covariance inflation.

@ The most common form of this is to make the following replacement

5/1,’ —m, r(ﬁ/v,,' —my),

where r is the inflation factor. Similarly for &y ;.

@ This increases the sample covariances and thus stabilises the filter.
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Solution: Covariance inflation

@ One solution to this problem is covariance inflation.

@ The most common form of this is to make the following replacement

Eni— my < &y —my),

where r is the inflation factor. Similarly for &y ;.
@ This increases the sample covariances and thus stabilises the filter.

@ Usually r is chosen to be slightly greater than 1 but the choice is somewhat
heuristic.
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Problem: spurious correlations

@ With small sample sizes, the ranks of the covariance matrices are much
smaller than the dimension of the state.
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Problem: spurious correlations

@ With small sample sizes, the ranks of the covariance matrices are much
smaller than the dimension of the state.

@ This causes spurious correlations between unrelated state variables, e.g. a
large correlation between the temperature at two distant locations on the
globe.
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Problem: spurious correlations

@ With small sample sizes, the ranks of the covariance matrices are much
smaller than the dimension of the state.

@ This causes spurious correlations between unrelated state variables, e.g. a
large correlation between the temperature at two distant locations on the
globe.

@ This then propagates through the update step ~~ state components that are
uncorrelated to the observations, Y, are erroneously updated.
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Solution: covariance localisation

One solution is covariance localisation or covariance tapering.

Replace the covariance matrices by p o p,, where o denotes the Schur product.

@ Here p is a positive semi-definite matrix with ones on the diagonal and decays
smoothly to zero for unwanted off-diagonal elements.

Usually p is full-rank so that the resulting covariance matrix is full rank.
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Solution: covariance localisation
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Solution: domain localisation

@ Essentially divide and conquer.

@ ldea is to split the state space into
subdomains, update state estimates

AN
l
~_

locally and then stick them back VN
together. R %
*
. . w X X
@ Applicable only if the long-range
error correlations are negligible. % X
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Future work /open problems

Higher dimensions

Stability analysis for unstable signals for other genetic-type particle filters

Time-varying systems

Genealogies of particle filters

Plenty of other particle filters..!
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