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Part I: The Kalman filter
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Motivating example: target tracking

 What is the best way to combine the model and measurements to estimate the
path of the target?
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Motivating example: radiotherapy

 What is the best way to combine the model and measurements to estimate the
dose?
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The problem

Consider the following one-dimensional model,

Xn+1 = AXn + BWn+1, n ≥ 1,

with noisy measurements

Yn = CXn + DVn, n ≥ 0,

where
X0 ∼ N (X̂−

0 , P̂−
0 ),

Vn, Wn+1 ∼ N (0, 1) are independent,
A, B, C , D 6= 0.

 Aim: to compute the distribution of Xn given the measurements, Y0, . . . , Yn.
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Some observations

Write x0:n for the tuple (x0, . . . , xn) and similarly for y .

From Bayes’ rule, the Markov property and the fact that the errors are
independent, we have

p(x0:n|y0:n) ∝ p(y0:n|x0:n)p(x0:n)

=
n∏

k=0
p(yk |xk)p(x0)

n∏
k=1

p(xk |xk−1)

= p(x0)p(y0|x0)
n∏

k=1
p(yk |xk)p(xk |xk−1)

= p(x0)p(y0 − Cx0)
n∏

k=1
p(yk − Cxk)p(xk |xk−1)
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Some observations

Recall that X0 ∼ N (X̂−
0 , P̂−

0 ) and the model

Yn = CXn + DVn,

Xn+1 = AXn + BWn+1,

Then Xn|Yn−1 ∼ N (X̂−
n , P̂−

n ), where

X̂−
n = E[Xn|Yn−1], P̂−

n = E[(Xn − X̂−
n )2].

Similarly Xn|Yn ∼ N (X̂n, P̂n), where

X̂n = E[Xn|Yn], P̂n = E[(Xn − X̂n)2].

 Just need to know how to calculate the mean and covariance.
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The Kalman filter
The Kalman filter consists of two steps (update and predict)

(X̂−
n , P̂−

n ) −→ (X̂n, P̂n) −→ (X̂−
n+1, P̂−

n+1).

1 Update

X̂n = (1− GnC)X̂−
n + GnYn = X̂−

n + Gn(Yn − CX̂−
n )

P̂n = (1− GnC)P̂−
n ,

where Gn = CP̂−
n (C2P̂−

n + D2)−1.

2 Predict

X̂−
n+1 = AX̂n

P̂−
n+1 = A2P̂n + B2.
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The Kalman filter
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The Kalman gain

The quantity
Gn = CP̂−

n (C2P̂−
n + D2)−1

is called the Kalman gain.

It represents the relative importance of the errors Yn − CX̂−
n with respect to

the prior estimate X̂−
n .

As D → 0, Gn → C−1 and the update step becomes

X̂n = X̂−
n + C−1(Yn − CX̂−

n ) = C−1Yn.

As P̂−
n → 0, Gn → 0 and the update step converges to X̂n = X̂−

n .
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The Kalman filter is BLUE

The Kalman filter is the Best Linear Unbiased Estimator.

Best = the estimator that minimises the MSE amongst all unbiased linear
estimators.

To prove this, consider the following estimator

X̂n := HnX̂−
n + GnYn.
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The Kalman filter is BLUE: unbiasedness

Consider the bias

E[X̂n − Xn] = E[HnX̂−
n + GnYn − Xn]

= E[Hn(Xn + X̂−
n − Xn) + Gn(CXn + DVn)− Xn]

= (GnC + Hn − 1)E[Xn] + GnDE[Vn] + HnE[X̂−
n − Xn]

= (GnC + Hn − 1)E[Xn] + GnDE[Vn] + HnAE[X̂n−1 − Xn−1]
− HnBE[Wn].

In order for the estimator to be unbiased, need

Hn = (1− GnC),

which yields
X̂n := X̂−

n + Gn(Yn − CX̂−
n ).
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The Kalman filter is BLUE: optimality

First note that

(Xn − X̂n)2 = (Xn − X̂−
n − Gn(Yn − CX̂−

n ))2

= [(1− GnC)(Xn − X̂−
n )− GnDVn]2.

Expanding and taking expectations yields

P̂n = (1− GnC)2P̂−
n + G2

n D2.

Minimise w.r.t. Gn:

0 = ∂

∂Gn
P̂n = −2C(1− GnC)P̂−

n + 2D2Gn,

which implies
Gn = CP̂−

n (CP̂−
n + D2)−1.
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Stability of the Kalman filter

We may write

Xn+1 − X̂−
n+1 = A(1− GnC)(Xn − X̂−

n ) + BWn+1 − AGnDVn.

Can’t hope to obtain a result of the form ‖Xn − X̂−
n ‖ → 0 unless the

measurement noise vanishes.

However, we can study the homogeneous part of the above recursion:

Zn+1 = A(1− GnC)Zn (1)
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Stability of the Kalman filter

Theorem (Deyst & Price ’68, Jazwinski ’70)
If A, B, C , D 6= 0 and P̂−

0 > 0 then there exist constants K > 0, γ ∈ (0, 1), n0 ≥ 0
such that

‖Zn‖ ≤ Kγn−n0‖Zn0‖.

Many criteria for proving exponential stability but we will focus on Lyapunov-type
criteria.
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Stability of the Kalman filter

Lyapunov Stability Theorem
The system (1) is exponentially stable if there exists a continuous scalar function
such that

V (0) = 0 and V (x) > 0 for x 6= 0,
V (x)→∞ as ‖x‖ → ∞, and
V (Zn+1)− V (Zn) < 0.

A Lyapunov function is a non-negative function of a system’s state that
decreases as the state changes.

If a system is described by a set of differential equations and we can find a
Lyapunov function for these equations, then local minima of the Lyapunov
function are stable.

A Lyapunov function V is an analogue of the energy of a physical system.
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Stability of the Kalman filter

What about the covariance?

We have the following recursion for P̂−
n

P̂−
n+1 = A2(1− GnC)P̂−

n + B2

Again, we can’t hope for a result of the form ‖P̂−
n ‖ → 0.

Theorem (West & Harris ’97)
For time-invariant systems, there exists P−

∞ > 0 such that

‖P̂−
n − P−

∞‖ → 0, as n→∞.

In addition, there exists G∞ such that

‖Ĝn − G∞‖ → 0, as n→∞.
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Riccati rational difference equation

The evolution equation for P̂−
n can equivalently be written as

P̂−
n+1 = φ(P̂−

n ) = aP̂−
n + b

cP̂−
n + d

,

where a, b, c, d are determined by A, B, C , D.

The function φ is known as a Riccati map and the above equation as a Riccati
rational difference equation.

More on these maps later...
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Assumptions

Recall the original system:

Yn = CXn + DVn,

Xn+1 = AXn + BWn+1.

Definition (Kalman ’60)
The system is said to be observable if

[C , CA, CA2, . . . , CAd−1]T

has rown rank d , where d is the dimension of the state space.
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Assumptions

Observability says that any state x can be inferred from a sufficient number of
observations.

Suppose now the state space has dimension d , so that Xn ∈ Rd , for example
and consider the average behaviour of the system:

Yn = CXn,

Xn+1 = AXn.

If we knew X0, then the second equation would give us complete knowledge of
the state at any time n  just need to determine X0.
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Assumptions

Since X0 has d unknowns, we expect to need d observations in order to
determine X0:

Y0 = CX0

Y1 = CX1 = CAX0

...
Yd−1 = CXd−1 = · · · = CAd−1X0.

Writing this in vector form,

[Y0, . . . , Yn−1]T = [C , CA, CA2, . . . , CAd−1]T X0,

we see that this has a unique solution iff [C , CA, CA2, . . . , CAd−1]T is
invertible.

In one dimension, this implies that C 6= 0.

Emma Horton 20 June 2023 22 / 55



Assumptions

Since X0 has d unknowns, we expect to need d observations in order to
determine X0:

Y0 = CX0

Y1 = CX1 = CAX0

...
Yd−1 = CXd−1 = · · · = CAd−1X0.

Writing this in vector form,

[Y0, . . . , Yn−1]T = [C , CA, CA2, . . . , CAd−1]T X0,

we see that this has a unique solution iff [C , CA, CA2, . . . , CAd−1]T is
invertible.

In one dimension, this implies that C 6= 0.

Emma Horton 20 June 2023 22 / 55



Assumptions

Since X0 has d unknowns, we expect to need d observations in order to
determine X0:

Y0 = CX0

Y1 = CX1 = CAX0

...
Yd−1 = CXd−1 = · · · = CAd−1X0.

Writing this in vector form,

[Y0, . . . , Yn−1]T = [C , CA, CA2, . . . , CAd−1]T X0,

we see that this has a unique solution iff [C , CA, CA2, . . . , CAd−1]T is
invertible.

In one dimension, this implies that C 6= 0.

Emma Horton 20 June 2023 22 / 55



Assumptions

Recall the original system:

Yn = CXn + DVn,

Xn+1 = AXn + BWn+1.

Definition (Kalman ’60)
The system is said to be controllable if

[B, AB, A2B, . . . , Ad−1B]

has column rank d where d is the dimension of the state space.

Controllability says that any state x can be reached from any initial condition
x0 in a finite number of steps.
In one dimension, this implies that B 6= 0, i.e. it means that the state is
affected by the noise Wn.
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Assumptions

The parameters A, B, C , D are non-zero.

The parameters A, B, C , D are independent of the time step.

The source is Gaussian.

The errors are Gaussian

The system is one-dimensional.

The system is linear...
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Example: Numerical weather prediction
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A nonlinear problem

Now suppose we are given the following dynamics

Xn+1 = f (Xn) + BWn+1,

Yn = h(Xn) + DVn,

where B, D 6= 0, Vn, Wn are i.i.d. N (0, 1) and the functions f , h are C1.

 Can we still estimate the distribution of Xn given measurements Y1, . . . , Yn?
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Extended Kalman filter

The EKF is given by the following update-predict steps:
1 Update

X̂n = X̂−
n + Gn(Yn − h(X̂−

n ))

P̂n = (1− GnHn)P̂−
n ,

where Hn = ∂h
∂x (X̂−

n ) and Gn = HnP̂−
n (H2

n P̂−
n + D2)−1.

2 Predict

X̂−
n+1 = f (X̂n)

P̂−
n+1 = F 2

n P̂n + B2,

where Fn = ∂f
∂x (X̂n).
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Further reading

Tine Lefebvre and Herman Bruyninckx. Kalman Filters for Nonlinear Systems:
A Comparison of Performance.

K.Reif, S.Gunther, E.Yaz, and R.Unbehauen. Stochastic Stability of the
Discrete-Time Extended Kalman Filter. IEEE Trans.Automatic Control, 1999.

John M. Lewis and S.Lakshmivarahan. Dynamic Data Assimilation, a Least
Squares Approach. 2006.

R. van der Merwe. Sigma-Point Kalman Filters for Probabilistic Inference in
Dynamic State-Space Models. Technical report, 2003.
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Remarks

The EKF is not optimal.

If the initial estimate is wrong, the filter quickly diverges. (However, this is
still the “go to” filter for navigation systems and GPS... 😬)

Further errors due to linearising the model.

Computationally expensive in high dimensions...
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Part II : The Ensemble Kalman
filter1

1Based on joint work with Pierre Del Moral (Inria, Bordeaux)
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EnKF

The EnKF is a Monte Carlo implementation of the Kalman filter.

Idea is to evolve the ensemble forward in time and estimate the mean and
covariance from the evolved sample.

Fix N ≥ 1 and let ξ−
0,i , i = 1, . . . , N be i.i.d. copies of X0 ∼ N (X̂−

0 , P̂−
0 ).

For n ≥ 1, let W i
n, i = 1, . . . , N be i.i.d. copies of Wn ∼ N (0, 1). Similarly for

Vn.
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EnKF

The EnKF algorithm is given by the following update-predict sequence:

ξn,i = ξ−
n,i + gn(Yn + DV i

n − Cξ−
n,i), (update)

ξ−
n+1,i = Aξn,i + BW i

n, (predict)

where
gn = Cp−

n (C2p−
n + D2)−1,

is the sample Kalman gain, and

m−
n = 1

N

N∑
i=1

ξ−
n,i and p−

n = 1
N − 1

N∑
i=1

(ξ−
n,i −m−

n )2

are the prior sample mean and covariance, respectively.
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EnKF

Similarly, we can define the posterior sample mean and covariance

mn = 1
N

N∑
i=1

ξn,i and pn = 1
N − 1

N∑
i=1

(ξn,i −mn)2.

Thus, we have the following update-predict steps of the EnKF

(m−
n , p−

n ) −→ (mn, pn) −→ (m−
n+1, p−

n+1).
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Literature
G. Evensen. Sequential data assimilation with a non-linear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. J Geophys Res
99(C5): vol.10 pp. 143–162 (1994)

G. Burgers, P. J. van Leeuwen, and G. Evensen. Analysis scheme in the
ensemble Kalman filter. Monthly Weather Review, 126:1719–1724, (1998)

F. Le Gland, V. Monbet, V.D. Tran. Large sample asymptotics for the
ensemble Kalman filter The Oxford Handbook of Nonlinear Filtering, chapter
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J. Mandel, L. Cobb, J. D. Beezley. On the convergence of the ensemble
Kalman filter Applications of Mathematics, vol. 56, no. 6, pp. 533–541
(2011).

A. J. Majda, X. T. Tong. Performance of ensemble Kalman filters in large
dimensions. Communications on Pure and Applied Mathematics, vol. 71, no.
5, pp. 892–937 (2018).

“Why the EnKF works well with a small ensemble has remained a complete
mystery.”
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EnKF: First results

Theorem (Le Gland et. al., ’11, Mandel et. al. ’11)
For each n ≥ 0, as N →∞,

mn → X̂n and pn → P̂n,

in Lp at rate 1/
√

N, and almost surely.

Theorem (Le Gland et. al. ’11)
The EnKF does not converge to the optimal filter for non-linear or non-Gaussian
filtering problems.
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Local perturbations

Theorem (Del Moral, H., ’22)
With initial conditions,

m−
0 = X̂−

0 + 1√
N + 1

υ0 and p−
0 = P̂−

0 + 1√
N

ν0,

the ensemble Kalman filter update-predict transitions are as follows:
1 Update

mn = m−
n + gn(Yn − Cm−

n ) + 1√
N + 1

υn

pn = (1− gnC)p−
n + 1√

N
νn,

2 Predict
m−

n+1 = Amn + 1√
N + 1

υ−
n+1

p−
n+1 = A2pn + B2 + 1√

N
ν−

n+1.
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Local perturbations
The previous result implies that the sample variance, p−

n , of the EnKF
satisfies the stochastic Riccati rational difference equation

p−
n+1 = φ(p−

n ) + 1√
N

δn+1,

where δn+1 = A2νn + ν−
n+1.

Let P(p, dq) denote the Markov transitions associated with the Markov chain
(p−

n )n≥0, i.e. P(p, dq) = P[p−
n+1 ∈ dq|pn = p].

For suitable test functions, we write P(f )(p) = E[f (p−
n+1)|pn = p]

For a locally finite signed measure µ on R+ and functions f : R+ → R,
V : R+ → R+, define

‖f ‖V = sup
p≥0

∣∣∣∣∣ f (p)
1
2 + V (p)

∣∣∣∣∣ and ‖µ‖ := sup{|µ(f )| : ‖f ‖V ≤ 1}.
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Stability results

Theorem (Del Moral, H., 2022)
There exists a unique invariant measure π such that πP = π, a function U and a
constant β ∈ (0, 1) such that for any function f satisfying ‖f ‖U ≤ 1 and for any
p ∈ R+, we have

|Pn(f )(p)− π(f )| ≤ βn(1 + U(p) + π(U)).
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Stability results: idea of proof

For a function V , define

βV (P) := sup
p,q≥0

‖P(p, ·)− P(q, ·)‖V
1 + V (p) + V (q)

Now suppose we can first prove the following result.

Proposition
There exists a function U : R+ → R+ such that βU (P) < 1 and for any two
probability measures µ1, µ2, we have

‖µ1Pn − µ2Pn‖U ≤ βU (P)n‖µ1 − µ2‖U .
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Stability results: idea of proof
The existence of a unique invariant (probability) measure π follows from the
fixed point theorem.

From the definition of βU (P), we have

|Pn(f )(p)− Pn(f )(q)| ≤ βU (Pn)(1 + U(p) + U(q)).

Then

|Pn(f )(p)− π(f )| = |Pn(f )(p)− πP(f )|

=
∣∣∣∣∫ ∞

0
π(dq) (Pn(f )(p)− Pn(f )(q))

∣∣∣∣
≤

∫ ∞

0
π(dq)|Pn(f )(p)− Pn(f )(q)|

≤ βU (Pn)(1 + U(p) + π(U))
≤ βU (P)n(1 + U(p) + π(U))
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Stability results: idea of proof

To prove the auxiliary result, it is sufficient to prove the following.

For any compact set K ⊂ R+, there exists a constant εK ∈ (0, 1] and a
probability measure νK on R+ such that for all p ∈ K ,

P(p, dq) ≥ εK νK (dq).

There exists a non-negative function U : R+ → [1,∞) with compact level
sets, such that

P(U) ≤ εU + c,

for come ε ∈ [0, 1) and c <∞.
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Uniform mean-error estimates

Theorem (Del Moral, H., 2022)
For any k ≥ 1, there exists an integer Nk ≥ 1 such that for any N ≥ Nk and
n ≥ 0, we have

E
[
|p−

n − P̂−
n |k

]1/k
∨ E

[
|pn − P̂n|k

]1/k
∨ E

[
|gn − Ĝn|k

]1/k
≤ Ck(1 ∨ P0)√

N
.
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Central Limit Theorem

Define the collection of stochastic processes (Q−
N,n,QN,n+1)n≥0 defined via

Q−
N,n :=

√
N(p−

n − P̂−
n ) and QN,n :=

√
N(pn − P̂n).

Theorem (Del Moral, H., 2022)
The stochastic processes (QN,n,Q−

N,n+1) converge in law in the sense of f.d.d., as
the number of particles N →∞, to a sequence of centred stochastic processes
(Qn,Q−

n+1) with initial condition Q−
0 = V−

0 and update-predict transitions given by

Qn = (1− GnC)Q−
n + Vn

Q−
n+1 = AQn + V−

n+1.

Emma Horton 20 June 2023 43 / 55



Idea behind the proofs

Let us consider p−
n − P̂−

n . The idea is to write this difference as a telescoping
sum involving the increments of the Markov chain (p−

n )n≥1 and show that we
can control these increments nicely.

Recall from the evolution equation for p−
n , the increments are related to the

Riccati map
φ(x) = ax + b

cx + d , x ≥ 0.

Thus, we first need to look at the behaviour of these maps...
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Idea behind proofs : Riccati maps

Lemma (Del Moral, H., 2022)
(i) For any n ≥ 1, b/d ≤ φn(x) ≤ a/c.

(ii) We have the Lipschitz estimates

|φn(x)− φn(y)| ≤ C1λn|x − y | and |∂φn(x)− ∂φn(y)| ≤ C2λn|x − y |,

where C1, C2 > 0 and λ ∈ (0, 1).

(iii) Finally, we have the second order estimate

|φn(x)− φn(y)− ∂φn(y)(x − y)| ≤ C3λn|x − y |2,

where C3 > 0.
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Idea behind proofs : Riccati maps

A.N. Bishop and P. Del Moral. On the stability of Kalman-Bucy diffusion
processes. SIAM Journal on Control and Optimization. vol. 55, no. 6. pp
4015–4047 (2017); arxiv e-print arXiv:1610.04686.

A.N. Bishop and P. Del Moral. An explicit Floquet-type representation of
Riccati aperiodic exponential semigroups. International Journal of Control,
pp. 1–9 (2019).

P. Del Moral and E. Horton. A note on Riccati matrix difference equations.
SIAM J. Control Optim., 60(3), pp. 1393-1409 (2022).
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Idea behind proofs

Consider the following decomposition

p−
n − P̂−

n = φn(p−
0 )− φn(P̂−

0 ) +
n∑

k=1

(
φn−k(p−

k )− φn−(k−1)(p−
k−1)

)
.

Use the Lipschitz estimates for φn to obtain bounds on the summands for the
moment estimates.

The CLT requires more delicate treatment: need to use the second order
Taylor expansion type bounds and then the Lipschitz estimates for the first
derivative.
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Stability of the sample means

Now define Mn := mn − Xn.

Observe that
Mn+1 = A

1 + (C/D)2pn
Mn + Υn+1,

where Υn is a conditionally centred Gaussian random variable.

Understanding the stability of the sample means thus reduces to
understanding the behaviour of the products

El,n :=
n∏

k=l

A
1 + (C/D)2pk

.

Similar theorems to those presented for the sample covariances and the
corresponding Kalman gain hold for Mn.
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Problem: filter divergence

In geophysical models, the state dimension is O(108) but in the EnKF, the
ensemble size is O(102).

This means that the spread of the particles is not sufficient and can lead to
underestimation of the covariance.

This can causes filter divergence.
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Solution: Covariance inflation

One solution to this problem is covariance inflation.

The most common form of this is to make the following replacement

ξ−
N,i −m−

n ← r(ξ−
N,i −m−

n ),

where r is the inflation factor. Similarly for ξN,i .

This increases the sample covariances and thus stabilises the filter.

Usually r is chosen to be slightly greater than 1 but the choice is somewhat
heuristic.
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Problem: spurious correlations

With small sample sizes, the ranks of the covariance matrices are much
smaller than the dimension of the state.

This causes spurious correlations between unrelated state variables, e.g. a
large correlation between the temperature at two distant locations on the
globe.

This then propagates through the update step  state components that are
uncorrelated to the observations, Yn, are erroneously updated.
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Solution: covariance localisation

One solution is covariance localisation or covariance tapering.

Replace the covariance matrices by ρ ◦ pn, where ◦ denotes the Schur product.

Here ρ is a positive semi-definite matrix with ones on the diagonal and decays
smoothly to zero for unwanted off-diagonal elements.

Usually ρ is full-rank so that the resulting covariance matrix is full rank.
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Solution: covariance localisation
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Solution: domain localisation

Essentially divide and conquer.

Idea is to split the state space into
subdomains, update state estimates
locally and then stick them back
together.

Applicable only if the long-range
error correlations are negligible.
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Future work/open problems

Higher dimensions

Stability analysis for unstable signals for other genetic-type particle filters

Time-varying systems

Genealogies of particle filters

Plenty of other particle filters..!
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